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Classification in a Normalized Feature Space Using
Support Vector Machines
Arnulf B. A. Graf, Alexander J. Smola, and Silvio Borer

Abstract—This paper discusses classification using support
vector machines in a normalized feature space. We consider both
normalization in input space and in feature space. Exploiting the
fact that in this setting all points lie on the surface of a unit hyper-
sphere we replace the optimal separating hyperplane by one that
is symmetric in its angles, leading to an improved estimator. Eval-
uation of these considerations is done in numerical experiments
on two real-world datasets. The stability to noise of this offset
correction is subsequently investigated as well as its optimality.

Index Terms—Classification error, dataset partitioning, feature
space, input space, noise, normalization, optimal separating hyper-
plane (OSH), optimality, support vector machines (SVMs).

I. INTRODUCTION

SUPPORT vector machines (SVMs) have drawn much at-
tention due to their good performance and solid theoretical

foundations [1], [2]. Quite often, the use of SVMs on real-world
datasets such as images implies the need for a preprocessing
stage [2], [3]. Previous studies [4] have shown thatnormaliza-
tion is a preprocessing type which plays an important role in
SV classification. Using geometric considerations it is possible
to exploit the normalization further by adjusting the threshold
commonly used in SVMs.

This paper is structured as follows: Section II deals at first with
normalization of the vectors in the input space. A problem in-
herent to this type of normalization related to SV classification is
outlined and a solution, namely the normalization of the feature
space, is subsequently presented, the latter being applied to the
vectors of the feature space through normalization of the kernel
function. An adaptation of the SV algorithm taking the normal-
ized kernel functions into account is then presented: the position
of the optimal separating hyperplane (OSH) is modified. A pre-
sentation of experimental results follows: binary classification
is studied in Section III, and multiclass problems are discussed
in Section IV. Here, we apply the estimator to an image dataset
where the different types of normalization are compared as well
as the stability to noise and the optimality of the OSH offset cor-
rection. The statistical significance of the proposed correction is
studied in Section V, and Section VI concludes the paper.
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Fig. 1. (a) Two classes of vectors in a 2-D input space. (b) Normalization of
these vectors such that they all lie on a unit hypersphere in input space. (c) Map-
ping of these vectors into the feature space.

II. SVMS IN A NORMALIZED FEATURE SPACE

Consider the most elementary type of preprocessing for
SVMs, normalization of vectors in input space. Here,
the corresponding normalized vectorsare given by

(1)

The vector lies on a unit hypersphere in . The SV algorithm
is designed to find the OSH in thefeature spacewhich is obtained
by a nonlinear mapping from the normalized input space. When
considering the effect of such a mapping, in most cases we lose
the normalization and/or scaling in the feature space as shown in
Fig. 1. This may create a problem for the SV algorithm since it
yields best classification performance for “input” vectors in the
feature space which are in some way “scaled” [2], [3].

As suggested in [4], normalization in the feature space is
a possible solution. Note that unlike in linear programming
methods [5] where normalization acts on rows or columns of
the design matrix only, normalization of the kernel functions
can be considered as a simultaneous rescaling of rows and
columns to obtain a matrix with all diagonal entries set to one
(such methods are popular in numerical mathematics as matrix
preconditioners). We, therefore, obtain the normalized kernel

(2)

Clearly , showing that all vectors in the fea-
ture space lie on a unit hypersphere. Furthermore,

, where
stands for the “normalized” mapping. Clearly, normalized ker-
nels satisfy Mercer’s condition. In addition, the normalization
of kernels is a conformal transformation [6] of the original
kernels. Thus, the angles between vectors of the feature space
are invariant with respect to normalization of the kernel func-
tions [7]. In the case of single-class SVMs [8] with positive
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kernel functions, these normalized kernels play a predominant
role. Indeed the angles between all vectors are then less than

since and, thus, the datapoints are placed on
a portion of the same orthant on the unit hypersphere in the
feature space. These vectors can then be more easily separated
from the origin by a hyperplane.

