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ABSTRACT
Ranking is a central problem in information retrieval. Much
work has been done in the recent years to automate the de-
velopment of ranking models by means of supervised ma-
chine learning. Feature selection aims to provide sparse
models which are computationally efficient to evaluate, and
have good ranking performance. We propose integrating the
feature selection as part of the training process for the rank-
ing algorithm, by means of a wrapper method which per-
forms greedy forward selection, using leave-query-out cross-
validation estimate of performance as the selection crite-
rion. We introduce a linear time training algorithm we call
greedy RankRLS, which combines the aforementioned pro-
cedure, together with regularized risk minimization based
on pairwise least-squares loss. The training complexity of
the method is O(kmn), where k is the number of features to
be selected, m is the number of training examples, and n is
the overall number of features. Experiments on the LETOR
benchmark data set demonstrate that the approach works
in practice.

Keywords
feature selection, learning to rank, ranking, RankRLS, reg-
ularized least-squares, variable selection

1. INTRODUCTION
Learning to rank for information retrieval has been a

topic of intense research during the recent years. The possi-
ble benefits of automatically inducing ranking models from
data, compared to purely handcrafted systems, include re-
duced manual labor, increased ranking performance, and
adaptivity to individual user preferences. A number of su-
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pervised machine learning methods have been proposed, and
successfully applied for this task. These include both pair-
wise approaches such as RankSVM [8], RankNet [2], and
RankRLS [16, 17], as well approaches which optimize mul-
tivariate loss functions defined over queries, also known as
the listwise approach [3, 4, 25].

In this article we consider the task of feature selection for
learning to rank, specifically concentrating on the task of
document retrieval. The task is to recognize an informative
subset of the features, such that a machine learning method
trained on the subset achieves good ranking performance
on unseen future data. Perhaps the most fundamental ad-
vantage of this approach is that it leads to sparse models,
as only a limited subset of features is used for prediction.
Since applications such as web-search engines are typically
constrained by strict real-time response demands, being able
to restrict the number of features that need to be calculated
can be quite useful. Further, feature selection can also pro-
vide feedback on the quality of different features, which can
be very useful when developing and testing new ones.

Feature selection methods are typically divided into three
categories [6]. In the filter approach the features are se-
lected as a pre-processing step before applying a learning
algorithm, wrapper methods select features through inter-
action with a learning algorithm, and embedded methods
perform the selection as part of the learning process itself.
Feature selection for ranking is not as of yet a well stud-
ied area, but a number of approaches have been introduced
during the past few years. Geng et al. [5] proposed a fil-
ter method for selecting such features which produce good
rankings, while at the same time aiming to minimize the
redundancy in the set of selected features. The work was
further improved upon by Yu et al. [24]. Metzler [12] and
Pan et al. [19] considered feature selection for ranking with
Markov random fields and boosted trees, respectively.

Since the final goal of the feature selection process is to
produce a sparse ranking model with good performance, we
argue that the most natural selection criterion is the so-
called wrapper approach [6,10,11]. We select such features,
which result in maximal ranking performance for the super-
vised learning method that we are actually using to learn our
model. A standard approach for estimating the generaliza-
tion performance of a model trained on a subset of features



is to use cross-validation, as proposed by [10] for wrapper
based feature selection. More specifically, we propose us-
ing leave-query-out (LQO) cross-validation. This allows one
to make maximal use of training data, and guarantees that
data points related to the same query are never split between
the training and test folds. Further, to make the search over
the power set of features feasible, we propose to use greedy
forward selection, where on each iteration the feature whose
addition yields best cross-validation performance is selected.

In this article we propose the greedy RankRLS algorithm,
that is able to efficiently perform the aforementioned selec-
tion procedure. The algorithm is equivalent to a wrapper
method that for each tested feature set, and each round of
cross-validation would train the RankRLS method [16, 17],
which minimizes the pairwise regularized least-squares loss.
It can also be considered as an embedded method, since the
proposed training algorithm for greedy RankRLS training
is far more efficient than the straightforward approach of
using RankRLS as a black-box method within the selection
process would be. Previously, RankRLS has been shown
to produce good ranking results in document retrieval, and
in general achieve ranking performance similar to that of
RankSVM [16,17].

