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Carnegie Mellon University

Homework 10

START HERE: Instructions

• The homework is due at 11:59pm on Apr 13th, 2015. Anything that is received after that time will be
considered as late submission.

• Answers to everything but the coding question will be submitted electronically (e.g. as a PDF or
handwritten and scanned).

• Please follow the instruction for code submission in problem correctly.
• The handout for question can be found on Autolab or here.
• Collaboration on solving the homework is allowed (after you have thought about the problems on

your own). However, when you do collaborate, you should list your collaborators! You might also
have gotten some inspiration from resources (books or online etc...). This might be OK only after you
have tried to solve the problem, and couldn’t. In such a case, you should cite your resources.

• If you do collaborate with someone or use a book or website, you are expected to write up your
solution independently. That is, close the book and all of your notes before starting to write up your
solution.

This is a programming assignment. You are asked to implement several algorithms in Octave. Octave
is a free scientific programming language, with syntax (almost) identical to that of Matlab. Installation
instructions can be found on the Octave website as linked above. If you’ve never used Octave or Matlab
before, you may wish to check out this tutorial or this one.

For each question you will be given a single function signature, and asked to write a single Octave
function which satisfies the signature. Please do not change the names of the functions and their variables.
Do not modify the structure of the directories.

The problems are automatically graded using the CMU Autolab system. The code which you write will
be executed remotely against a suite of tests, and the results used to automatically assign you a grade. In
order for your code to execute correctly on our servers you should avoid using libraries beyond the basic
octave libraries.

The Autolab interface for this course can be found at https://autolab.cs.cmu.edu/. You can sign
in using your andrew credentials. You should make sure to edit your account information and choose a
nickname/handle. This handle will be used to display your results for the challenge question on the class
leaderboard.

We have provided you with a single folder containing each of the functions you need to complete. Do
not modify the structure of this directory or rename these files. Complete each of these functions, then compress
this directory as a tar file and submit to autolab online. You may submit as many times as you like (up to
the due date).

Please only submit a tarball called “code.tar”, which is compressed from “code” folder. Do not submit
any other files such as data files.

If you have a question, please post it on Piazza https://piazza.com/class/i4ivtbjbrt219e. If
you discover a bug or want to talk other technical issues, please send an email to Jin Sun jins@andrew.
cmu.edu.

Notations

• XTrain: RnTrain×f is a matrix of training data, where each row is a training instance with f features.

• XTest: RnTest×f is a matrix of test data, where each row is a test instance with f features.

• yTrain: RnTrain×1 is a vector of labels (for classification) or real numbers (for regression).
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General Instructions

• Please refer to homework 9 for implementation. Please note that qi,k, Q(zi,k|xi) and nik (in hw9) are
equivalent.

• Here is a tutorial on EM algorithm. If you are not familiar with EM, please walk through it at least
once.

Suppose you want to figure out some parameters θ that maximizes the log-likelihood on data D with some
observed variables x and some latent variables z. We can first write down the log-likelihood as follows:

log
∏

P (D; θ) = log
∏
i

P (xi; θ) =
∑
i

log
∑
k

P (xi, zi,k; θ)

Directly maximizing this likelihood is NP-complete. Instead, we try to maximize a concave lower bound
derived with Jensen’s Inequality:

log
∏

P (D; θ) =
∑
i

log
∑
k

P (xi, zi,k; θ) =
∑
i

log
∑
k

Q(zi,k|xi)
P (xi, zi,k; θ)

Q(zi,k|xi)
≥

∑
i

∑
k

Q(zi,k|xi) log
P (xi, zi,k; θ)

Q(zi,k|xi)

Q(zi,k|xi) is simply P (zi,k|xi) for convenience in notation. Let’s denote

F (Q, θ) =
∑
i

∑
k

Q(zi,k|xi) log
P (xi, zi,k; θ)

Q(zi,k|xi)

EM algorithm (in coordinate descent manner) works as follows:

• In E-step, fix θ, maximize F over Q.

