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Abstract

The success of Support Vector Machine (SVM) gave rise to the development of a
new class of theoretically elegant learning machines which use a central concept of
kernels and the associated reproducing kernel Hilbert space (RKHS ). Exponential
families, a standard tool in statistics, can be used to unify many existing machine
learning algorithms based on kernels (such as SVM) and to invent novel ones quite
effortlessly.

In this paper we will discuss how exponential families, a standard tool in statistics,
can be used with great success in machine learning to unify many existing algorithms
and to invent novel ones quite effortlessly. A new derivation of the novelty detection
algorithm based on the one class SVM is proposed to illustrates the power of the
exponential family model in a RKHS
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1 Introduction

Machine learning is proving increasingly important tools in many fields such
as text processing, machine vision, speech to name just a few. Among these
new tools, kernel based algorithms have demonstrated their efficiency on many
practical problems. These algorithms performed function estimation, and the
functional framework behind these algorithm is now well known [Canu et al.,
2003]. But still too little is known about the relation between these learning
algorithms and more classical statistical tools such as likelihood, likelihood ra-
tio, estimation and test theory. A key model to understand this relation is the
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generalized or non parametric exponential family. This exponential family is
a generic way to represent any probability distribution since any distribution
can be well approximated by an exponential distribution. The idea here is to
retrieve learning algorithm by using the exponential family model with clas-
sical statistical principle such as the maximum penalized likelihood estimator
or the generalized likelihood ratio test.

Outline To do so the paper is organized as follows. The first section presents
the functional frameworks and Reproducing Kernel Hilbert Space (RKHS ).
Then the exponential family on an RKHS is introduced and classification as
well as density estimation and regression kernels based algorithms such as
SVM are derived. In a final section new material is presented establishing the
link between the kernel based one class SVM novelty detection algorithm and
classical test theory. It is shown how this novelty detection can be seen a an
approximation of a generalized likelihood ratio thus optimal test.

2 Functional framework

Definition 1 (Reproducing Kernel Hilbert Space) A Hilbert space (H,〈., .
〉H) of functions on a domain X (defined pointwise) is an RKHS if the evalu-
ation functional is continuous on H.

For instance IRn, the set Pk of polynomials of order k, as any finite dimensional
set of genuine functions form an RKHS . The space of sequences !2 is also an
RKHS — the evaluation function in this case being the value of the series at
location x ∈ X = N. Note that the usual L2 spaces, such as L2(IR

n) (using
the Lebesgue measure) are not an RKHS since their evaluation functionals are
not continuous (in fact, functions on L2 are not even defined in a pointwise
fashion).

Definition 2 (Positive Kernel) A function k mapping X × X → IR is a
positive kernel if it is symmetric and if for any finite subset {xi}, i = 1, n of X
and any sequence of scalar coefficients {αi}, i = 1, n the following inequality
holds:

n∑

i=1

n∑

j=1

αiαjK(xi, yj) ≥ 0 (1)

This definition is equivalent to the one of Aronszajn [1944]. The following
corollary arises from [Schwartz, 1964, Proposition 23] and [Wahba, 1990, The-
orem 1.1.1]
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Table 1
Common Parametric Exponential Families used for estimating univariate and dis-
crete distributions. The notation is geared towards an inner product setting, that
is, using φ(x) and g(θ) in an explicit form.

Name Domain X Measure φ(x) g(θ) Domain Θ

Binomial {0, 1} Counting x log
(
1 + eθ

)
R

Multinomial {1..N} Counting ex log
∑N

i=1
eθi RN

Exponential N+
0 Counting x − log

(
1− eθ

)
(−∞, 0)

Poisson N+
0

1
x! x eθ R

Laplace [0,∞) Lebesgue x log θ (−∞, 0)

Gaussian R Lebesgue
(

x,− 1
2 x2

)
1
2 log 2π − 1

2 log θ2 + 1
2

θ2
1

θ2
R× (0,∞)

Rn Lebesgue
(

x,− 1
2 xx!

