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Alex J. Smola, Zoltán L. Óvári, and Robert C. Williamson
Department of Engineering

Australian National University
Canberra, ACT, 0200

Abstract

In this paper we give necessary and sufficient conditions under
which kernels of dot product type k(x, y) = k(x · y) satisfy Mer-
cer’s condition and thus may be used in Support Vector Ma-
chines (SVM), Regularization Networks (RN) or Gaussian Pro-
cesses (GP). In particular, we show that if the kernel is analytic
(i.e. can be expanded in a Taylor series), all expansion coefficients
have to be nonnegative. We give an explicit functional form for the
feature map by calculating its eigenfunctions and eigenvalues.

1 Introduction

Kernel functions are widely used in learning algorithms such as Support Vector Ma-
chines, Gaussian Processes, or Regularization Networks. A possible interpretation
of their effects is that they represent dot products in some feature space F, i.e.

k(x, y) = φ(x) · φ(y) (1)

where φ is a map from input (data) space X into F. Another interpretation is to
connect φ with the regularization properties of the corresponding learning algorithm
[8]. Most popular kernels can be described by three main categories: translation
invariant kernels [9]

k(x, y) = k(x− y), (2)
kernels originating from generative models (e.g. those of Jaakkola and Haussler, or
Watkins), and thirdly, dot-product kernels

k(x, y) = k(x · y). (3)

Since k influences the properties of the estimates generated by any of the algorithms
above, it is natural to ask which regularization properties are associated with k.

In [8, 10, 9] the general connections between kernels and regularization properties
are pointed out, containing details on the connection between the Fourier spectrum
of translation invariant kernels and the smoothness properties of the estimates. In
a nutshell, the necessary and sufficient condition for k(x− y) to be a Mercer kernel
(i.e. be admissible for any of the aforementioned kernel methods) is that its Fourier
transform be nonnegative. This also allowed for an easy to check criterion for new
kernel functions. Moreover, [5] gave a similar analysis for kernels derived from
generative models.



Dot product kernels k(x · y), on the other hand, have been eluding further theo-
retical analysis and only a necessary condition [1] was found, based on geometrical
considerations. Unfortunately, it does not provide much insight into smoothness
properties of the corresponding estimate.

Our aim in the present paper is to shed some light on the properties of dot product
kernels, give an explicit equation how its eigenvalues can be determined, and, finally,
show that for analytic kernels that can be expanded in terms of monomials ξn or
associated Legendre polynomials P d

n(ξ) [4], i.e.

k(x, y) = k(x · y) with k(ξ) =
∞∑

n=0

anξn or k(ξ) =
∞∑

n=0

bnP d
n(ξ) (4)

a necessary and sufficient condition is an ≥ 0 for all n ∈ N if no assumption
about the dimensionality of the input space is made (for finite dimensional spaces
of dimension d, the condition is that bn ≥ 0). In other words, the polynomial
series expansion in dot product kernels plays the role of the Fourier transform in
translation invariant kernels.

2 Regularization, Kernels, and Integral Operators

Let us briefly review some results from regularization theory, needed for the fur-
ther understanding of the paper. Many algorithms (SVM, GP, RN, etc.) can be
understood as minimizing a regularized risk functional

Rreg[f ] := Remp[f ] + λΩ[f ] (5)

where Remp is the training error of the function f on the given data, λ > 0 and Ω[f ]
is the so-called regularization term. The first term depends on the specific problem
at hand (classification, regression, large margin algorithms, etc.), λ is generally
adjusted by some model selection criterion, and Ω[f ] is a nonnegative functional
of f which models our belief which functions should be considered to be simple (a
prior in the Bayesian sense or a structure in a Structural Risk Minimization sense).

2.1 Regularization Operators

One possible interpretation of k is [8] that it leads to regularized risk functionals
where

Ω[f ] =
1
2
‖Pf‖2 or equivalently 〈Pk(x, ·), Pk(y, ·)〉 = k(x, y). (6)

Here P is a regularization operator mapping functions f on X into a dot product
space (we choose L2(X)). The following theorem allows us to construct explicit
operators P and it provides a criterion whether a symmetric function k(x, y) is
suitable.

Theorem 1 (Mercer [3]) Suppose k ∈ L∞(X2) such that the integral operator
Tk : L2(X) → L2(X),

Tkf(·) :=
∫

X

k(·, x)f(x)dµ(x) (7)

is positive. Let Φj ∈ L2(X) be the eigenfunction of Tk with eigenvalue λj 6= 0 and
normalized such that ‖Φj‖L2 = 1 and let Φj denote its complex conjugate. Then

1. (λj(T ))j ∈ `1.