To achieve computational efficiency for the wrapper
method, we combine the training algorithm with matrix al-
gebra based shortcuts. These are made possible by the fact
that RankRLS has a closed form solution, which can be fully
expressed in terms of matrix operations. Firstly, the devel-
oped shortcuts allow efficient update of the solution when
new features are added, without having to recompute the
solution from scratch. We have previously proposed similar
shortcuts for the greedy RLS algorithm [13,14], which allows
one to train sparse regressors and classifiers in linear time.
Second, based on the results in [1,15] we derive a formula for
the exact LQO estimate that is more efficient than the one
previously proposed in [16], and combine it with the update
operation for feature addition. The resulting complexity of
greedy RankRLS training is O(kmn), where k is the num-
ber of features to be selected, m is the number of training
examples, and n is the overall number of features. The mem-
ory complexity of the method is O(mn). We are not aware
of as efficient greedy forward selection methods with cross-
validation based selection criterion for other state-of-the-art
learning to rank methods.

2. SETTING
We start by introducing some notation. Let Rm and

Rn×m, where n,m ∈ N, denote the sets of real valued col-
umn vectors and n × m-matrices, respectively. To denote
real valued matrices and vectors we use bold capital letters
and bold lower case letters, respectively. Moreover, index
sets are denoted with calligraphic capital letters. By denot-
ing Mi, M:,j , and Mi,j , we refer to the ith row, jth column,
and i, jth entry of the matrix M ∈ Rn×m, respectively. Sim-
ilarly, for index sets R ⊆ {1, . . . , n} and L ⊆ {1, . . . ,m}, we
denote the submatrices of M having their rows indexed by
R, the columns by L, and the rows by R and columns by L
as MR, M:,L, and MR,L, respectively. We use an analogous
notation also for column vectors, that is, vi refers to the ith
entry of the vector v.

We assume, that we are given a training set in a form of
data matrix X ∈ Rn×m and a label vector y ∈ Rm. The
rows of the data matrix are indexed by the n features and

the columns by the m training examples. Thus, by X:,i we
denote the column vector containing the features of the ith
example, sliced from the data matrix and by yi we denote its
corresponding real value label. Let I = {1 . . .m} denote the
index set for the training set. The index set is divided into
a number of disjoint queries, where Q = {Q(1), . . . ,Q(|Q|)}
is the set of queries, and Q(i) ⊂ I,

S|Q|
i=1Q

(i) = I and

Q(i) ∩ Q(j) = ∅, if i 6= j. Each example represents a query-
document pair. The features are a joint feature represen-
tation for the query the example is associated with, and
a candidate document, and the label denotes how relevant
the document is with respect to the query. The ranking of
the documents associated with a query can be obtained by
sorting them according to the values of their labels.

In feature selection, the task is to select a subset S ⊂
{1 . . . n}, |S| = k, of the n available features, such that
the resulting predictor is sparse, but still produces a good
ranking performance on new data. The number of selected
features k may be decided in advance, or selected against a
validation set, according to application specific criteria. We
consider linear predictors of type

f(x) = wTxS , (1)

where w is the k-dimensional vector representation of the
learned predictor and xS can be considered as a mapping
of the data point x into k-dimensional feature space. Note
that the vector w only contains entries corresponding to the
features indexed by S. The rest of the features of the data
points are not used in prediction phase. The computational
complexity of making predictions with (1) and the space
complexity of the predictor are both O(k), provided that
the feature vector representation xS for the data point x is
given.

