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Homework 1

FINAL VERSION

Before this final version on January 20th, there was a version uploaded on January 19th. To avoid confusion,
here we list the changes made from the previous version.

• Score distribution has been changed. The course staff decided that the problem 2 is much harder than
problem 1, and downgraded the point of problem 1 to 30 points.

• Previous section 1.1 Expectation has been removed and now section 1.1 is Independence.
• Some more explanations have been added to problem 2.
• The deadline has been extended for a day from January 26th to January 27th.
• Lastly, the following instructions on next section were clarified.

INSTRUCTIONS

• The homework is due at 9:00am on January 27, 2015. Anything that is received after that time will be
considered to be late.

• Answers to every theory questions need to be submitted electronically on Autolab. Only PDF is
acceptable (e.g. LaTeX or handwritten and scanned).

• Make sure you prepare the answers to each question separately. This helps us dispatch the problems
to different graders.

• Collaboration on solving the homework is allowed. Discussions are encouraged but you should think
about the problems on your own.

• When you do collaborate, you should list your collaborators! Also cite your resources, in case you got
some inspiration from other resources (books, websites, papers).

• If you do collaborate with someone or use a book or website, you are expected to write up your
solution independently. That is, close the book and all of your notes before starting to write up your
solution.

1 Probability Review and Bayesian Spam Filter [Zhou; 30pts]

Probability is, in many ways, the most fundamental mathematical technique for machine learning. This
problem will review several basic notions from probability and make sure that you remember how to do
some elementary proofs.

Recall that for a discrete random variable X whose values are integers, we frequently use the notation
P (X = x). If a random variable Y is continuous, we typically use a “density function” f(Y = y). The
conditions for P (X = x) to be a valid probability distribution are that Σ∞−∞P (X = x) = 1 and P (X = x) ≥
0. Similarly for f(Y = y) to be a valid continuous distribution,

∫∞
−∞ f(Y = y)dy = 1 and f(Y = y) ≥ 0.

Sometimes the underlying probability space has more than one variable (for example, the height and
weight of a person). In this case, we may use notation like f(X = x;Y = y) to denote the probability
density function in several dimensions.

1.1 Independence [5 pts]

Intuitively, two random variables X and Y are “independent” if knowledge of the value of one tells you
nothing at all about the value of the other. Precisely, if X and Y are discrete, independence means that
P (X = x;Y = y) = P (X = x)P (Y = y), and if they are continuous, f(X = x;Y = y) = f(X = x)f(Y = y).
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Show the following, for independent random variable X and Y:

E[XY ] = E[X]E[Y ] for discrete and continous cases respectively.

1.2 Spam filtering equation [5 pts]

Naive Bayes classifiers work by correlating the use of tokens (typically words, or sometimes other things),
with spam and non-spam e-mails and then using Bayesian inference to calculate a probability that an email
is or is not spam. Naive Bayes spam filtering is a baseline technique for dealing with spam. Let’s suppose
the suspected message contains the word ”replica”. Most people who are used to receiving e-mail know
that this message is likely to be spam, more precisely a proposal to sell counterfeit copies of well-known
brands of watches. The spam detection software, however, does not “know” such facts; all it can do is
compute probabilities.
Let Pr(S|W ) be the probability that a message is a spam given the word ”replica” appears in it. Express
Pr(S|W ) in terms of the following components we provide:

1. Pr(S) is the overall probability that any given message is spam;

2. Pr(W |S) is the probability that the word “replica” appears in spam messages;

3. Pr(H) is the overall probability that any given message is not spam (is ”ham”);

4. Pr(W |H) is the probability that the word “replica” appears in ham messages.

1.3 I.I.D. assumption in spam filters [10 pts]

Give at least 4 cases how ”Independent and identically distributed random variables (i.i.d.)” assumption
can be violated for spam filtering. Fore each case, please explain why i.i.d. is violated and how spammers
might exploit the situation.

1.4 Poison the Bayesian spam filter [10 pts]

Depending on the implementation, Bayesian spam filtering may be susceptible to Bayesian poisoning, a
technique used by spammers in an attempt to degrade the effectiveness of spam filters that rely on Bayesian
filtering. Think of some ideas to make your spam pass the Bayesian spam filter based on the equation.

2 Regression [Jay-Yoon; 70pts]

The objective of this problem is to gain knowledge on Linear Regression, Maximum Likelihood Estimation
(MLE), Maximum-a-Posteriori Estimation (MAP) and the variants of Regression problems with introduc-
tion of reularization terms.