2. Φj ∈ L∞(X) and supj ‖Φj‖L∞ < ∞.



3. k(x, x′) =
∑
j∈N

λjΦj(x)Φj(x′) holds for almost all (x, x′), where the series

converges absolutely and uniformly for almost all (x, x′).

This means that by finding the eigensystem (λi,Φi) of Tk we can also determine
the regularization operator P via [8]

Pf =
∞∑

i=1

ai√
λi

Φi for any f =
∞∑

i=1

aiΦi. (8)

The eigensystem (λi,Φi) tells us which functions are considered “simple” in terms
of the operator P . Consequently, in order to determine the regularization properties
of dot product kernels we have to find their eigenfunctions and eigenvalues.

2.2 Specific Assumptions

Before we diagonalize Tk for a given kernel we have yet to specify the assumptions
we make about the measure µ and the domain of integration X. Since a suitable
choice can drastically simplify the problem we try to keep as much of the symmetries
imposed by k(x · y) as possible. The predominant symmetry in dot product kernels
is rotation invariance. Therefore we set choose the unit ball in Rd

X := Ud := {x|x ∈ Rd and ‖x‖2 ≤ 1}. (9)

This is a benign assumption since the radius can always be adjusted by rescaling
k(x · y) → k((θx) · (θy)). Similar considerations apply to translation. In some cases
the unit sphere in Rd is more amenable to our analysis. There we choose

X := Sd−1 := {x|x ∈ Rd and ‖x‖2 = 1}. (10)

The latter is a good approximation of the situation where dot product kernels
perform best — if the training data has approximately equal Euclidean norm (e.g.
in images or handwritten digits). For the sake of simplicity we will limit ourselves
to (10) in most of the cases.

Secondly we choose µ to be the uniform measure on X. This means that we have to
solve the following integral equation: Find functions Φi : L2(X) → R together with
coefficients λi such that TkΦi(x) :=

∫
X

k(x · y)Φi(y)dy = λiΦi(x).

3 Orthogonal Polynomials and Spherical Harmonics

Before we can give eigenfunctions or state necessary and sufficient conditions we
need some basic relations about Legendre Polynomials and spherical harmonics.

Denote by Pn(ξ) the Legendre Polynomials and by P d
n(ξ) the associated Legendre

Polynomials (see e.g. [4] for details). They have the following properties

• The polynomials Pn(ξ) and P d
n(ξ) are of degree n, and moreover Pn := P 3

n

• The (associated) Legendre Polynomials form an orthogonal basis with∫ 1

−1

P d
n(ξ)P d

m(ξ)(1− ξ2)
d−3
2 dξ =

|Sd−1|
|Sd−2|

1
N(d, n)

δm,n. (11)

Here |Sd−1| = 2πd/2

Γ(d/2) denotes the surface of Sd−1, and N(d, n) denotes
the multiplicity of spherical harmonics of order n on Sd−1, i.e. N(d, n) =
2n+d−2

n

(
n+d−3

n−1

)
.



• This admits the orthogonal expansion of any analytic function k(ξ) on
[−1, 1] into P d

n by

k(ξ) =
∞∑

i=0

N(d, n)
|Sd−2|
|Sd−1|

P d
n(ξ)

∫ 1

−1

k(ξ′)P d
n(ξ′)(1− ξ′

2)
d−3
2 dξ′. (12)

Moreover, the Legendre Polynomials may be expanded into an orthonormal basis
of spherical harmonics Y d

n,j by the Funk-Hecke equation (cf. e.g. [4]) to obtain

P d
n(x · y) =

|Sd−1|
N(d, n)

N(d,n)∑
j=1

Y d
n,j(x)Y d

n,j(y) (13)

where ‖x‖ = ‖y‖ = 1 and moreover∫
Sd−1

Y d
n,j(x)Y d

n′,j′(x)dx = δn,n′δj,j′ . (14)

4 Conditions and Eigensystems on Sd−1

Schoenberg [7] gives necessary and sufficient conditions under which a function
k(x · y) defined on Sd−1 satisfies Mercer’s condition. In particular he proves the
following two theorems:

Theorem 2 (Dot Product Kernels in Finite Dimensions) A kernel k(x · y)
defined on Sd−1×Sd−1 satisfies Mercer’s condition if and only if its expansion into
Legendre polynomials P d

n has only nonnegative coefficients, i.e.

k(ξ) =
∞∑

i=0

bnP d
n(ξ) with bn ≥ 0. (15)

Theorem 3 (Dot Product Kernels in Infinite Dimensions) A kernel k(x·y)
defined on the unit sphere in a Hilbert space satisfies Mercer’s condition if and only
if its Taylor series expansion has only nonnegative coefficients:

k(ξ) =
∞∑

i=0

anξn with an ≥ 0. (16)

Therefore, all we have to do in order to check whether a particular kernel may be
used in a SV machine or a Gaussian Process is to look at its polynomial series
expansion and check the coefficients. This will be done in Section 5.