For linear dot products, normalization in feature space and in
input space is trivially equivalent, that is, (2) and (1) coincide.
Gaussian RBF kernels are al-
ready normalized and, again, for monomial kernels

, normalization in input space is equivalent to normaliza-
tion in feature space since

(3)

It is well known that in the case of exponentiated dot product
kernels [9] we obtain the RBF kernel as its normalization [10],
i.e.,

(4)

Normalization in feature space does not only change the
kernel functions but also affects the optimization problem
(see also [11] for a first approach). Conventionally, the SV
algorithm determines the OSH, given by its normal vector
and offset , by a maximum margin construction. This means
that the margins of separation are symmetric around the OSH
since both lie at a distance .

However, when considering a normalized feature space, all
datapoints lie on a unit hypersphere. It would, thus, be more
accurate to do classification not according to an OSH computed
such that the margins are symmetric around it, but according to
an OSH determined such that the margins define equal distances
on the hypersphere. This is achieved by adjusting the value of
the offset of the OSH. The normal vectorremains unchanged
after such a redefinition of the margin (see below).

In order to compute the correction to the value of, consider
Fig. 2. The intersection of the two margin hyperplanes with the
unit hypersphere are parameterized by the anglesand
defined by and . The
bisection of the angle formed by and is represented by
the angle and can be computed as follows:

(5)
Moreover, the new positionof the OSH is defined by
, yielding the following:

(6)

The arguments of in (6) are within range, as for the sepa-
ration of data on the unit sphere cannot exceed . The
correction of mentioned here leads to a new OSH defined by

. This method is valid regardless of the kernel function as
long as it is normalized according to (2).

Fig. 3 shows that the correction to the offset of the OSH is im-
portant for large values of. This is to be expected, since large
values of place the margins on the top (or bottom) of the hy-
persphere where it has a flat shape and is, thus, more sensitive.

Fig. 2. Computation of the offset correction^b for the OSH in a normalized
feature space using the margin hyperplanes.

For fixed , we see that the magnitude of the correction term
increases with , that is, the larger this margin, the bigger the
corrective effect.

For a formal derivation define the change in the offset of the
OSH as

(7)

The optimization problem corresponding to the corrected OSH
can be stated as follows. We retain the optimization constraints,
yet use an offset correction dependent onand . The position
of the OSH is given by

(8)

Since we still require that , being the
closest examples belonging to two different classes, maximizing

is equivalent to

minimize

subject to

for all (9)

where determines the amount of skew given in the con-
straints. What we show now is that independently of the choice
of the optimization problem is identical to the one given
by the standard soft margin SVM.

For this purpose we assume that there exists an optimal value
, obtained after solving the optimization problem. In this case,

the remaining optimization problem in and still must be
optimal. Therefore, we can rewrite (9) as follows:

minimize

subject to

for all (10)

One can easily check that by replacingwith we
obtain the classical SVM soft margin problem and, thus,and

can be found by solving the standard procedures. All that re-
mains to be done after the optimization is to compute .
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Fig. 3. Variation of^b with respect to (top)b and (bottom)�. The dashed line represents the uncorrected valueb.

Fig. 4. Values ofC as obtained by cross-validation on the training dataset as function of the size of the training set.

It would be interesting to develop the idea of distances on
the hypersphere a bit further to include the penalty in the slack
variables, rather than merely dealing with the margins. Unfor-
tunately, this leads to rather unwieldy optimization problems,
since then also would have to be rescaled, thereby rendering
the optimization problem nonquadratic. In online settings, how-
ever, such a modification could be easily accommodated for.

III. B INARY CLASSIFICATION EXPERIMENTS

To exemplify the properties we choose the ionosphere dataset
from the UCI repository, available at http://www.ics.uci.edu
[12]. We use the first 120 elements from this dataset and split
the samples into training and test sets in increments of 10
while keeping the fraction of positive and negative examples
constant. In other words, splits between training and testing
partitions occur at: 10/110, 20/100, … 110/10. This way
we can assess the sample dependency of the estimator. As
optimizer we use SVMlight [13] (version 3.50, which is
available at www.kernel-machines.org). Finally, we consider

linear kernels ( ) and RBF kernels (
with ) in a normalized feature space. The use of these
kernel functions implies that it is not necessary to study input
space normalization since for linear kernels, input and feature
space normalization are equivalent and RBF kernels are already
normalized.

For each partition the optimal value of the regularization pa-
rameter is determined by cross-validation experiments on the
training set. For this, ten random samplings of 30% of the ele-
ments of the training set are used for training and the remaining
70% of the training set are used for testing. The SV algorithm is
considered with and without OSH offset correction. The corre-
sponding classification errors are averaged over the number of
samplings and the minimum of the so-obtained error curve in-
dicates the optimal value of . The value of yielding a min-
imum classification error across the two algorithms (with and
without OSH correction) is retained and plotted in Fig. 4 for
each partition.

