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Online Learning with Kernels
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Abstract—Kernel-based algorithms such as support vector ma-
chines have achieved considerable success in various problems in
batch setting, where all of the training data is available in advance.
Support vector machines combine the so-called kernel trick with
the large margin idea. There has been little use of these methods in
an online setting suitable for real-time applications. In this paper,
we consider online learning in a reproducing kernel Hilbert space.
By considering classical stochastic gradient descent within a fea-
ture space and the use of some straightforward tricks, we develop
simple and computationally efficient algorithms for a wide range of
problems such as classification, regression, and novelty detection.

In addition to allowing the exploitation of the kernel trick in
an online setting, we examine the value of large margins for clas-
sification in the online setting with a drifting target. We derive
worst-case loss bounds, and moreover, we show the convergence of
the hypothesis to the minimizer of the regularized risk functional.

We present some experimental results that support the theory
as well as illustrating the power of the new algorithms for online
novelty detection.

Index Terms—Classification, condition monitoring, large
margin classifiers, novelty detection, regression, reproducing
kernel Hilbert spaces, stochastic gradient descent, tracking.

I. INTRODUCTION

KERNEL methods have proven to be successful in many
batch settings (support vector machines, Gaussian pro-

cesses, regularization networks) [1]. While one can apply batch
algorithms by utilizing a sliding buffer [2], it would be much
better to have a truely online algorithm. However, the extension
of kernel methods to online settings where the data arrives se-
quentially has proven to provide some hitherto unsolved chal-
lenges.

A. Challenges for Online Kernel Algorithms

First, the standard online settings for linear methods are
in danger of overfitting when applied to an estimator using a
Hilbert space method because of the high dimensionality of the
weight vectors. This can be handled by use of regularization
(or exploitation of prior probabilities in function space if the
Gaussian process view is taken).

Second, the functional representationofclassicalkernel-based
estimators becomes more complex as the number of observations
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increases. The Representer Theorem [3] implies that the number
of kernel functions can grow up to linearly with the number of
observations. Depending on the loss function used [4], this will
happen in practice in most cases. Thus, the complexity of the es-
timator used in prediction increases linearly over time (in some
restricted situations, this can be reduced to logarithmical cost [5]
orconstantcost [6],yetwithlinearstoragerequirements).Clearly,
this is not satisfactory for genuine online applications.

Third, the training time of batch and/or incremental update al-
gorithms typically increases superlinearly with the number of ob-
servations. Incremental update algorithms [7] attempt to over-
come this problem but cannotguarantee a bound on the numberof
operations required per iteration. Projection methods [8], on the
other hand, will ensure a limited number of updates per iteration
as well as keep the complexity of the estimator constant. How-
ever they can be computationally expensive since they require a
matrix multiplication at each step. The size of the matrix is given
by the number of kernel functions required at each step and could
typically be in the hundreds in the smallest dimension.

In solving the above challenges it is highly desirable to be
able to theoretically prove convergence rates and error bounds
for any algorithms developed. One would want to be able to
relate the performance of an online algorithm after seeing
observations to the quality that would be achieved in a batch
setting. It is also desirable to be able to provide some theoretical
insight in drifting target scenarios when a comparison with a
batch algorithm makes little sense.

In this paper we present algorithms that deal effectively with
these three challenges as well as satisfying the above desiderata.

B. Related Work

Recently several algorithms have been proposed [5], [9]–[11]
that perform perceptron-like updates for classification at each
step. Some algorithms work only in the noise-free case, others
not for moving targets, and others assume an upper bound on the
complexity of the estimators. In the present paper, we present
a simple method that allows the use of kernel estimators for
classification, regression, and novelty detection and copes with
a large number of kernel functions efficiently.

The stochastic gradient descent algorithms we propose (col-
lectively called NORMA) differ from the tracking algorithms of
Warmuth, Herbster, and Auer [5], [12], [13] insofar as we do not
require that the norm of the hypothesis be bounded beforehand.
More importantly, we explicitly deal with the issues described
earlier that arise when applying them to kernel-based represen-
tations.