)
n
2 log 2π − 1

2 log |θ2| + 1
2 θ!1 θ−1

2 θ1 Rn × Cone Rn2

Inv. Normal [0,∞) x
− 3

2
(
−x,− 1

x

)
1
2 log π − 2

√
θ1θ2 − 1

2 log θ2 (0,∞)2

Beta [0, 1] 1
x(1−x) (log x, log (1− x)) log

Γ(θ1)Γ(θ2)
Γ(θ1+θ2) R2

Gamma [0,∞) 1
x (log x,−x) log Γ(θ1)− θ1 log θ2 (0,∞)2

Wishart Cone Rn2
|X|−

n+1
2

(
log |x|,− 1

2 x
)

−θ1 log |θ2| + θ1n log 2 R× Cone Rn2

+
∑n

i=1
log Γ

(
θ1 + 1−i

2

)

Dirichlet ‖x‖1 = 1
∏n

i=1
x−1

i
(log x1, . . . , log xn)

∑n

i=1
log Γ(θi)− log Γ

(∑n

i=1
θi

)
(R+)n

xi ≥ 0

Proposition 3 (Bijection between RKHS and Kernel) There is a bi-
jection between the set of all possible RKHS and the set of all positive kernels.

Thus Mercer kernels are a particular case of a more general situation since
every Mercer kernel is positive in the Aronszajn sense (definition 2) while the
converse need not be true.

One a the key properties to be used hereafter is the reproducing property of the
kernel k in an RKHS . It is closely related to the fact than in RKHS functions
are pointwise defined and that the evaluation functional is continuous. Thus,
because of this continuity Riesz theorem can be stated as follows

for all f ∈ H and for all x ∈ X we have f(x) = 〈f(.), k(x, .)〉H (2)

In the remaininder of the paper we assume that we are given the RKHS, its
dot product and its kernel k. When appropriate we will refer to k(x, .) as a
map of x into the so-called “feature space”. The dot product considered is the
one of the RKHS.

3 Kernel approaches for the exponential family

3.1 Parametric Exponential Families

We begin by reviewing some basic facts of exponential families. Denote by X
a domain, µ(X ) a (not necessarily finite) measure on X and let φ(x) be a map
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from X into a Hilbert space of sufficient statistics. Then a probability measure
on X with respect to φ and θ ∈ H is given by

IP(x; θ) = exp (〈θ,φ(x)〉 − g(θ)) , (3a)

where g(θ) = log
∫

X
exp(〈θ, φ(x)〉 dµ(x). (3b)

Here it is understood that IP(x; θ) is taken with respect to the underlying
measure µ(X ). A large class of distributions can be described this way, as can
be seen in Table 1.

The function g(θ) is typically referred to as the log-partition function or also
cumulant generating function. This is so, as its derivatives generate the cu-
mulants of IP(x; θ). It is analytic and convex on the domain on which (3b)
exists.

3.2 Nonparametric Exponential Families

Unfortunately, not all integrals in (3b) can be computed explicitly in closed
form. Moreover, the set of distributions which can be modeled by mapping x
into a finite-dimensional φ(x) is rather limited. We now consider an extension
of the definition to nonparametric distributions.

Assume there exists a reproducing kernel Hilbert space H embedded with the
dot product 〈., .〉H and with a reproducing kernel k such that kernel k(x, .) is
a sufficient statistics of x. Then in exponential families the density IP(x; θ) is
given by

IP(x; θ) = exp (〈θ(.), k(x, .)〉H − g(θ)) , (4a)

where g(θ) = log
∫

X
exp(〈θ(.), k(x, ; )〉H) dx. (4b)

Here θ is the natural parameter and g(θ) is the log-partition function, often
also called the moment generating function. All we changed from before is
that now θ is an element of an RKHS and φ(x) is also a map into such a
space, given by φ(x) = k(x, ·).