Using this optimal value of , 20 random classification
experiments on each dataset partition are performed with
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Fig. 5. Difference in classification error between the corrected and original OSH offsetE(b̂) � E(b) as function of the size of the training set using the
corresponding values ofC.

Fig. 6. Classification error with OSH correction as a function of the classification error without OSH correction, the dashed line bisecting the first orthant. The
points represent the various partitions and the two kernel functions.

and without offset correction of the OSH, the corresponding
differences of average classification errors being reported in
Fig. 5.

The OSH offset correction is advantageous for all partitions
when considering a linear kernel whereas for the RBF kernel,
the correction is effective for small training sets. The mean rel-
ative correction of measured as yields on average over
the dataset partitions 1.66% for the linear kernel and 0.49% for
the RBF kernel. It can also be noticed that for both
kernels and all partitions. The correction of the offset is thus
less important for RBF kernels for the chosen dataset. In order
to test the generalization behavior of the offset correction, the
classification error with offset correction is plotted against the
one without modification of the offset as shown in Fig. 6.

We may state that the offset correction performs slightly
better than no correction for binary classification. Note that we
are studying a symmetric classification problem, that is, the
number of positive and negative examples is identical.

The multiclass experiments presented below do not exhibit
this property. Moreover, the datasets are larger and the classi-
fication problem at hand is much harder. This provides a good
ground for further studies of feature space normalization and
OSH offset correction.

IV. M ULTICLASS EXPERIMENTS

For multiclass experiments we consider the COIL-100 dataset
(Columbia Object Image Library, available at www.cs.co-
lumbia.edu). It consists of 128128 pixels color images of
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Fig. 7. Classification error with normalization in the input space, in the feature space and in the feature space with correction ofb.

100 different objects, each one being represented by 72 views
(one view for every 5 in a horizontal plane). The background
of each image is black and the object is resized to the size of the
image. To make the problem more challenging we downsample
the images to 32 32 pixels greyscale images. The data are
then separated into a training and a testing set, both being
composed of regularly-spaced nonoverlapping perspectives of
each object.

Cross-validation experiments over the various training sets
(as given by different partitions and noise conditions, see below)
show that the classification error is essentially insensitive to the
choice of the tradeoff parameter around a value of 1000,
which is chosen below. Here, we consider polynomial kernels
( ), since they tend to perform best on the data.
Moreover, they are nota priori normalized, thus allowing the
observation of the effect of a normalized feature space.

We use a simple one-against-rest method for multiclass clas-
sification (a collection of approaches is discussed in [14] for
the same data). This means that we train 100 binary classi-
fiers and use the largest value of the real-valued estimators

to estimate the class label of a new pattern, i.e.,
.

A. Effect of Normalization

We first check the influence of normalization and offset cor-
rection on the generalization performance. Recall that for poly-
nomial kernels normalization amounts to rescaling the intensity
of the pixels of the images (3).

The data set is partitioned as follows: the 12 perspectives
0-30-60-,…,-330 go into the training set and the 12 perspectives
15-45-75-,…,-345 into the testing set. The results presented in
Fig. 7 show that normalization (except for linear kernels) im-
proves the estimates significantly and that the offset correc-
tion leads to a small additional improvement. Note that the ef-
fects of normalization become more pronounced as the degree
of the polynomial function increases since there, slight differ-
ences in the intensity can lead to very different scales of values
in .

While this is sufficient evidence to consider normalization
in feature space, the issue of OSH offset correction needs fur-
ther investigation. We study this effect in further detail in the
following sections under different training/testing set partitions
and for various noise conditions on the input images.

B. Effect of Dataset Partitions

We use the splits of the dataset shown in Table I to investigate
details concerning the OSH offset correction. These partitions
allow a uniform interpolation between the training and testing
sets except for the 6/8 partition. The difference in classification
performance between the corrected and original OSH offset is
given in Fig. 8.