Concerning large margin classification (which we obtain by
performing stochastic gradient descent on the soft margin loss
function), our algorithm is most similar to Gentile’s ALMA [9],
and we obtain similar loss bounds to those obtained for ALMA.

1053-587X/04$20.00 © 2004 IEEE
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One of the advantages of a large margin classifier is that it allows
us to track changing distributions efficiently [14].

In the context of Gaussian processes (an alternative theoret-
ical framework that can be used to develop kernel based algo-
rithms), related work was presented in [8]. The key difference
to our algorithm is that Csató and Opper repeatedly project on
to a low-dimensional subspace, which can be computationally
costly, requiring as it does a matrix multiplication.

Mesterharm [15] has considered tracking arbitrary linear
classifiers with a variant of Winnow [16], and Bousquet and
Warmuth [17] studied tracking of a small set of experts via
posterior distributions.

Finally, we note that although not originally developed as an
online algorithm, the sequential minimal optimization (SMO)
algorithm [18] is closely related, especially when there is no bias
term, in which case [19] it effectively becomes the Perceptron
algorithm.

C. Outline of the Paper

In Section II, we develop the idea of stochastic gradient de-
scent in Hilbert space. This provides the basis of our algorithms.
Subsequently we show how the general form of the algorithm
can be applied to problems of classification, novelty detection,
and regression (Section III). Next we establish mistake bounds
with moving targets for linear large margin classification algo-
rithms in Section IV. A proof that the stochastic gradient algo-
rithm converges to the minimum of the regularized risk func-
tional is given in Section V, and we conclude with experimental
results and a discussion in Sections VI and VII.

II. STOCHASTIC GRADIENT DESCENT IN HILBERT SPACE

We consider a problem of function estimation, where the goal
is to learn a mapping based on a sequence

of examples .
Moreover we assume that there exists a loss function

, given by , which penalizes the deviation of
estimates from observed labels . Common loss functions
include the soft margin loss function [20] or the logistic loss for
classification and novelty detection [21], and the quadratic loss,
absolute loss, Huber’s robust loss [22], and the -insensitive loss
[23] for regression. We will discuss these in Section III.

The reason for allowing the range of to be rather than is
that it allows for more refinement in evaluation of the learning
result. For example, in classification with , we
could interpret sgn as the prediction given by for the
class of and as the confidence in that classification. We
call the output of the learning algorithm an hypothesis and
denote the set of all possible hypotheses by .

We will always assume that is a reproducing kernel Hilbert
space (RKHS) [1]. This means that there exists a kernel

and a dot product such that

1) has the reproducing property

for (1)

2) is the closure of the span of all with .

In other words, all are linear combinations of kernel
functions. The inner product induces a norm on
in the usual way: . An interesting special
case is with (the normal dot-product
in ), which corresponds to learning linear functions in ,
but much more varied function classes can be learned by using
different kernels.

A. Risk Functionals

In batch learning, it is typically assumed that all the examples
are immediately available and are drawn independently from
some distribution over . One natural measure of quality
for in that case is the expected risk

(2)

Since is unknown, given drawn from , a standard ap-
proach [1] is to instead minimize the empirical risk

(3)

However, minimizing may lead to overfitting (complex
functions that fit well on the training data but do not generalize
to unseen data). One way to avoid this is to penalize complex
functions by instead minimizing the regularized risk

(4)

where , and does indeed measure the
complexity of in a sensible way [1]. The constant needs
to be chosen appropriately for each problem. If has param-
eters (for example —see later), we write and

.
Since we are interested in online algorithms, which deal with

one example at a time, we also define an instantaneous approx-
imation of , which is the instantaneous regularized risk
on a single example , by

(5)

B. Online Setting

In this paper, we are interested in online learning, where
the examples become available one by one, and it is desired
that the learning algorithm produces a sequence of hypotheses

. Here is some arbitrary initial hypoth-
esis and for is the hypothesis chosen after seeing the

th example. Thus is the loss the learning
algorithm makes when it tries to predict , based on and
the previous examples . This kind of
learning framework is appropriate for real-time learning prob-
lems and is, of course, analogous to the usual adaptive signal
processing framework [24]. We may also use an online algo-
rithm simply as an efficient method of approximately solving a
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batch problem. The algorithm we propose below can be effec-
tively run on huge data sets on machines with limited memory.

