IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003 597

Classification in a Normalized Feature Space Using
Support Vector Machines

Arnulf B. A. Graf, Alexander J. Smola, and Silvio Borer

Abstract—This paper discusses classification using support decision function
vector machines in a normalized feature space. We consider both
normalization in input space and in feature space. Exploiting the < °
fact that in this setting all points lie on the surface of a unithyper- 5 “ o
sphere we replace the optimal separating hyperplane by one that A
is symmetric in its angles, leading to an improved estimator. Eval- o
uation of these considerations is done in numerical experiments o
on two real-world datasets. The stability to noise of this offset
correction is subsequently investigated as well as its optimality.

@ (b) (c)

Index Terms—Classification error, dataset partitioning, feature
space, input space, noise, normalization, optimal separating hyper-
plane (OSH), optimality, support vector machines (SVMs).

Fig. 1. (a) Two classes of vectors in a 2-D input space. (b) Normalization of
these vectors such that they all lie on a unit hypersphere in input space. (c) Map-
ping of these vectors into the feature space.

I. INTRODUCTION Il. SVMS IN A NORMALIZED FEATURE SPACE

UPPORT vector machines (SVMs) have drawn much at- Consider the most elementary type of preprocessing for
ention due to their good performance and solid theoreticBVMs, normalization of vectorg € RN in input spaceHere,
foundations [1], [2]. Quite often, the use of SVMs on real-worlthe corresponding normalized vectarsire given by
datasets such as images implies the need for a preprocessing . ~ -1/2
stage [2], [3]. Previous studies [4] have shown thatmaliza- Fo T _ <Z |z/,|2> z 1)
tion is a preprocessing type which plays an important role in 1Z]|2 P ‘
SV classification. Using geometric considerations it is possible - ) . .
to exploit the normalization further by adjusting the threshol§ih€ vectotz lies on a unit hy_persphereﬁh“ - The SV algorithm
commonly used in SVMs. is de5|gn_edtof|ndthe_ OSHintlfeature spgcevhlch is obtained
This paper is structured as follows: Section Il deals at first witpy @ nonlinear mapping from the normalized input space. When
normalization of the vectors in the input space. A problem ifonsidering the effect of such a mapping, in most cases we lose
herentto this type of normalization related to SV classification {§& normalization and/or scaling in the feature space as shownin
outlined and a solution, namely the normalization of the featufdd- 1. This may create a problem for the SV algorithm since it
space, is subsequently presented, the latter being applied toWisdds best cIaSS|f_|cat|on performance for “input” vectors in the
vectors of the feature space through normalization of the kerf@fture space which are in some way “scaled” [2], [3]. _
function. An adaptation of the SV algorithm taking the normal- AS suggested in [4], normalization in the feature space is
ized kernel functions into account is then presented: the positfdrPoSsible solution. Note that unlike in linear programming
of the optimal separating hyperplane (OSH) is modified. A pré?€thods [5] where normalization acts on rows or columns of
sentation of experimental results follows: binary classificatidi€ design matrix only, normalization of the kernel functions
is studied in Section I1I, and multiclass problems are discussé@n be considered as a simultaneous rescaling of rows and
in Section IV. Here, we apply the estimator to an image data§&umns to obtain a matrix with all diagonal entries set to one
where the different types of normalization are compared as wiiHch methods are popular in numerical mathematics as matrix
as the stability to noise and the optimality of the OSH offset copreconditioners). We, therefore, obtain the normalized kernel

rection. The statistical significance of the proposed correction is - B K(Z,%) 5
studied in Section V, and Section VI concludes the paper. o /K(Z,2)K(i,7) 2)

, . _ Clearly K(#,#) = 1, showing that all vectors in the fea-
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kernel functions, these normalized kernels play a predoming
role. Indeed the angles between all vectors are then less tt
/2 since K (Z, %) > 0 and, thus, the datapoints are placed o
a portion of the same orthant on the unit hypersphere in ti
feature space. These vectors can then be more easily separ
from the origin by a hyperplane. -
For linear dot products, normalization in feature space and
input space is trivially equivalent, that is, (2) and (1) coincide
Gaussian RBF kemnel& (Z,7) = exp(—||# — 7||2) are al-
ready normalized and, again, for monomial kern€lsz, i) =
(Z, )7, normalization in input space is equivalent to normaliza 1
tion in feature space since

K(E§) = (777 = ( \Z.9) ) — kK@D ©) \

11117
It is well known that in the case of exponentiated dot produr
kernels [9] we obtain the RBF kernel as its normalization [10
ie.,

margin hyperplanes
corrected OSH

unit hyper-sphere

I]:’ig. 2. Computation of the offset correctidrfor the OSH in a normalized
feature space using the margin hyperplanes.