The pairwise ranking error for a learned predictor f can
be defined as

1

|Q|
X
Q(i)∈Q

1

N (i)

X
j,k∈Q,yj<yk

H(f(X:,j)− f(X:,k)), (2)

where H is the Heaviside step function defined as

H(a) =

8<: 1, if a > 0
1/2, if a = 0
0, if a < 0

and N (i) is the number of pairs in the i:th query, for which
yj < yk holds true. In this definition, the error is normalized
so that each considered query has the same importance, re-
gardless of size. Since (2) is non-convex, successful pairwise
approaches for learning to rank typically minimize convex
approximations instead.

The RankRLS algorithm [16, 17] is based on regularized
risk minimization, where a least-squares based approxima-
tion of (2) is minimized, together with a quadratic regular-
izer. We approximate (2) with the pairwise least-squares
loss, where step function H is replaced with the pairwise
squared loss

l(i, j) = (yi − yj − f(X:,i) + f(X:,j))2.

Compared to the discrete pairwise loss, this loss also en-
forces the magnitudes of the prediction differences. For the
purpose of simplifying the derivation and implementation of
the learning algorithm, we modify the normalizers, and also



include tied predictions within the same query in the loss.
The linear RankRLS solution is found by solving

argmin
w∈R|S|

( X
Q∈Q

1

2|Q|
X

i,j∈Q

l(i, j) + λ‖w‖2
)

(3)

where the first term is the empirical risk measuring how
well the model determined by w fits to the training data,
and the second term called regularizer penalizes complex
models. The regularization parameter λ > 0 controls the
tradeoff between these terms.

Let

Ll = I− 1

l
11T

be the l × l-centering matrix with l ∈ N. The matrix L
is an idempotent matrix and multiplying it with a vector
removes the mean of the vector entries from all elements of
the vector. Moreover, the following equality can be shown

1

2l

lX
i,j=1

(ci − cj) = cTLlc ,

where ci are the entries of any vector c. Without loss of
generality, we can assume that the training data is ordered
according to the queries, so that first come the examples
belonging to the first query, next to the second, etc. Now,
let us consider the following quasi-diagonal matrix:

L =

0B@ Ll1

. . .

Ll|Q|

1CA ,

where li = |Qi| for i ∈ {1, . . . , |Q|}. The matrix L is again
symmetric and idempotent, and can be interpreted as a
query-wise centering matrix, that removes the mean from
the prediction errors for each query [18]. It is also a normal-
ized version of the Laplacian matrix encoding the structure
of the preference graph induced by the queries, which has
been used in previous derivations of RankRLS [16,17].

Now, (3) can be re-written in matrix notation as

argmin
w∈R|S|

n
((wTXS)T − y)TL((wTXS)T − y) + λwTw

o
.

(4)
Analogously to the results in [16,17], a minimizer of (4) is

w = (XSL(XS)T + λI)−1XSLy.

Due to the symmetry and idempotence of L, this can be
re-written as

w = ( bXS( bXS)T + λI)−1 bXSby, (5)

where bXS = XSL and by = Ly. Using the sparse decom-
position of L, the first multiplication can be performed in
O(m|S|), and the second inO(m) time. We note (see e.g. [7])
that equivalently, the RankRLS solution can be obtained
from

w = bXS(( bXS)T bXS + λI)−1by. (6)

The overall complexity of solving (5) is O(m|S|2 + |S|3),
and that of solving (6) O(m2|S|+m3). We note that these
are solutions to the ordinary regularized least squares (RLS)
problem. Thus, by the query-wise centering of the data
matrix the RankRLS problem can be mapped to that of
solving the ordinary RLS problem.

Finally, we consider the issue of cross-validation. As dis-
cussed before, we aim to perform LQO cross-validation,
where in turn each query is left out of the training set, and
used for testing. Let Q be the index set of a query, and let
Q = I \ Q be the complement of this index set.