2.1 Linear Regression: MLE and Least Squares [25 pts]

Consider a linear model with some Gaussian noise:

Yi = 〈Xi, w〉+ b+ εi where εi ∼ N (0, σ2), i = 1, . . . , n. (1)
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Where Yi ∈ R is a scalar, Xi ∈ Rd is a d-dimensional vector, b ∈ R is a constant, w ∈ Rd is d-dimensional
weight on Xi, and εi is a i.i.d. Gaussian noise with variance σ2. Given the data Xi, i = 1, . . . , n, it is our
goal to estimate w and b which specify the model.

We will show that solving the linear model (1) with MLE method is the same as solving the following
Least Squares problem,

argmin
β

(y −X′β)>(y −X′β), (2)

where Y = (Y1, . . . , Yn)T , X ′i = (1, Xi)
T , X′ = (X ′1, . . . , X

′
n)T and β = (b, w)T .

1. From the model (1), derive the conditional distribution of Yi|Xi, w, b. Again, Xi is a fixed data point.

2. Assuming i.i.d. between each εi, i = 1, . . . , n, give an explicit expression for the loglikelihood,
logP (Y |β) of the data.

Note: Notation Y and β is given on (2). Xi, i = 1, . . . , n is fixed data points. Also given εis are i.i.d.,
so P (Y |β) =

∏
i P (Yi|w, b).

3. Now show that solving for β that maximizes the loglikelihood, i.e. MLE, is the same as solving the
Least Square problem of (2).

4. Derive β that maximizes the loglikelihood.

Assume X′ has full rank on column space.
Hint: This link has some reference to matrix calculus: http://www.cs.nyu.edu/˜roweis/notes/
matrixid.pdf.

2.2 Nonlinear Regression and Regularization [15 pts]

Consider higher order term, φ(Xi) = (1, Xi, X
2
i . . . , X

k
i )T , then we can model Y in kth-order model as

following:

Yi = 〈φ(Xi),β
′〉+ εi where εi ∼ N (0, σ2), i = 1, . . . , n. (3)

where all the definitions are from equation (1) except β′ ∈ Rk+1 and for simplicity let d = 1 for Xi ∈ Rd.

1. As we did in section 2.1, show that optimal β′ of (3) is
(
φ(X)

T
φ(X)

)−1
φ(X)

T
Y if we use MLE.

Note: φ(X) = (φ(X1), φ(X2), . . . , φ(Xn))T and assume φ(X) has full rank on column space.

Hint: You are not expected to write the whole steps again. Foucs on the change from the loglikeli-
hood expressions of 2.1 and derive the optimization problem.

2. In case φ(X)
T
φ(X) is not invertible, you can add diagnoal term λIk+1 to it so that φ(X)

T
φ(X)+λIk+1

becomes invertible with Ik+1, an identity matrix of size n, and λ > 0. Show that
(
φ(X)

T
φ(X) + λIk+1

)−1
φ(X)

T
Y

is the solution of the optimization problem,

argmin
β′
‖Y − φ(X)β′‖22 + λ‖β′‖22. (4)
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2.3 MAP [30 pts]

From (3), now consider a case where β′ has a prior distribution β′ ∼ N (0, η2Ik+1).

1. Write the posterior distribution of β′|Yi given ith sample and β′|Y given whole data, respectively.
Assume independence between β′ and noise εi ∼ N (0, σ2), i = 1, . . . , n.

Hint1: Use Baye’s rule and follow similar steps with 2.1. Pr(β′|Yi) = Pr(β′) Pr(Yi|β′)
Pr(Yi)

Hint2: Sum of two independent Normal variable follows Normal distribution. i.e. X ∼ N (a, b2), Y ∼
N (c, d2), X ⊥ Y → X + Y ∼ N (a+ c, b2 + d2).

2. MAP estimate β′ is defined as β′ that establishes the mode of posterior P (β′|X,Y). Show that solving
for MAP estimate leads to the problem (4) if λ can be expressed in terms σ and η, i.e. λ = g(σ, η). Find
explicit expression for g(σ, η).

3. Describe one potential problem in the absence of regularization term in (4) and how the regularziation
term can alleviate the potential problem.

Note: Let’s skip the case of non-invertible matrix as we already covered the case in section 2.2.
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