SNED) e (~ghe-i?) . @)
Vexp((Z, Z)) exp((§, 7)) 2" ' For fixed b, we see that the magnitude of the correction term
Normalization in feature space does not only change tHireases witld, thatis, the larger this margin, the bigger the
kernel functions but also affects the optimization problefforrective effect. . _
(see also [11] for a first approach). Conventionally, the Sy For aformal derivation define the change in the offset of the
algorithm determines the OSH, given by its normal veeor OSH as

and offseth, by a maximum margin construction. This means B = b— b b

] . . ,b)=0— , 0. 7
that the margins of separation are symmetric around the OSH (@) (@.6) # %
since both lie at a distande= 1/||w]|]. The optimization problem corresponding to the corrected OSH

However, when considering a normalized feature space, @dn be stated as follows. We retain the optimization constraints,
datapoints lie on a unit hypersphere. It would, thus, be moyet use an offset correction dependenb@md«. The position
accurate to do classification not according to an OSH computefithe OSH is given by
such that the margins are symmetric around it, but according to o o I
an OSH determined such that the margins define equal distances (@, Z) + b(w, b) = 0. ®
onthe hypersphere. This is achieved by adjusting the value 9ince we still require thatid, 7.) — (@, 7_) = 2, 7’4 being the
the offse of the OSH. The normal vectaf remains unchanged closest examples belonging to two different classes, maximizing

after such a redefinition of the margin (see below). |#+ — @_|| is equivalent to
In order to compute the correction to the valué ofonsider o 1 s L4
Fig. 2. The intersection of the two margin hyperplanes with the minimize 7 ||a||” + C > ¢
unit hypersphere are parameterized by the angleand as . i=1
defined bycos(a;) = 8(b — 1) andcos(as) = (b + 1). The subjectto #; ((&,7) + b — (@, b)) 21 =&
bisection of the angle formed hy; and« is represented by t; >0forall1 <:<p (9)

the angley and can be computed as follows: wheree(w, b) determines the amount of skew given in the con-

_omtar 1 (arccos(8(b — 1)) + arccos(8(b + 1)) . strairlts. What we s_hov_v now is that_in_depe_ndently of the c_hoice
2 of ¢(«, b) the optimization problem is identical to the one given
I . ) ) by the standard soft margin SVM.
Moreover, the new positiohof the OSH is defined byos(¢) = hi hat th . imal val
b, yielding the following: Fort. is purpose we assume that there exists an optimal value
' ' ¢, obtained after solving the optimization problem. In this case,
arccos (ﬁ) + arccos (ﬁ) the remaining optimization problem i@ andb still must be
b(w,b) = ||| cos 5 . (6) optimal. Therefore, we can rewrite (9) as follows:
The arguments afrccos in (6) are within range, as for the sepa-

ration of data on the unit sphejiet 1| cannot exceefld||. The

A~

VI T P
minimize ||| +CY &

i=1
correction ofb mentioned here leads to a new OSH defined by : - A
- subjectto ¢; LB+ b—6)>1-§&
(w, b). This method is valid regardless of the kernel function as : (%) + 2 - ¢
t; >0forall 1 <i <p. (10)

long as it is normalized according to (2). ~
Fig. 3 shows that the correction to the offset of the OSH is in@ne can easily check that by replacih\gvith b := b + ¢ we
portant for large values df This is to be expected, since largeobtain the classical SVM soft margin problem and, thtignd
values ofb place the margins on the top (or bottom) of the hy@ can be found by solving the standard procedures. All that re-
persphere where it has a flat shape and is, thus, more sensitinains to be done after the optimization is to compuftg, b).
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Fig. 3. \Variation ofb with respect to (topp and (bottom)5. The dashed line represents the uncorrected Value
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Fig. 4. Values ofC as obtained by cross-validation on the training dataset as function of the size of the training set.