Before doing so note that (16) is a more stringent condition than (15). In other
words, in order to prove Mercer’s condition for arbitrary dimensions it suffices to
show that the Taylor expansion contains only positive coefficients. On the other
hand, in order to prove that a candidate of a kernel function will never satisfy
Mercer’s condition, it is sufficient to show this for (15) where P d

n = Pn, i.e. for the
Legendre Polynomials.

We conclude this section with an explicit representation of the eigensystem of k(x·y).
It is given by the following lemma:



Lemma 4 (Eigensystem of Dot Product Kernels) Denote by k(x·y) a kernel
on Sd−1 × Sd−1 satisfying condition (15) of Theorem 2. Then the eigensystem of k
is given by

Ψn,j = Y d
n,j with eigenvalues λn,j = an

|Sd−1|
N(d, n)

of multiplicity N(d, n). (17)

In other words, an

N(d,n) determines the regularization properties of k(x · y).

Proof Using the Funk-Hecke formula (13) we may expand (15) further into Spheri-
cal Harmonics Y d

n,j . The latter, however, are orthonormal, hence computing the dot
product of the resulting expansion with Y d

n,j(y) over Sd−1 leaves only the coefficient
Y d

n,j(x) |Sd−1|
N(d,n) which proves that Y d

n,j are eigenfunctions of the integral operator Tk.

In order to obtain the eigensystem of k(x · y) on Ud we have to expand k into
k(x · y) =

∑∞
m,n=0(‖x‖‖y‖)mP d

n

(
x
‖x‖ ·

y
‖y‖

)
and expand Ψ into Ψ(‖x‖)Ψ

(
x
‖x‖

)
.

The latter is very technical and is thus omitted. See [6] for details.

5 Examples and Applications

In the following we will analyze a few kernels and state under which conditions they
may be used as SV kernels.

Example 1 (Homogeneous Polynomial Kernels k(x, y) = (x · y)p) It is well
known that this kernel satisfies Mercer’s condition for p ∈ N. We will show that for
p 6∈ N this is never the case.

Thus we have to show that (15) cannot hold for an expansion in terms of Legendre
Polynomials (d = 3). From [2, 7.126.1] we obtain for k(x, y) = |ξ|p (we need |ξ| to
make k well-defined).∫ 1

−1

Pn(ξ)|ξ|pdξ =
√

πΓ(p + 1)
2pΓ

(
1 + p

2 −
n
2

)
Γ

(
3
2 + p

2 + n
2

) if n even. (18)

For odd n the integral vanishes since Pn(−ξ) = (−1)nPn(ξ). In order to satisfy
(15), the integral has to be nonnegative for all n. One can see that Γ

(
1 + p

2 −
n
2

)
is the only term in (18) that may change its sign. Since the sign of the Γ function
alternates with period 1 for x < 0 (and has poles for negative integer arguments) we
cannot find any p for which n = 2bp

2 + 1c and n = 2dp
2 + 1e correspond to positive

values of the integral.

Example 2 (Inhomogeneous Polynomial Kernels k(x, y) = (x · y + 1)p)
Likewise we might conjecture that k(ξ) = (1 + ξ)p is an admissible kernel for all
p > 0. Again, we expand k in a series of Legendre Polynomials to obtain [2, 7.127]∫ 1

−1

Pn(ξ)(ξ + 1)pdξ =
2p+1Γ2(p + 1)

Γ(p + 2 + n)Γ(p + 1− n)
. (19)

For p ∈ N all terms with n > p vanish and the remainder is positive. For noninteger
p, however, (19) may change its sign. This is due to Γ(p + 1 − n). In particular,
for any p 6∈ N (with p > 0) we have Γ(p + 1− n) < 0 for n = dpe+ 1. This violates
condition (15), hence such kernels cannot be used in SV machines either.



Example 3 (Vovk’s Real Polynomial k(x, y) = 1−(x·y)p

1−(x·y) with p ∈ N) This

kernel can be written as k(ξ) =
∑p−1

n=0 ξn, hence all the coefficients ai = 1 which
means that this kernel can be used regardless of the dimensionality of the input
space. Likewise we can analyze the an infinite power series:

Example 4 (Vovk’s Infinite Polynomial k(x, y) = (1− (x · y))−1) This kernel
can be written as k(ξ) =

∑∞
n=0 ξn, hence all the coefficients ai = 1. It suggests poor

generalization properties of that kernel.