A suitable measure of performance for online algorithms in
an online setting is the cumulative loss

(6)

(Again, if has such parameters as , we write , etc.)
Notice that here is tested on the example , which was
not available for training ; therefore, if we can guarantee a
low cumulative loss, we are already guarding against overfit-
ting. Regularization can still be useful in the online setting: If the
target we are learning changes over time, regularization prevents
the hypothesis from going too far in one direction, thus hope-
fully helping recovery when a change occurs. Furthermore, if
we are interested in large margin algorithms, some kind of com-
plexity control is needed to make the definition of the margin
meaningful.

C. General Idea of the Algorithm

The algorithms we study in this paper are classical stochastic
gradient descent—they perform gradient descent with respect to
the instantaneous risk. The general form of the update rule is

(7)

where for , , is shorthand for (the gradient
with respect to ), and is the learning rate, which is often
constant . In order to evaluate the gradient, note that the
evaluation functional is given by (1), and therefore

(8)

where . Since , the update
becomes

(9)

Clearly, given , needs to satisfy for all for
the algorithm to work.

We also allow loss functions that are only piecewise dif-
ferentiable, in which case, stands for subgradient. When the
subgradient is not unique, we choose one arbitrarily; the choice
does not make any difference either in practice or in theoretical
analyses. All the loss functions we consider are convex in the
first argument.

Choose a zero initial hypothesis . For the purposes of
practical computations, one can write as a kernel expansion
(cf. [25])

(10)

where the coefficients are updated at step via

for (11)

for (12)

Thus, at step , the th coefficient may receive a nonzero value.
The coefficients for earlier terms decay by a factor (which is
constant for constant ). Notice that the cost for training at each
step is not much larger than the prediction cost: Once we have
computed , is obtained by the value of the derivative
of at .

D. Speedups and Truncation

There are several ways of speeding up the algorithm. Instead
of updating all old coefficients , , one may
simply cache the power series 1,

and pick suitable terms as needed. This is particularly
useful if the derivatives of the loss function will only assume
discrete values, say as is the case when using the
soft-margin type loss functions (see Section III).

Alternatively, one can also store and
compute , which only re-
quires rescaling once becomes too large for machine preci-
sion—this exploits the exponent in the standard floating point
number representation.

A major problem with (11) and (12) is that without additional
measures, the kernel expansion at time contains terms. Since
the amount of computation required for predicting grows lin-
early in the size of the expansion, this is undesirable. The regu-
larization term helps here. At each iteration, the coefficients
with are shrunk by . Thus, after iterations, the
coefficient will be reduced to . Hence one can
drop small terms and incur little error, as the following propo-
sition shows.

Proposition 1 (Truncation Error): Suppose
is a loss function satisfying for all

, , and is a kernel with bounded norm
, where denotes either or .

Let denote the kernel
expansion truncated to terms. The truncation error satisfies

Obviously, the approximation quality increases exponentially
with the number of terms retained.

The regularization parameter can thus be used to control the
storage requirements for the expansion. In addition, it naturally
allows for distributions that change over time in which
case it is desirable to forget instances that are much older
than the average time scale of the distribution change [26].

We call our algorithm the Naive Online Minimization
Algorithm (NORMA) and sometimes explicitly write the param-
eter : NORMA . NORMA is summarized in Fig. 1. In the ap-
plications discussed in Section III, it is sometimes necessary
to introduce additional parameters that need to be updated. We
nevertheless refer somewhat loosely to the whole family of al-
gorithms as NORMA.

III. APPLICATIONS

The general idea of NORMA can be applied to a wide range
of problems. We utilize the standard [1] addition of the constant
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Fig. 1. NORMA with constant learning rate � exploiting the truncation
approximation.

offset to the function expansion, i.e., , where
and . Hence, we also update via

A. Classification

In (binary) classification, we have . The most ob-
vious loss function to use in this context is if

and otherwise. Thus, no loss is in-
curred if sgn is the correct prediction for ; otherwise, we
say that makes a mistake at and charge a unit loss.