Let us consider the centered data matrix from which the
rows corresponding to the Q have been removed, bXSQ. Due
to the quasi-diagonal structure of L, the submatrices LQQ
have only zero entries. Therefore, we have

XSQLQQ = bXSQ −XSQLQQ = bXSQ.
The significance of this result is that when removing a query
from the training set, we can recover the centered repre-

sentation of the remaining data simply by slicing bX. The
centering operation does not need to be re-calculated. The
feature representation for the test query is also centered, if
we recover it from the centered training data matrix. Since
using centered data does not affect the relative ordering or
relative differences in prediction values, as long as ranking
based performance measures are used, this makes no differ-
ence.

These results considerably simplify the development of ef-
ficient cross-validation methods for RankRLS. As long as
folds are defined along query lines, the task of performing
cross-validation with RankRLS is identical to that of per-
forming cross-validation with RLS using centered training
data. In problem settings where L does not have quasi-
diagonal structure, such as when learning from a single
global ranking, such results do not exist, making develop-
ment of cross-validation shortcuts more challenging.

3. ALGORITHM DESCRIPTION
Here, we present the computational short-cuts that enable

the efficient feature subset search strategy for RankRLS with
LQO error as a heuristic. First, we recall an approach for
computing the hold-out error for the RLS algorithm. By
hold-out, we indicate the method that is used to estimate
the performance of the learning algorithm by holding a part
of the given data set as a test set and training a learner with
the rest of the data. Our hold-out formulation assumes that
the whole data set is used to train a RLS predictor and the
hold-out set is then“unlearned”afterwards. The formulation
can then be used, for example, to perform a N -fold CV by
holding out a different part of the data set at a time and
averaging the results. In this paper, we use it specifically for
LQO-CV, that is, each query is held out from the training
set at a time, and for a particular query, the corresponding
hold-out set consists of all the training examples associated
with the query.

Now, let us define

G = (( bXS)T bXS + λI)−1

and

a = Gby.
The following theorem can be straightforwardly inferred
from the results presented by [1,15].

Theorem 3.1. The predictions for the data points in-
dexed by Q made by a RLS predictor trained using the fea-
tures indexed by S and with the whole training set except the
examples indexed by Q can be obtained frombyQ − (GQQ)−1aQ.



According to the above theorem, the result of LQO-CV with
squared error as a performance measure can be obtained
from X

Q∈Q

(pQ)TpQ, (7)

where

pQ = (GQQ)−1aQ.

It is quite straightforward to show that the vector of hold-
out errors is centered query-wise, that is, p = Lp, because

we use bX and by in place of X and y. Therefore, the sum
of squared hold-out errors (7) is, in fact, the sum of squared
query-wise centered hold-out errors. As shown earlier, this
corresponds to the sum of pairwise squared losses, calculated
for each query separately.

Algorithm 1: Greedy RankRLS

Input: bX ∈ Rn×m, by ∈ Rm, k, λ
Output: S, w
a← λ−1by;1

C← λ−1 bXT;2

U← bXT;3

p← by;4

S ← ∅;5

while |S| < k do6

e←∞;7

b← 0;8

foreach i ∈ {1, . . . , n} \ S do9

c← (1 + bXiC:,i)
−1;10

d← cCT
iby;11

ei ← 0;12

foreach Q ∈ Q do13

γ ← (−c−1 + CT
i,QUQ,i)

−1;14

p̃Q ← pQ−dUQ,i−γUQ,i(U
T

i,Q(aQ−dCQ,i));15

ei ← ei + (p̃Q)Tp̃Q;16

if ei < e then17

e← ei;18

b← i;19

c← (1 + bXbC:,b)
−1;20

d← cCT
bby;21

t← cbXbC;22

foreach Q ∈ Q do23

γ ← (−c−1 + CT
b,QUQ,b)

−1;24

pQ ← pQ − dUQ,b − γUQ,b(U
T

b,Q(aQ − dCQ,b));25

UQ ← UQ −UQ,bt− γUQ,b(U
T

b,Q(CQ −CQ,bt));26

a← a− dC:,b;27

C← C−C:,bt;28

S ← S ∪ {b};29

w← bXSa;30

Next, we go through the actual feature selection algorithm
whose pseudo code is presented in Algorithm 1. Let us first
define the following quasi-diagonal matrix:

Q =

0B@ (GQ1,Q1)−1

. . .