It would be interesting to develop the idea of distances dimear kernels (Z,7)) and RBF kernelsekp(—v||Z — #]?)
the hypersphere a bit further to include the penalty in the slaakth v = 0.01) in a normalized feature space. The use of these
variables, rather than merely dealing with the margins. Unfdkernel functions implies that it is not necessary to study input
tunately, this leads to rather unwieldy optimization problemspace normalization since for linear kernels, input and feature
since then alsg; would have to be rescaled, thereby renderingpace normalization are equivalent and RBF kernels are already
the optimization problem nonquadratic. In online settings, howormalized.
ever, such a modification could be easily accommodated for. For each partition the optimal value of the regularization pa-
rameterC' is determined by cross-validation experiments on the
lIl. BINARY CLASSIFICATION EXPERIMENTS training set. For. this, ten random sampl_ings of 30% of the.e!e-
ments of the training set are used for training and the remaining
To exemplify the properties we choose the ionosphere dataggiy, of the training set are used for testing. The SV algorithm is
from the UCI repository, available at http://www.ics.uci.edigonsidered with and without OSH offset correction. The corre-
[12]. We use the first 120 elements from this dataset and spifonding classification errors are averaged over the number of
the samples into training and test sets in increments of $@mplings and the minimum of the so-obtained error curve in-
while keeping the fraction of positive and negative exampleficates the optimal value @f. The value ofC yielding a min-
constant. In other words, splits between training and testifgum classification error across the two algorithms (with and
partitions occur at: 10/110, 20/100, ... 110/10. This wawithout OSH correction) is retained and plotted in Fig. 4 for
we can assess the sample dependency of the estimator.eAsh partition.
optimizer we use SVMlight [13] (version 3.50, which is  Using this optimal value ofC, 20 random classification
available at www.kernel-machines.org). Finally, we considexperiments on each dataset partition are performed with
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Fig. 5. Difference in classification error between the corrected and original OSH cb?f’(iet— E(b) as function of the size of the training set using the
corresponding values «f.
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Fig. 6. Classification error with OSH correction as a function of the classification error without OSH correction, the dashed line bisectihgrtharfirsThe
points represent the various partitions and the two kernel functions.

and without offset correction of the OSH, the corresponding We may state that the offset correction performs slightly

differences of average classification errors being reported better than no correction for binary classification. Note that we

Fig. 5. are studying a symmetric classification problem, that is, the
The OSH offset correction is advantageous for all partitiorigimber of positive and negative examples is identical.

when considering a linear kernel whereas for the RBF kernel, The multiclass experiments presented below do not exhibit

the correction is effective for small training sets. The mean rdfis property. Moreover, the datasets are larger and the classi

ative correction ob measured aé—b) /b yields on average over fication problem at hand is much harder. This provides a good

the dataset partitions 1.66% for the linear kernel and 0.49% #@ound for further studies of feature space normalization and

the RBF kernel. It can also be noticed that b < 0 for both OSH offset correction.

kernels and all partitions. The correction of the offset is thus

less important for RBF kernels for the chosen dataset. In order IV. ' MULTICLASS EXPERIMENTS

to test the generalization behavior of the offset correction, theFor multiclass experiments we consider the COIL-100 dataset

classification error with offset correction is plotted against thg€€olumbia Object Image Library, available at www.cs.co-

one without modification of the offset as shown in Fig. 6. lumbia.edu). It consists of 128128 pixels color images of
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Fig. 7. Classification error with normalization in the input space, in the feature space and in the feature space with cortection of

100 different objects, each one being represented by 72 viewdVhile this is sufficient evidence to consider normalization
(one view for every 5in a horizontal plane). The backgroundn feature space, the issue of OSH offset correction needs fur-
of each image is black and the object is resized to the size of ther investigation. We study this effect in further detail in the
image. To make the problem more challenging we downsamiitdlowing sections under different training/testing set partitions
the images to 3% 32 pixels greyscale images. The data arand for various noise conditions on the input images.