However, the mistake loss function has some drawbacks.

a) It fails to take into account the margin that can be
considered to be a measure of confidence in the correct
prediction: a nonpositive margin meaning an actual mis-
take.

b) The mistake loss is discontinuous and nonconvex and,
thus, is unsuitable for use in gradient-based algorithms.

In order to deal with these drawbacks, the main loss function
we use here for classification is the soft margin loss

(13)

where is the margin parameter. The soft margin loss
is positive if fails to achieve a margin at least

on ; in this case, we say that made a margin error. If
made an actual mistake, then .

Let be an indicator of whether made a margin error on
, i.e., if and zero otherwise. Then

if
otherwise

(14)

and the update (9) becomes

(15)

(16)

Suppose now that is a bound such that
holds for all . Since and

we obtain for all . Furthermore

(17)

Hence, when the offset parameter is omitted (which we con-
sider particularly in Sections IV and V), it is reasonable to re-
quire . Then the loss function becomes effectively
bounded, with for all .

The update in terms of is (for )

(18)

When and we recover the kernel perceptron [27].
If and we have a kernel perceptron with regular-
ization.

For classification with the -trick [4], we also have to take
care of the margin since there (recall )

(19)

Since one can show [4] that the specific choice of has no influ-
ence1 on the estimate in -SV classification, we may set
and obtain the update rule (for )

B. Novelty Detection

Novelty detection [21] is like classification without labels. It
is useful for condition monitoring tasks such as network intru-
sion detection. The absence of labels means that the algorithm
is not precisely a special case of NORMA as presented earlier, but
one can derive a variant in the same spirit.

The -setting is most useful here as it allows one to specify
an upper limit on the frequency of alerts . The loss
function to be utilized is

and usually [21] one uses , rather than where
, in order to avoid trivial solutions. The update rule is (for

)

if
otherwise.

(20)
Consideration of the update for shows that on average, only
a fraction of the observations will be considered for updates.
Thus, it is necessary to store only a small fraction of the s.

C. Regression

We consider the following three settings: squared loss, the
-insensitive loss using the -trick, and Huber’s robust loss

function, i.e., trimmed mean estimators. For convenience, we
will only use estimates , rather than , where

. The extension to the latter case is straightforward.
1) Squared Loss: Here, .

Consequently the update equation is (for )

(21)

This means that we have to store every observation we make or,
more precisely, the prediction error we made on the observation.

1Note that the relative scale of �; b versus � k(x ; x) may make it more
convenient to rescale the problem to some � 6= 1 to improve convergence.
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2) -Insensitive Loss: The use of the loss function
introduces a new pa-

rameter—the width of the insensitivity zone . By making a
variable of the optimization problem, we have

The update equations now have to be stated in terms of ,
, and , which is allowed to change during the optimiza-

tion process. Setting , the updates are (for
)

sgn if
otherwise.

(22)

This means that every time the prediction error exceeds , we
increase the insensitive zone by . If it is smaller than ,
the insensitive zone is decreased by .

3) Huber’s Robust Loss: This loss function was proposed in
[22] for robust maximum likelihood estimation among a family
of unknown densities. It is given by

if
otherwise.

(23)

Setting , the updates are (for )

sgn if
otherwise.

(24)

Comparing (24) with (22) leads to the question of whether
might also be adjusted adaptively. This is a desirable goal since
we may not know the amount of noise present in the data. Al-
though the setting allowed the formation of adaptive estima-
tors for batch learning with the -insensitive loss, this goal has
proven elusive for other estimators in the standard batch setting.

In the online situation, however, such an extension is quite
natural (see also [28]). It is merely necessary to make a vari-
able of the optimization problem, and the updates become (for

)

sgn if
otherwise.

IV. MISTAKE BOUNDS FOR NONSTATIONARY TARGETS

In this section we theoretically analyze NORMA for classifi-
cation with the soft margin loss with margin . In the process,
we establish relative bounds for the soft margin loss. A detailed
comparative analysis between NORMA and Gentile’s ALMA [9]
can be found in [14].