(GQ|Q|,Q|Q|)
−1

1CA .

In order to take advantage of the computational short-cuts,
the feature selection algorithm maintains the current set of
selected features S ⊆ {1, . . . , n}, the vectors a,p ∈ Rm, and

the matrices C,U ∈ Rm×n whose values are defined as

a = Gby,
C = GbXT,

U = QGbXT,

p = QGby.
In the initialization phase of the greedy RankRLS algorithm
the set of selected features is empty, and hence the values of

a, C, U, and p are initialized to λ−1by, λ−1 bXT, bXT, and by,
respectively. The computational complexity of the initial-
ization phase is dominated by the O(mn) time required for

storing the matrices C, U, and bX in memory. Thus, the ini-
tialization phase is no more complex than one pass through
the training data.

Let us now consider the computation of the LQO perfor-
mance for the modified feature set S ∪ {i}, where i is the
index of the feature to be added. Recall that the hold-out
prediction for the examples that are associated with query Q
can be computed from pQ = (GQ,Q)−1aQ, where a = Gby.
However, since a new feature is temporarily added into the
set of selected features, we must use the matrixeG = (( bXS)T bXS + ( bXi)

T bXi + λI)−1

in place of G. Due to the well-known Sherman-Morrison-

Woodbury (SMW) formula, the matrix eG can be rewritten
as eG = G−G( bXi)

T(1 + bXiG( bXi)
T)−1 bXiG

= G− cC:,iC
T

i,

where

c = (1 + bXiC:,i)
−1.

Accordingly, the updated vector of dual variables ã can be
written as

ã = eGby
= (G− cC:,iC

T
i)by

= a− dC:,i,

where

d = cCT
iby.

Now, concerning ( eGQ,Q)−1, we have

( eGQ,Q)−1 = ((G− cC:,iC
T

i)Q,Q)−1

= (GQ,Q − cCQ,iC
T

i,Q)−1

= (GQ,Q)−1

−γ(GQ,Q)−1CQ,iC
T

i,Q(GQ,Q)−1

= (GQ,Q)−1 − γUQ,iU
T

i,Q,

where

γ = (−c−1 + CT
i,QUQ,i)

−1

and the equality between the second and third rows are again
due to the SMW formula. Finally, we can compute the hold-
out predictions p̃Q for the updated feature set as

p̃Q = ( eGQ,Q)−1ãQ

= (GQ,Q)−1ãQ − γUQ,i(U
T

i,QãQ)

= pQ − dUQ,i − γUQ,i(U
T

i,Q(aQ − dCQ,i)).



The calculation of the last row requires onlyO(|Q|) time pro-
vided that we have all the required caches available. Since
the sizes of the query index sets sum up to m, the overall
complexity of LQO-CV for the updated feature set becomes
O(m). Further, as the greedy forward selection approach
tests each of the order of n unselected features before the
best of them is added into the set of selected features, the
complexity of the selection step is O(mn).

What is still left in our consideration is the phase in which
the caches are updated after an new feature is added into the
set of selected features. The vectors a and p are updated in
the same way as they were temporarily updated in the LQO-
CV computations. The update processes of the matrices U
and C are analogous to those of the vectors p and a except
that the matrix C is used in place of the vector a and the
vector

t = cbXbC,

where b is the index of the selected feature, is used in place of
the constant d. The computational time required for updat-
ing U and C is O(mn), that is, updating the caches after
the selection step is not more complex than the selection
step itself.

Putting everything together, the overall computational
complexity of greedy RankRLS is O(kmn), where k is the
number of features the algorithm selects until it stops. This
is because the algorithm performs k iterations during which
it adds one new feature to the set of selected features and
each iteration requires O(mn) time as shown above. The
space complexity of the algorithm is O(mn) which is domi-

nated by keeping the matrices C, U, and bX in memory.