When we are concerned with estimating conditional probabilities, the expo-
nential families framework can be can extended to conditional densities:

IP(y|x; θ) = exp (〈θ(.), k(x, y, .)〉H − g(θ|x)) (5a)

and g(θ|x) = log
∫

Y
exp(〈θ(.), k(x, y, .)〉H) dy. (5b)

g(θ|x) is commonly referred to as the conditional log-partition function. Both
g(θ) and g(θ|x) are convex C∞ functions in θ and they can be used to compute
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moments of a distribution:

∂θg(θ) = Ep(x;θ)[k(x)] ∂θg(θ|x) = Ep(x,y;θ)[k(x, y)|x] Mean (6)

∂2
θg(θ) = Varp(x;θ)[k(x)] ∂2

θg(θ|x) = Varp(x,y;θ)[k(x, y)|x] Variance (7)

We will also assume there exists some prior on parameter θ defined by

IP(θ) =
1

Z
exp

(
−‖θ(.)‖2

H /2σ2
)

where Z is a normalizing constant. 1 In this case, the posterior density can be
written as IP(θ|x) ∝ IP(x|θ)IP(θ).

3.3 Kernel logistic regression and Gaussian process

Assume we observe some training data xi, yi, i = 1, n. The binary classification
problem arises when yi ∈ {−1, +1}. In this case we can use the conditional
exponential family to model IP(Y = y|x). The estimation of its parameter
θ using the maximum a posteriori (MAP) principle aims at minimizing the
following cost function:

− log IP(θ|data) = −
n∑

i=1

〈θ(.), k(xi, yi, .)〉H + g(θ, xi) + 〈θ(.), θ(.)〉H/2σ2 + C

(8)

where C is some constant term. Note that this can be seen also as a penalized
likelihood cost function and thus connected to minimum description length
principle and regularized risk minimization.

Proposition 4 (Feature map for binary classification) Without loss of
generality the kernel for binary classification can be written as

〈k(x, y, ·), k(x′, y′, ·)〉 = yy′k(x, x′). (9)

Proof Assume that instead of k(x, y, ·) we have k(x, y, ·)+f0 where f is a func-
tion of x only. In this case g(θ) is transformed into g(θ|x)+f0(x) (and likewise
〈k(x, y, ·), θ(·)〉H into θ(x, y) + f0(x)). Hence the conditional density remains
unchanged. This implies that we can find an offset such that

∑
y k(x, y, ·) = 0.

The consequence for binary classification is that

k(x, 1, ·) + k(x,−1, ·) = 0 and therefore k(x, y, ·) = yk0(x, ·) (10)

1 Note that Z need not exist on the entire function space but rather only on the
linear subspace of points where IP(x; θ) is evaluated. The extension to entire func-
tion spaces requires tools from functional analysis, namely Radon derivatives with
respect to the Gaussian measure imposed by the prior itself.
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for some k0, such as k0(x, ·) = k(x, 1, ·). Taking inner products proves the
claim.

Using the reproducing property equation 2 (θ(xi) = 〈θ(.), k(xi, .)〉H)) we have:

g(θ, xi) = log (exp θ(xi) + exp−θ(xi))

Then after some algebra the MAP estimator can be found by minimizing:

n∑

i=1

log (1 + exp(−2θ(xi)yi)) +
1

2σ2
‖θ‖2

H

On this minimization problem, the representer theorem (see Schölkopf and
Smola [2002] for more details) gives us:

θ(.) =
n∑

i=1

yiαik(xi, .)

The associated optimization problem can be rewritten in terms of α:

min
α∈IRn

n∑

i=1

log



1 + exp



−2
n∑

j=1

yjαjk(xi, xj)







 +
1

2σ2

n∑

i=1

n∑

j=1

yjyiαiαjk(xi, xj)

It is non linear and can be solved using Newton method. The connection is
made with the kernel logistic regression since we have in our framework:

log
IP(Y = 1|x)

IP(Y = −1|x)
=

n∑

i=1

yiαi,yk(xi, x) + b

and thus the decision of classifying a new data x only depends on the sign of
the kernel term. Note that the multiclass problem can be solved by using the
same kind of derivations assuming that k(xi, yi, x, y) = k(xi, x)δyiy.