A. Definitions

We consider the performance of the algorithm for a fixed
sequence of observations and
study the sequence of hypotheses produced

by the algorithm on . Two key quantities are the number of
mistakes, given by

(25)

and the number of margin errors, given by

(26)

Notice that margin errors are those examples on which the gra-
dient of the soft margin loss is nonzero; therefore
gives the size of the kernel expansion of final hypothesis .

We use to denote whether a margin error was made at trial
, i.e., if and otherwise. Thus

the soft margin loss can be written as
and consequently denotes the total soft

margin loss of the algorithm.
In our bounds, we compare the performance of NORMA with

the performance of function sequences from
some comparison class .

Notice that we often use a different margin for the
comparison sequence, and always refers to the margin errors
of the actual algorithm with respect to its margin . We always
have

(27)

We extend the notations , , , and
to such comparison sequences in the obvious

manner.

B. Preview

To understand the form of the bounds, consider first the case
of a stationary target, with comparison against a constant se-
quence . With , our algorithm
becomes the kernelized Perceptron algorithm. Assuming that
some achieves for some , the kernel-
ized version of the Perceptron Convergence Theorem [27], [29]
gives

Consider now the more general case where the sequence is not
linearly separable in the feature space. Then, ideally, we would
wish for bounds of the form

which would mean that the mistake rate of the algorithm would
converge to the mistake rate of the best comparison function.
Unfortunately, even approximately minimizing the number of
mistakes over the training sequence is very difficult; therefore,
such strong bounds for simple online algorithms seem unlikely.
Instead, we settle for weaker bounds of the form

(28)

where is an upper bound for , and the
norm bound appears as a constant in the term. For ear-
lier bounds of this form, see [30] and [31].
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In the nonstationary case, we consider comparison classes
that are allowed to change slowly, that is

and

The parameter bounds the total distance travelled by the
target. Ideally, we would wish the target movement to result in
an additional term in the bounds, meaning there would
be a constant cost per unit step of the target. Unfortunately, for
technical reasons, we also need the parameter, which re-
stricts the changes of speed of the target. The meaning of the

parameter will become clearer when we state our bounds
and discuss them.

Choosing the parameters is an issue in the bounds we have.
The bounds depend on the choice of the learning rate and margin
parameters, and the optimal choices depend on quantities (such
as ) that would not be available when the
algorithm starts. In our bounds, we handle this by assuming
an upper bound that can be used for
tuning. By substituting , we obtain the
kind of bound we discussed above; otherwise, the estimate
replaces in the bound. In a practical applica-
tion, one would probably be best served to ignore the formal
tuning results in the bounds and just tune the parameters by
whatever empirical methods are preferred. Recently, online al-
gorithms have been suggested that dynamically tune the pa-
rameters to almost optimal values as the algorithm runs [9],
[32]. Applying such techniques to our analysis remains an open
problem.

C. Relative Loss Bounds

Recall that the update for the case we consider is

(29)

It will be convenient to give the parameter tunings in terms of
the function

(30)

where we assume , , and to be positive. Notice that
holds, and . Ac-

cordingly, we define .
We start by analyzing margin errors with respect to a given

margin .
Theorem 2: Suppose is generated by (29) on a sequence

of length . Let , and suppose that for
all . Fix , , , and . Let

(31)

and, given parameters , let .
Choose the regularization parameter

(32)

and the learning rate parameter . If, for some
, we have , then

The proof can be found in Appendix A.
We now consider obtaining mistake bounds from our margin

error result. The obvious method is to set , turning margin
errors directly to mistakes. Interestingly, it turns out that a subtly
different choice of parameters allows us to obtain the same mis-
take bound using a nonzero margin.

Theorem 3: Suppose is generated by (29) on a sequence
of length . Let , and suppose that
for all . Fix , , , , and define as in (31),
and given , let , where .
Choose the regularization parameter as in (32) and the learning
rate , and set the margin to either
or . Then, for either of these margin settings, if
there exists a comparison sequence such that

, we have

The proof of Theorem 3 is also in Appendix A.
To gain intuition about Theorems 2 and 3, consider first the

separable case with a stationary target .
In this special case, Theorem 3 gives the familiar bound from the
Perceptron Convergence Theorem. Theorem 2 gives an upper
bound of margin errors. The choices given for

in Theorem 3 for the purpose of minimizing the mistake bound
are, in this case, and . Notice that the latter choice
results in a bound of margin errors. More generally,
if we choose for some and assume

to be the largest margin for which separation is possible, we
see that the algorithm achieves in iterations a margin
within a factor of optimal. This bound is similar to that
for ALMA [9], but ALMA is much more sophisticated in that it
automatically tunes its parameters.