Example 5 (Neural Networks Kernels k(x, y) = tanh(a + (x · y))) It is a
longstanding open question whether kernels k(ξ) = tanh(a + ξ) may be used as SV
kernels, or, for which sets of parameters this might be possible. We show that is
impossible for any set of parameters.

The technique is identical to the one of Examples 1 and 2: we have to show that k
fails the conditions of Theorem 2. Since this is very technical (and is best done by
using computer algebra programs, e.g. Maple), we refer the reader to [6] for details
and explain for the simpler case of Theorem 3 how the method works. Expanding
tanh(a + ξ) into a Taylor series yields

tanh a + ξ 1
cosh2 a

− ξ2 tanh a
cosh2 a

− ξ3

3 (1− tanh2 a)(1− 3 tanh2 a) + O(ξ4) (20)
Now we analyze (20) coefficient-wise. Since all of them have to be nonnegative we
obtain from the first term a ∈ [0,∞), the third term a ∈ (−∞, 0], and finally from
the fourth term |a| ∈ [arctanh 1

3 , arctanh 1]. This leaves us with a ∈ ∅, hence under
no conditions on its parameters the kernel above satisfies Mercer’s condition.

6 Eigensystems on Ud

In order to find the eigensystem of Tk on Ud we have to find a different representation
of k where the radial part ‖x‖‖y‖ and the angular part ξ =

(
x
‖x‖ ·

y
‖y‖

)
are factored

out separately. We assume that k(x · y) can be written as

k(x · y) =
∞∑

n=0

κn(‖x‖‖y‖)P d
n(ξ) (21)

where κn are polynomials. To see that we can always find such an expansion for
analytic functions, first expand k in a Taylor series and then expand each coefficient
(‖x‖‖y‖ξ)n into (‖x‖‖y‖)n

∑n
j=0 cj(d, n)P d

j (ξ). Rearranging terms into a series of
P d

j gives expansion (21). This allows us to factorize the integral operator into its
radial and its angular part. We obtain the following theorem:

Theorem 5 (Eigenfunctions of Tk on Ud) For any kernel k with expansion
(21) the eigensystem of the integral operator Tk on Ud is given by

Φn,j,l(x) = Y d
n,j

(
x
‖x‖

)
φn,l(‖x‖) (22)

with eigenvalues Λn,j,l = |Sd−1|
N(d,n)λn,l, and multiplicity N(d, n), where (φn,l, λn,l) is

the eigensystem of the integral operator∫ 1

0

rd−1
x κn(rxry)φn,l(rx)drx = λn,lφn,l(ry). (23)

In general, (23) cannot be solved analytically. However, the accuracy of numerically
solving (23) (finite integral in one dimension) is much higher than when diagonal-
izing Tk directly.



Proof All we have to do is split the integral
∫

Ud
dx into

∫ 1

0
rd−1dr

∫
Sd−1

dΩ. More-
over note that since Tk commutes with the group of rotations it follows from group
theory [4] that we may separate the angular and the radial part in the eigenfunc-
tions, hence use the ansatz Φ(x) = ΦΩ

(
x
‖x‖

)
φ(‖x‖).

Next apply the Funk-Hecke equation (13) to expand the associated Legendre
Polynomials P d

n into the spherical harmonics Y d
n,j . As in Lemma 4 this leads to the

spherical harmonics as the angular part of the eigensystem. The remaining radial
part is then (23). See [6] for more details.

This leads to the eigensystem of the homogeneous polynomial kernel k(x, y) =
(x · y)p: if we use (18) in conjunction with (12) to expand ξp into a series of P d

n(ξ)
we obtain an expansion of type (21) where all κn(rxry) ∝ (rxry)p for n ≤ p and
κn(rxry) = 0 otherwise. Hence, the only solution to (23) is φn(r) = rd, thus
Φn,j(x) = ‖x‖pY d

n,j(
x
‖x‖ ). Eigenvalues can be obtained in a similar way.

7 Discussion

In this paper we gave conditions on the properties of dot product kernels, under
which the latter satisfy Mercer’s condition. While the requirements are relatively
easy to check in the case where data is restricted to spheres (which allowed us to
prove that several kernels never may be suitable SV kernels) and led to explicit
formulations for eigenvalues and eigenfunctions, the corresponding calculations on
balls are more intricate and mainly amenable to numerical analysis.
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