then separated into a training and a testing set, both being

composed of regularly-spaced nonoverlapping perspectivesBof Effect of Dataset Partitions

each object. We use the splits of the dataset shown in Table | to investigate
Cross-validation experiments over the various training seigtails concerning the OSH offset correction. These partitions
(as given by different partitions and noise conditions, see belogllow a uniform interpolation between the training and testing
show that the classification error is essentially insensitive to tBets except for the 6/8 partition. The difference in classification
choice of the tradeoff parametér around a value of 1000, performance between the corrected and original OSH offset is
which is chosen below. Here, we consider polynomial kernejgsen in Fig. 8.
(1 + (#,%))"), since they tend to perform best on the data. The OSH offset correction performs better or as good as the
Moreover, they are na priori normalized, thus allowing the standard OSH offset in almost all cases. Although slight, the
observation of the effect of a normalized feature space. effect of the offset correction on the classification error is thus
We use a simple one-against-rest method for multiclass clagmost always present (see Section V for a statistical analysis).
sification (a collection of approaches is discussed in [14] f¢fowever, no general tendency among the various partitions or
the same data). This means that we train 100 binary clasgégrees of the polynomial kernel function may be observed. In
fiers f; and use the largest value of the real-valued estimatag following, we retain the 12/12 partition to assess the stability

fi(¥) to estimate the class label of a new pattérie.,(¥) = to noise since it has a stable behavior with increasing degrees of
argmax; f;(Z). the polynomial kernel function.
A. Effect of Normalization C. Stability to Noise

We first check the influence of normalization and offset cor- The stability of the OSH offset correction to noisy inputs
rection on the generalization performance. Recall that for pol{small perturbations of the input dataset) is investigated in this
nomial kernels normalization amounts to rescaling the intensiggction i.e., we study the effects of a noised dataset on the de-
of the pixels of the images (3). cision function through the value of the classification error. The

The data set is partitioned as follows: the 12 perspectivé®lowing three types of noise which are added to the COIL-100
0-30-60-,...,-330 go into the training set and the 12 perspectiv@ataset as shown in Fig. 9 are taken into account:
15-45-75-,...,-345 into the testing set. The results presented ine speckle or multiplicative noise created by a uniformly dis-
Fig. 7 show that normalization (except for linear kernels) im-  tributed random variable of mean zero and given variance;
proves the estimates significantly and that the offset correc- « Gaussian white noise of mean zero and given variance;
tion leads to a small additional improvement. Note that the ef- « “salt and pepper” noise where “on and off” pixel values
fects of normalization become more pronounced as the degree are added to the original image with a given density.
of the polynomial function increases since there, slight differ- The classification error curves of Fig. 10 are monotonically
ences in the intensity can lead to very different scales of valugscreasing and exhibit a smooth behavior. The offset correction
in K(Z,9). of the OSH seems thus to be stable to noise on the input data.
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Fig. 8. Difference in classification error between the corrected and original OSH EI(&}I— E(b) in [%)] as function of the degree of the kernel polynomial
function for the considered partitions of the dataset.

TABLE | to the one associated with no offset correction. Fig. 11 shows the
VARIOUS TRAINING AND TESTING SET PARTITIONS AND THE improvement in generalization performance for various types
CORRESPONDINGVIEWS . .
and magnitudes of noise.

train/test partition | training views | testing views It may be stated that globally the offset correction of the OSH
12/12 (as before) 0-30-...-330 | 15-45-...-345 yields lower classification errors than the one corresponding
8/8 0-45-...-315 | 15-60-...-330 to the uncorrected OSH. Moreover it can be observed that the
6/6 0-60-...-300 | 30-90-...-330 offset correction gains importance as the magnitude of the noise
3/3 0-120-240 60-180-300 increases, the latter being also accompanied by an increase of
6/8 0-60-...-300 | 10-55-...-325 the classification error. For the “salt and pepper” noise, the error

curves seem to have an oscillatory behavior regardless of the
noise magnitude. This could be due to the fact that the “salt and
pepper” noise affects strongly the classification performance of
SVMs as seen in Fig. 10. Thus the oscillatory nature of these
error curves may be due to the presence of too much noise. For
the noise of highest density, the offset correction is most effec-
tive. For speckle noise, the classification error corresponding
Fig. 9. From left to right: original image of the COIL-100 dataset, speckito the noise of intermediate variance can be considered as de-
noise) and it and papper nise (densiy 0.05 16. 51 piels of the 1024 SJ§SINg monotonically whereas the noise of low or high vari-
affected). ance exhibit an oscillatory behavior with a peak in both cases for
a polynomial function of degree 5. When considering Gaussian
{hoése of low variance i.e., very localized noise, the offset cor-

classification error. The added noise was. thus. too prominen{ ction seems not to ameliorate the classification performance
have helped duriné training [15], what m'ay aI’so be due to t% the SVM. However, for large variance and thus more blurring
built-in regularization of SVMs ' noise, the proposed correction clearly gets more advantageous