3.4 Two Class Support Vector Machines

We now define the margin of a classifier (binary or not) as the most pessimistic
log-likelihood ratio for classification. That is, we define

r(x, y, θ) := log IP(y|x, θ)−max
ỹ $=y

log IP(ỹ|x, θ). (11)

Clearly, whenever r(x, y, θ) > 0 we classify correctly. Moreover, its magnitude
gives the logarithm of the ratio between the correct class and the most domi-
nant incorrect class. In other words, large values of r imply that we are very
confident about classifying x as y. In terms of classification accuracy this is a
more useful proposition than the log-likelihood, as the latter does not provide
necessary and sufficient conditions for correct classification.
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It is easy to see that for binary classification this yields

r(x, y, θ) = 〈θ, yk(x, ·)〉 − 〈θ,−yk(x, ·)〉 = 2yθ(x) (12)

which is the standard definition of the margin. Instead of the MAP estimate
we optimize with respect to a reference margin ρ, that is we minimize

min
θ

n∑

i=1

max (0, ρ− r(xi, yi, θ)) +
1

σ2
‖θ‖2

H (13)

Together with the exponential family model, the minimization of this crite-
rion leads to the maximum margin classifier. Here again this can be easily
generalized to the multiclass problem.

3.5 One Class Support Vector Machines

The one class SVM algorithm has been design to estimate some quantile from
sample data. This is closely reated but simpler than estimating the whole den-
sity. It is also more relevant when the target application is novelty detection.
As a matter of fact, any point not belonging to the support of a density can
be seen a novel.

Back with our exponential family model for IP(x), a robust approximation of
maximum a posteriori (MAP) estimator for θ is the one maximizing:

max
θ∈H

n∏

i=1

min

(
IP0(xi|θ)

p0
, 1

)

IP(θ)

with p0 = exp (ρ− g(θ)). After some tedious algebra, this problem can be
rewritten as:

min
α∈IRn

n∑

i=1

max (ρ− 〈θ(.), k(xi, .)〉H, 0) +
1

2σ2
‖θ‖2

H (14)

On this problem again the representer theorem gives us the existence of some
coefficient αi such that:

θ(.) =
n∑

i=1

αik(xi, .)

and thus the estimator has the following form:

ÎP(x) = exp

(
n∑

i=1

αik(xi, .)− b

)

where coefficients α are determined by solving the one class SVM problem
(14). Parameter b represents the value of the log partition function and thus
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the normalization factor. It can be hard to compute it but it is possible to do
without it in our applications.

Here again the one class SVM algorithm can be derived using the exponential
family on a RKHS and a relevant cost function to be minimized.

3.6 Regression

It is possible to see the problem as a generalization of the classification case
to continuous y. But in this case, a generalized version of the representer
theorem shows that parameters α are no longer scalar but functions, leading
to intractable optimization problems. Some additional hypothesis have to be
made about the nature of the unknown distribution. One way to do is to use
the conditional gaussian representation with its natural parameters:

IP(y|x) = exp
(
y θ1(x) + y2 θ2(x)− g(θ1(x), θ2(x))

)

with θ1(x) = m(x)/σ2(x) and$θ2(x) = −1/2σ2(x) where m(x) is the condi-
tional expectation of y given x and σ2(x) its conditional variance. The asso-
ciated kernel can be written as follows:

k(xi, yi, x, y) = k1(xi, x)y + k2(xi, x)y2

where k1 and k2 are two positive kernels. In this case the application of the
represented theorem gives a heteroscedastic gaussian process (with non con-
stant variance) as the model of the data, associated with a convex optimization
problem.

4 Application to novelty detection

Let Xi, i = 1, 2, . . . t be a sequence of random variables distributed according
to some distribution IPi. We are interested in finding whether or not a change
has occurred at time t. To begin with a simple framework we will assume the
sequence to be stationary from 1 to t and from t + 1 to 2t, i.e. there exists
some distributions IP0 and IP1 such that Pi = P0 for i ∈ [1, t] and Pi = P1

for i ∈ [t + 1, 2t]. The question we are addressing can be seen as determining
if IP0 = IP1 (no change has occurred) or else IP0 *= IP1 (some change have
occurred). This can be restated as the following statistical test:






H0 : IP0 = IP1

H1 : IP0 *= IP1
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In this case the likelihood ratio is the following:

Λl(x1, ..., x2t) =

∏t
i=1 IP0(xi)

∏2t
i=t+1 IP1(xi)∏2t

i=1 IP0(xi)
=

2t∏

i=t+1

IP1(xi)

IP0(xi)

since both densities are unknown the generalized likelihood ratio (GLR) has
to be used:

Λ(x1, ..., x2t) =
2t∏

i=t+1

ÎP1(xi)

ÎP0(xi)

where ÎP0 and ÎP1 are the maximum likelihood estimates of the densities.