The OSH offset correction performs better or as good as the
standard OSH offset in almost all cases. Although slight, the
effect of the offset correction on the classification error is thus
almost always present (see Section V for a statistical analysis).
However, no general tendency among the various partitions or
degrees of the polynomial kernel function may be observed. In
the following, we retain the 12/12 partition to assess the stability
to noise since it has a stable behavior with increasing degrees of
the polynomial kernel function.

C. Stability to Noise

The stability of the OSH offset correction to noisy inputs
(small perturbations of the input dataset) is investigated in this
Section i.e., we study the effects of a noised dataset on the de-
cision function through the value of the classification error. The
following three types of noise which are added to the COIL-100
dataset as shown in Fig. 9 are taken into account:

• speckle or multiplicative noise created by a uniformly dis-
tributed random variable of mean zero and given variance;

• Gaussian white noise of mean zero and given variance;
• “salt and pepper” noise where “on and off” pixel values

are added to the original image with a given density.
The classification error curves of Fig. 10 are monotonically

decreasing and exhibit a smooth behavior. The offset correction
of the OSH seems thus to be stable to noise on the input data.
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Fig. 8. Difference in classification error between the corrected and original OSH offsetE(b̂)� E(b) in [%] as function of the degree of the kernel polynomial
function for the considered partitions of the dataset.

TABLE I
VARIOUS TRAINING AND TESTING SET PARTITIONS AND THE

CORRESPONDINGVIEWS

Fig. 9. From left to right: original image of the COIL-100 dataset, speckle
noise (variance 0.04), Gaussian noise (variance 0.01 corresponding to� 10%
noise) and salt and pepper noise (density 0.05 i.e., 51 pixels of the 1024 are
affected).

As expected (see also [14]), the addition of noise increases the
classification error. The added noise was, thus, too prominent to
have helped during training [15], what may also be due to the
built-in regularization of SVMs.

Furthermore, since the background of the original image is
black, the same is true when speckle noise is applied to this
image. Hence, it can be expected that the corresponding clas-
sification error is not much increased since only the object in
the image is noised and not the whole image, the latter being
classified by the SVM. However for the other types of noise,
the background gets noised and a higher classification error can
be expected. Finally, “salt and pepper” noise is most difficult to
classify since the intensity of the pixel changes (either 0 or 255)
are much stronger than with Gaussian noise, albeit not as fre-
quent, which also results in using more SVs for classification.

To test the stability of the offset correction to noise, the classi-
fication error corresponding to an offset correction is compared

to the one associated with no offset correction. Fig. 11 shows the
improvement in generalization performance for various types
and magnitudes of noise.

It may be stated that globally the offset correction of the OSH
yields lower classification errors than the one corresponding
to the uncorrected OSH. Moreover it can be observed that the
offset correction gains importance as the magnitude of the noise
increases, the latter being also accompanied by an increase of
the classification error. For the “salt and pepper” noise, the error
curves seem to have an oscillatory behavior regardless of the
noise magnitude. This could be due to the fact that the “salt and
pepper” noise affects strongly the classification performance of
SVMs as seen in Fig. 10. Thus the oscillatory nature of these
error curves may be due to the presence of too much noise. For
the noise of highest density, the offset correction is most effec-
tive. For speckle noise, the classification error corresponding
to the noise of intermediate variance can be considered as de-
creasing monotonically whereas the noise of low or high vari-
ance exhibit an oscillatory behavior with a peak in both cases for
a polynomial function of degree 5. When considering Gaussian
noise of low variance i.e., very localized noise, the offset cor-
rection seems not to ameliorate the classification performance
of the SVM. However, for large variance and thus more blurring
noise, the proposed correction clearly gets more advantageous
as the variance of the noise increases. We notice, however, that
in the above cases the error curves are not monotonically de-
creasing as the degree of the polynomial function rises.

D. Optimality of

Next we check the optimality of the proposed offset correc-
tion. For instance, for a normalized polynomial kernel of degree
8, we have as the average correction over the 100
classes. We then plot in Fig. 12 the classification error as func-
tion of various values of the offsetaround its optimal value.

We see that this curve does not reach its minimum until 1.05.
Moreover, its behavior may roughly be fitted by a parabola with
a global minimum at 1.07. Since for all the classifiers we have
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Fig. 10. Classification error for a normalized polynomial kernel function with OSH offset correction as function of the degree of the polynomial function without
noise and with various types of noise on the input images: speckle (variance 0.04), Gaussian (variance 0.01) and “salt and pepper” (density 0.05) noise.