Removing the separability assumption leads to an additional
term in the mistake bound, as we expected. To see the

effects of the and terms, assume first that the target has
constant speed: for all , where is a
constant. Then , and ; therefore,

. If the speed is not constant, we always have .
An extreme case would be , for

. Then . Thus the term increases the
bound in case of changing target speed.
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V. CONVERGENCE OF NORMA

A. Preview

Next we study the performance of NORMA when it comes to
minimizing the regularized risk functional , of which

is the stochastic approximation at time . We
show that under some mild assumptions on the loss function, the
average instantaneous risk of the
hypotheses of NORMA converges toward the minimum regu-
larized risk at rate . This requires no
probabilistic assumptions. If the examples are i.i.d., then with
high probability, the expected regularized risk of the average
hypothesis similarly converges toward the min-
imum expected risk. Convergence can also be guaranteed for the
truncated version of the algorithm that keeps its kernel expan-
sion at a sublinear size.

B. Assumptions and Notation

We assume a bound such that for all
. Then for all , .

We assume that the loss function is convex in its first ar-
gument and satisfies, for some constant , the Lipschitz
condition

(33)

for all , , and .
Now fix . The hypotheses produced by (9)

and since , we have, for all , the bound ,
where

(34)

Since , we have
and for any
such that .

Fix a sequence , and for , define

Then

Considering the limit shows that , where
is as in (34).

C. Basic Convergence Bounds

We start with a simple cumulative risk bound. To achieve con-
vergence, we use a decreasing learning rate.

Theorem 4: Fix and . Assume that
is convex and satisfies (33). Let the example sequence

be such that holds for all , and let
be the hypothesis sequence produced by NORMA

with learning rate . Then, for any , we have

(35)

where , , and is as in
(34).

The proof, which is given in Appendix B, is based on analyzing
theprogressof toward atupdate .Thebasic technique is from
[32]–[34], and [32] shows how to adjust the learning rate (in a
much more complicated setting than we have here).

Note that (35) holds in particular for ; therefore

where the constants depend on , , and the parameters of the
algorithm. However, the bound does not depend on any proba-
bilistic assumptions. If the example sequence is such that some
fixed predictor has a small regularized risk, then the average
regularized risk of the online algorithm will also be small.

Consider now the implications of Theorem 4 to a situation
in which we assume that the examples are i.i.d. ac-
cording to some fixed distribution . The bound on the cu-
mulative risk can be transformed into a probabilistic bound by
standard methods. We assume that with proba-
bility 1 for . We say that the risk is bounded by if
with probability 1 we have for all and

.
As an example, consider the soft margin loss. By the preceding

remarks, we can assume . This implies
; therefore, the interesting values of satisfy
. Hence, , and we can take

. If we wish to use an offset parameter , a bound for
needs to be obtained and incorporated into . Similarly, for

regression-type loss functions, we may need a bound for .
The result of Cesa-Bianchi et al. for bounded convex loss

functions [35, Th. 2] now directly gives the following.
Corollary 5: Assume that is a probability distribution over

such that holds with probability 1 for
, and let the example sequence

be drawn i.i.d. according to . Fix and .
Assume that is convex and satisfies (33) and that the risk is
bounded by . Let , where is the th
hypothesis produced by NORMA with learning rate .
Then, for any and and for and , as in
Theorem 4 we have

with probability at least over random draws of .
To apply Corollary 5, choose , where

(36)
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With high probability, will be close to
; therefore, with high probability,

will be close to the minimum ex-
pected risk.