Because we want our detection method to be universal, we want it to work
for any possible density. Thus some approximations have to be done to clarify
our framework. First we will assume both densities IP0 and IP1 belong to the
generalized exponential family thus there exists a reproducing kernel Hilbert
space H embedded with the dot product 〈., .〉H and with a reproducing kernel
k such that:

IP0(x) = µ(x) exp〈θ0(.), k(x, .)〉H − g(θ0) and (15a)

IP1(x) = µ(x) exp〈θ1(.), k(x, .)〉H − g(θ1) (15b)

where g(θ) is the so called log-partition function. Second hypothesis, the func-
tional parameter θ0 and θ1 of these densities will be estimated on the data of
respectively first and second half of the sample by using the one class SVM
algorithm. By doing so we are following our initial assumption that before
time t we know the distribution is constant and equal to some IP0. The one
class SVM algorithm provides us with a good estimator of this density. The
situation of ÎP1(x) is more simple. It is clearly a robust approximation of the
maximum likelihood estimator. Using one class SVM algorithm and the expo-
nential family model both estimate can be written as:

ÎP0(x) = µ(x) exp

(
t∑

i=1

α(0)
i k(x, xi)− g(θ0)

)

(16a)

ÎP1(x) = µ(x) exp




2t∑

i=t+1

α(1)
i k(x, xi)− g(θ1)



 (16b)

where α(0)
i is determined by solving the one class SVM problem on the first

half of the data (x1 to xt). while α(1)
i is given by solving the one class SVM

problem on the second half of the data (xt+1 to x2t). Using these hypotheses,
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the generalized likelihood ratio test is approximated as follows:

Λ(x1, ..., x2t) > s ⇔
2t∏

j=t+1

exp
∑2t

i=t+1 α(1)
i k(xj, xi)− g(θ1)

exp
∑t

i=1 α(0)
i k(xj, xi)− g(θ0)

> s

⇔
2t∑

j=t+1




t∑

i=1

α(0)
i k(xj, xi)−

2t∑

i=t+1

α(1)
i k(xj, xi)



 < s′

where s′ is a threshold to be fixed to have a given risk of the first kind a such
that:

IP0




2t∑

j=t+1




t∑

i=1

α(0)
i k(xj, xi)−

2t∑

i=t+1

α(1)
i k(xj, xi)



 < s′


 = a

It turns out that the variation of
∑2t

i=t+1 α(1)
i k(xj, xi) are very small in com-

parison to the one of
∑t

i=1 α(0)
i k(xj, xi). Thus ÎP1(x) can be assumed to be

constant, simplifying computations. In this case the test can be performed by
only considering:

2t∑

j=t+1

(
t∑

i=1

α(0)
i k(xj, xi)

)

< s

This is exactly the novelty detection algorithm as proposed by Schölkopf et al.
[2001]. In summary we showed how to derive the latter as a statistical test ap-
proximating a generalized likelihood ratio test, optimal under some condition
in the Neyman Pearson framework.

5 Conclusion

In this paper we illustrates how powerful is the link made between kernel algo-
rithms, Reproducing Kernel Hilbert Space and the exponential family. A lot of
learning algorithms can be revisited using this framework. We discuss here the
logistic kernel regression, the SVM, the gaussian process for regression and the
novelty detection using the one class SVM. This framework is applicable to
many different cases and other derivations are possible: exponential family in a
RKHS can be used to recover sequence annotation (via Conditional Random
Fields) or boosting to name just a few. The exponential family framework
is powerful because it allows to connect, with almost no lost of generality,
learning algorithm with usual statistical tools such as posterior densities and
likelihood ratio. These links between statistics and learning were detailed in
the case of novelty detection restated as a quasi optimal statical test based on
a robust approximation of the generalized likelihood. Further works on this
field regard the application of sequential analysis tools such as the CUSUM
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algorithm for real time novelty detection minimizing the expectation of the
detection delay.
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