Fig. 11. Difference in classification error for a normalized polynomial kernel function between the corrected and the original OSH,E(b̂) � E(b) in [%], for
various types of noise as function of the degree of the polynomial kernel function. The horizontal line represents the case of no improvement:E(b̂) = E(b).

, we suggest an overshoot of 5% and 7% fromtoward
such that . When these overshoots are
applied to the other degrees of the polynomial function, we get
the plots of Fig. 13.

These error curves suggest that the overshoot of 5% is optimal
for polynomial functions of degree 8 as could be expected since
it was determined using the latter, but is not optimal for other de-
grees and even increases the classification error in some cases.
No coherent behavior may be extrapolated from the two over-
shoots and neither one nor the other is optimal. Furthermore,
we may compute the average difference between the error cor-
responding to an overshoot and the error corresponding to none
over the degrees of the polynomial kernel function. We then get

Since all these means are positive, the correction of the offset of
the OSH without overshoot is optimalon average. Overshooting
can only increase optimality for a specific kernel function and
has then to be determined empirically using error curves such
as in Fig. 12. A parabolic interpolation of such error curves
seems to be of no help when determining the best overshoot.
When considering the linear kernel functions, we see that both
overshoots exhibit much larger classification errors than without
overshoot, corroborating the fact that globally overshooting is
not appropriate.

V. STATISTICAL ANALYSIS OF OFFSETCORRECTION

We study here the significance of difference in classification
error for the ionosphere dataset (the 11 partitions
and the two kernels) and the COIL-100 dataset (the five parti-
tions and the ten types of noise for the eight kernels), yielding a
total of 142 experiments. The differences themselves are of too
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Fig. 12. Classification error for a normalized polynomial kernel function of degree 8 as function of the offsetb. The latter is represented by the nondimensional
coefficient� such thatb = �b̂. The horizontal line represents the classification error with no offset correction. The curve represents a parabolic interpolation
through the points and has a minimum at� ' 1:07.

Fig. 13. Comparison between the classification error with OSH correction in a normalized feature space and the classification error obtained when considering
an overshoot of 5% and 7% on the value ofb̂, E(�b̂)� E(b̂), as function of the degree of the polynomial function of the kernel function.

Fig. 14. Histogram of the difference in classification error between the corrected and uncorrected OSH,E(b̂)�E(b) over the 142 experiments.
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small a magnitude to provide a significant result in a statistical
test of dispersion (in, for example, a test, or a signed disper-
sion test). However, based on the current results, a simple sign
test is enough to show that the OSH correction method is advan-
tageous in a significant number of cases. Of the total number of
142 comparative tests between and reported here, 31
yielded no difference. Of the remaining 111, 93 yielded a lower

than : this rate of 83.78% is highly significant given
the null-hypothesis that and have
equal probability ( from binomial
distribution based on 111 trials with 0.5 probability of success).
In the set of 142 comparisons, the observed range of differences

is from 1.08 to 0.25% as shown in Fig. 14. The
histogram of this figure clearly indicates a higher frequency of
occurrence of . Moreover, it can be noticed that for
the cases where , the magnitude of this difference
is about three times smaller on average than when considering
the cases where .

VI. CONCLUSION

When dealing with SVMs, the normalization of the input data
can influence dramatically the results of the classification, as
well as the convergence of the SV algorithm. In this article
the classification performance of SVMs in a normalized fea-
ture space is studied. Normalization in the input space was first
discussed and it was noticed that it was not appropriate when
considering SVMs since the feature space where classification
is performed is then not normalized. A natural extension is thus
to normalize the feature space, yielding normalized kernel func-
tions. A careful analysis of the geometry of this normalized fea-
ture space suggests a modification of the position of the OSH.
This novel algorithm has the same optimal solutions foras
the standard SV algorithm, but the considered correction is in-
troduced in the final computation of the position of the offset
of the OSH. Numerical experiments corroborated that normal-
ization in the feature space outperformed normalization in the
input space and that the correction of the SV algorithm intro-
duced in this paper was revealed to be most effective using a
statistical analysis. It was shown experimentally that this cor-
rection is present for various datasets under various partitions
and that it is stable to noise on the input data and is optimal on
average. These considerations allow to conclude on a good gen-
eralization ability of the OSH offset correction.
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