D. Effects of Truncation

We now consider a version of NORMA where at time , the
hypothesis consists of a kernel expansion of size , where we
allow to slowly (sublinearly) increase as a function of . Thus

where is the coefficient of in the kernel expansion
at time . For simplicity, we assume and
include in the expansion even the terms where . Thus,
at any update, we add a new term to the kernel expansion; if

, we also drop the oldest previously remaining term.
We can then write

where if and
otherwise. Since , we see that the
kernel expansion coefficients decay almost geometrically. How-
ever, since we also need to use a decreasing learning rate

, the factor approaches 1. Therefore, it is some-
what complicated to choose expansion sizes that are not large
but still guarantee that the cumulative effect of the terms re-
mains under control.

Theorem 6: Assume that is convex and satisfies (33).
Let the example sequence be such that

holds for all . Fix , ,
and . Then there is a value such that
the following holds when we define for
and for . Let be
the hypothesis sequence produced by truncated NORMA with
learning rate and expansion sizes . Then, for
any , we have

(37)

where , , and is as
in (34).

The proof, and the definition of , is given in Appendix C.
Conversion of the result to a probabilistic setting can be done

as previously, although an additional step is needed to estimate
how the terms may affect the maximum norm of ; we omit
the details.

VI. EXPERIMENTS

The mistake bounds in Section IV are, of course, only
worst-case upper bounds, and the constants may not be very
tight. Hence, we performed experiments to evaluate the perfor-
mance of our stochastic gradient descent algorithms in practice.

A. Classification

Our bounds suggest that some form of regularization is useful
when the target is moving, and forcing a positive margin may
give an additional benefit.

Fig. 2. Mistakes made by the algorithms on drifting data (top) and on
switching data (bottom).

This hypothesis was tested using artificial data, where we
used a mixture of two-dimensional Gaussians for the positive
examples and another for negative ones. We removed all exam-
ples that would be misclassified by the Bayes-optimal classi-
fier (which is based on the actual distribution known to us) or
are close to its decision boundary. This gave us data that were
cleanly separable using a Gaussian kernel.

In order to test the ability of NORMA to deal with changing
underlying distributions, we carried out random changes in the
parameters of the Gaussians. We used two movement schedules.

• In the drifting case, there is a relatively small parameter
change after every ten trials.

• In the switching case, there is a very large parameter
change after every 1000 trials.

Thus, given the form of our bounds, all other things being equal,
our mistake bound would be much better in the drifting than in the
switching case. In either case, we ran each algorithm for 10 000
trials and cumulatively summed up the mistakes made by them.

In our experiments, we compared NORMA with ALMA [9]
with and the basic Perceptron algorithm (which is the
same stochastic gradient descent with the margin in the loss
function (13) and weight decay parameter both set to zero).
We also considered variants NORMA and ALMA , where the
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Fig. 3. Results of online novelty detection after one pass through the USPS database. The learning problem is to discover (online) novel patterns. We used
Gaussian RBF kernels with width 2� = 0:5d = 128 and � = 0:01. The learning rate was (1=

p
t). (Left) First 50 patterns that incurred a margin error—it

can be seen that the algorithm at first finds even well-formed digits novel but later only finds unusually written ones. (Middle) Fifty worst patterns according to
f(x) � � on the training set—they are mostly badly written digits. (Right) Fifty worst patterns on an unseen test set.

margin is fixed to zero. These algorithms are included to see
whether regularization, either by weight decay as in NORMA

or by a norm bound as in ALMA, helps to predict a moving
target, even when we are not aiming for a large margin. We
used Gaussian kernels to handle the nonlinearity of the data. For
these experiments, the parameters of the algorithms were tuned
by hand optimally for each example distribution.

Fig. 2 shows the cumulative mistake counts for the algo-
rithms. There does not seem to be any decisive differences be-
tween the algorithms.

In particular, NORMA works quite well on switching data as
well, even though our bound suggests otherwise (which is prob-
ably due to slack in the bound). In general, it seems that using
a positive margin is better than fixing the margin to zero, and
regularization, even with zero margin, is better than the basic
Perceptron algorithm.

B. Novelty Detection

In our experiments, we studied the performance of the novelty
detection variant of NORMA given by (20) for various kernel
parameters and values of .