F (Q, θ) =
∑
i

∑
k

Q(zi,k|xi) log
P (xi, zi,k; θ)

Q(zi,k|xi)
=

∑
i

∑
k

Q(zi,k|xi) log
P (zi,k|xi; θ)P (xi; θ)

Q(zi,k|xi)

=
∑
i

∑
k

Q(zi,k|xi) log
P (zi,k|xi; θ)
Q(zi,k|xi)

+
∑
i

∑
k

Q(zi,k|xi) logP (xi; θ)

= −
∑
i

∑
k

Q(zi,k|xi) log
Q(zi,k|xi)
P (zi,k|xi; θ)

+
∑
i

logP (xi; θ)
∑
k

Q(zi,k|xi)

= −
∑
i

DKL(Q(zi|xi)||P (zi|xi; θ)) + logP (xi; θ)

DKL denotes the Kullback Leibler divergence, a measure of the divergence of two distributions, which
is defined as DKL(P ||Q) =

∑
i P (i) ln P (i)

Q(i) . Since in E-step, θ is fixed, F (Q, θ) is maximized only by Q that
maximizes the negative KL divergence. Because KL divergence is always non-negative. DKL = 0 happens
only when P and Q are the same.

Summary: In the E-step of tth iteration, we derive Q(t) = argmaxQ F (Q, θ(t−1)), namely Q(t)(zi,k|xi) =

P (zi,k|xi; θ(t−1))

• In M-step, fix Q, maximize F over θ.
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F (Q, θ) =
∑
i

∑
k

Q(zi,k|xi) log
P (xi, zi,k; θ)

Q(zi,k|xi)
=

∑
i

∑
k

Q(zi,k|xi) logP (xi, zi,k; θ)−Q(zi,k|xi) logQ(zi,k|xi)

=
∑
i

Ezi|xi
logP (xi, zi; θ) +H(zi|xi)

H(z|x) the entropy of Q(z|x), which can be ignored since Q is fixed in M-step. θ should be derived with
MLE on the first term.

Summary: In the M-step of tth iteration, we derive θ(t) = argmaxθ F (Q(t), θ),
namely θ(t) = argmaxθ

∑
i

∑
kQ

(t)(zi,k|xi) logP (xi, zi,k; θ).

1 Gaussian Mixture Model [40 pts]

In this problem you are asked to implement Gaussian Mixture model. Recall that mixture models are
represented as:

x1, x2, . . . , xn ∼ p(x) =
∑
k

P (x|z = k)P (z = k)

The Gaussian Mixture Model assumes x|z = k ∼ N (µk,Σk). Denote P (z = k) as πk. The observed variable
is x, the latent variable is z, and the parameters are µ,Σ, π

1.1 Expectation [20 pts]

Complete the function E step(X, k,mu, sigma, pi) which returns q ∈ Rn×k, where n is the number of data
points, k is the number of clusters. Recall that qi,k = P (zi,k|xi). mu ∈ Rf×k are the means of k clusters.
sigma ∈ Rf×f×k are the covariance matrices of k clusters. The covariance matrix of ith cluster is simply
sigma(:, :, i). pi ∈ Rk×1 are the priors for k clusters.

1.2 Maximization [20 pts]

Complete the functionM step(X, k, q, alpha,mu 0, kappa 0, sigma 0, nu 0) which returnsmu ∈ Rf×k, sigma ∈
Rf×f×k, pi ∈ Rk×1. You can ignore alpha,mu 0, kappa 0, sigma 0, nu 0 in this problem but you will need
them later.

2 Conjugate Smoothing [30 pts]

The original estimates for GMM may diverge with problems like infinite variance, zero probability, tiny
clusters, etc. Conjugate smoothing applies priors to the variables. Recall the conjugate priors in exponen-
tial families (also in homework 5 and 9). In GMM, z|π follows Multinomial distribution Mult(π). We can
apply a conjugate prior with π following Dirichlet distribution Dir(α). X|y;µ,Σ follows Gaussian distri-
bution N (µ,Σ). We can apply a conjugate prior with µ,Σ following Normal-Inverse-Wishart distribution
NIW(µ0, κ0,Σ0, ν0).

Rework the function M step() with conjugate smoothing.
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3 EM [30 pts]

3.1 Putting everything together [10 pts]

Complete the function EM(X, k) which returns mu, sigma, pi. Since you need to tune parameters for the
leaderboard problem, the autolab only checks the validity of your output for this question.

3.2 Leaderboard [20 pts]

Run your EM algorithm on a given data set with k = 4. The quality of your clustering algorithm will be
evaluated with perplexity (lower is better), namely n

√∏n
i

1
P (xi;θ)

. Students achieving baseline (0.15) will
get 10 points. Students ranking top 10 on the leaderboard will get another 10 points.

Some hints:

• Pre-processing is crucial.

• Seeding your EM with K-means++ may help.

• You should design your stopping criteria. EM usually converges less than 30 iterations.

• Pick valid values for the priors. Check out Dirichlet and NIW in wikipedia.

• You can force Σ to be symmetric by doing Σ = 1
2 (Σ + Σ>). This is helpful for some numerical issues

in Matlab.
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