Furthermore, since the background of the original image ﬁlg the variance of the noise increases. We notice, however, that

black, the same is true when speckle noise is applied to thri'sthe above cases the error curves are not monotonically de-

image. Hence, it can be expected that the corresponding clg&asing as the degree of the polynomial function rises.
sification error is not much increased since only the object in o R
the image is noised and not the whole image, the latter beiHg OPtimality ofb
classified by the SVM. However for the other types of noise, Next we check the optimality of the proposed offset correc-
the background gets noised and a higher classification error ¢am. For instance, for a normalized polynomial kernel of degree
be expected. Finally, “salt and pepper” noise is most difficult 88, we haveb ~ 0.97b as the average correction over the 100
classify since the intensity of the pixel changes (either 0 or 258psses. We then plot in Fig. 12 the classification error as func-
are much stronger than with Gaussian noise, albeit not as ftien of various values of the offsétaround its optimal valué.
guent, which also results in using more SVs for classification. We see that this curve does not reach its minimum untiliL.05
To test the stability of the offset correction to noise, the classWoreover, its behavior may roughly be fitted by a parabola with
fication error corresponding to an offset correction is comparedglobal minimum at 1.0% Since for all the classifiers we have

As expected (see also [14]), the addition of noise increases
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Fig. 10. Classification error for a normalized polynomial kernel function with OSH offset correction as function of the degree of the polynaiialfithout
noise and with various types of noise on the input images: speckle (variance 0.04), Gaussian (variance 0.01) and “salt and pepper” (denséy 0.05) nois
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Fig. 11. Difference in classification error for a normalized polynomial kernel function between the corrected and the originEl(fDSH,F;(b) in [%], for
various types of noise as function of the degree of the polynomial kernel function. The horizontal line represents the case of no impEgb¢ment(b).

b < b, we suggest an overshoot of 5% and 7% fiotowardb  Since all these means are positive, the correction of the offset of
such thath < b < 1.05b < 1.07b. When these overshoots are¢he OSH without overshoot is optimah averageOvershooting
applied to the other degrees of the polynomial function, we gedin only increase optimality for a specific kernel function and
the plots of Fig. 13. has then to be determined empirically using error curves such
These error curves suggest that the overshoot of 5% is optiraal in Fig. 12. A parabolic interpolation of such error curves
for polynomial functions of degree 8 as could be expected sinseems to be of no help when determining the best overshoot.
itwas determined using the latter, but is not optimal for other dé¥hen considering the linear kernel functions, we see that both
grees and even increases the classification error in some casesrshoots exhibit much larger classification errors than without
No coherent behavior may be extrapolated from the two ovevershoot, corroborating the fact that globally overshooting is
shoots and neither one nor the other is optimal. Furthermonst appropriate.
we may compute the average difference between the error cor-

responding to an overshoot and the error corresponding to none V. STATISTICAL ANALYSIS OF OFFSETCORRECTION

over the degrees of the polynomial kernel function. We then ge . . . P
v 9 poly ! uncti g t\Ne study here the significance of difference in classification

1 aRRY Ry o/ errorE(B) — E(b) for the ionosphere dataset (the 11 partitions
(Fi(1.05b) = Bi(b)) = 0.041% > 0 and the two kernels) and the COIL-100 dataset (the five parti-
tions and the ten types of noise for the eight kernels), yielding a
total of 142 experiments. The differences themselves are of too
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small a magnitude to provide a significant result in a statistical [2] V. Vapnik, The Nature of Statistical Learning TheoryBerlin, Ger-
test of dispersion (in, for example @& test, or a signed disper- . rsnanﬁ’;fk?rf]'”?\legj\r/gl”aﬂetlﬁgig A Comprehensive Approacend
S|on.test). However, based on the current r_esults, a S|r_nple S|gr[1 ed. Upper Saddle River, NJ: Prentice-Hall, 1999.
test is enough to show that the OSH correction method is advanp] R. Herbrich and T. Graepel, “A PAC-bayesian margin bound for linear
tageous in a significant number of cases. Of the total number of ~ classifiers: Why SVM's work,"Advances in Neural Information Pro-
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