We performed experiments on the USPS database of hand-
written digits (scanned images of digits at a resolution of
16 16 pixels; 7291 were chosen for training and 2007 for
testing purposes).

Already after one pass through the database, which took in
MATLAB less than 15 s on a 433 MHz Celeron, the results
can be used to weed out badly written digits (cf. the left plot of
Fig. 3). We chose to allow for a fixed fraction of de-
tected “outliers.” Based on the theoretical analysis of Section V,
we used a decreasing learning rate with .

Fig. 3 shows how the algorithm improves in its assessment
of unusual observations (the first digits in the left table are still
quite regular but degrade rapidly). It could therefore be used as
an online data filter.

VII. DISCUSSION

We have shown how the careful application of classical sto-
chastic gradient descent can lead to novel and practical algo-
rithms for online learning using kernels. The use of regular-
ization (which is essential for capacity control when using the
rich hypothesis spaces generated by kernels) allows for trunca-
tion of the basis expansion and, thus, computationally efficient
hypotheses. We explicitly developed parameterizations of our
algorithm for classification, novelty detection, and regression.
The algorithm is the first we are aware of for online novelty

detection. Furthermore, its general form is very efficient com-
putationally and allows for easy application of kernel methods
to enormous data sets as well as, of course, to real-time online
problems.

We also presented a theoretical analysis of the algorithm
when applied to classification problems with soft margin with
the goal of understanding the advantage of securing a large
margin when tracking a drifting problem. On the positive side,
we have obtained theoretical bounds that give some guidance
to the effects of the margin in this case. On the negative side,
the bounds are not that well corroborated by the experiments
we performed.

APPENDIX A
PROOFS OF THEOREMS 2 AND 3

The following technical lemma, which is proved by a simple
differentiation, is used in both proofs for choosing the optimal
parameters.

Lemma 7: Given , , and , define
for . Then, is

maximized for , where is as in (30), and the
maximum value is

The main idea in the proofs is to lower bound the progress at
update , which we define as . For
notational convenience, we introduce .

Proof of Theorem 2: Define .
We split the progress into three parts:

(38)

By substituting the definition of , using (27), and applying
, we can estimate the first part

of (38) as

(39)
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For the second part of (38), we have

Since , we have

Hence, recalling the definition of , we get

(40)

For the third part of (38), we have

(41)

Substituting (39)–(41) into (38) gives us

(42)
where

To bound from below, we write

where , and . Hence

(43)

Since , (42) and (43) give

(44)

By summing (44) over and using the assumption
that , we obtain

(45)

Now, appears only in (45) as a subexpression ,
where . Since the function
is maximized for , we choose as in (32),
which gives . We assume ;
therefore, . By
moving some terms around and estimating and

, we get

(46)

To get a bound for margin errors, notice that the value given
in the theorem satisfies . We make the trivial
estimate , which gives us

The bound follows by applying Lemma 7 with and
.

Proof of Theorem 3: The claim for follows directly
from Theorem 2. For nonzero , we take (46) as our starting
point. We choose ; therefore, the term with

vanishes, and we get

(47)

Since , this implies

(48)

The claim follows from Lemma 7 with and .

APPENDIX B
PROOF OF THEOREM 4

Without loss of generality, we can assume , and in
particular, . First, notice that

(49)
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where we used the Lipschitz property of and the convexity of
in its first argument. This leads to

since . By summing over
and noticing that some terms telescope and ,
we get

The claim now follows by rearranging terms and estimating
, , and .

APPENDIX C
PROOF OF THEOREM 6

First, let us define to be the smallest possible such
that all of the following hold for all :

• ;
• ;
• .

We use this to estimate . If , then clearly,
; therefore, we consider the case . Let

so that . We have
and for

. Hence

Since , we have

Therefore, . Finally,
since , we have ; therefore

In particular, we have ; therefore

Since , we get . Again, without loss
of generality, we can assume , and thus, in particular,

.
To estimate the progress at trial , let be

the new hypothesis before truncation. We write

(50)

(51)

To estimate (51), we write

By combining this with the estimate (49) for (50), we get

Notice the similarity to (49). The rest follows as in the proof of
Theorem 4.
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