4. EXPERIMENTS
We perform experiments on the publicly available LETOR

benchmark data set (version 4.0) for learning to rank for
information retrieval 1 [21]. We run experiments on two
data sets, MQ2007 and MQ2008. MQ2007 consists of 69623
examples divided into 1700 queries, and MQ2800 contains
15211 examples divided into 800 queries. In both data sets
the examples have the same 46 high-level features.

We follow the experimental setup proposed by the au-
thors of LETOR. All results are averages from 5-fold cross-
validation, where on each round 3 folds are used for training,
1 for parameter selection and 1 for testing. We use the exact
splits provided in the data sets. Mean Average Precision
(MAP) is used when selecting parameters. In addition to
average precision, we measure Normalized Discountive Cu-
mulative Gain (NDCG) when calculating test performance.
In the results we present MAP, P@10, mean NDCG, and
NDCG@10 values.

We compare greedy RankRLS to RankRLS and
RankSVM, which are trained on all the features. For greedy
RankRLS, we choose via grid search both the number of se-
lected features and value of regularization parameter, such
that lead to best MAP performance on the validation fold.
For normal RankRLS, which is trained on all the features,
only the value of the regularization parameter needs to be
tuned. RankRLS and greedy RankRLS are implemented as
part of the RLScore open source machine learning frame-
work 2. The RankSVM results are taken directly from the
1http://research.microsoft.com/en-us/um/beijing/
projects/letor/
2http://www.tucs.fi/rlscore

baselines section of the LETOR distribution website. The
experimental setup for the RankSVM runs, as described by
LETOR authors, is the same as outlined here, the used im-
plementation was the SVMrank of Joachims3 [9]. We also
plot performance curves as a function of the number of se-
lected features on the validation sets, and examine the fea-
ture sets selected on different folds.

Tables 1 and 2 contains the selected features on the
MQ2007 and MQ2008 data sets, respectively. Where more
than 10 features was selected, we present only the first 10.
On two of the folds of MQ2007, the optimal number of fea-
tures are 11 and 12, on three of the folds almost all of the
features are chosen. On MQ2008 relatively few features were
chosen on all of the folds, on two of the folds the best valida-
tion performance was reached with only one feature. There
are differences in the feature sets selected in the different
rounds of cross-validation, but one thing remains constant.
On both data sets, and on each cross-validation round, the
feature selected first is feature number 39, “LMIR.DIR of
whole document”. The feature is a language model based
feature which corresponds to a posteriori estimate of the
likelihood of the query given the whole document, where a
Dirichlet prior over the documents is used [26]. Based on
our results this feature seems to be very useful for ranking,
since as it turns out models using only it can in some cases
be competitive with models trained on all the features.

In Figures 1, 2, 3, and 4 are the average MAP and mean
NDCG performances over the validation folds, plotted for
different regularization parameter values. We note that the
results are quite unstable, suggesting that reliable selection
of the regularization parameter and number of selected fea-
tures remains a challenging problem. On MQ2007 the per-
formance increases with the number of selected features.
This is why in three of the folds the selection strategy used
in our study lead to selecting almost all of them. How-
ever, on MQ2008 best validation performances are reached
with relatively few features, after which the performance de-
creases. On MQ2007 close to optimal validation results can
be reached already with around 15 features. This suggests
that perhaps a multi-objective criterion should be used in
parameter selection, which in addition to favoring high vali-
dation performance would also penalize models that use too
many features.

In Tables 3, 4, 5, and 6, are the test results for MQ2007,
and in Tables 7, 8, 9, and 10 are the test results for MQ2008.
Overall, the results for greedy RankRLS, RankRLS and
RankSVM are very close to each other, even on fold-by-fold
basis. The results further verify the earlier results in [16,17],
which suggest that RankRLS and RankSVM optimization
often lead to very similar results. Further, the results show
that at least on this data, sparse models learned using greedy
forward selection are competitive with models learned using
all the features.

5. DISCUSSION AND FUTURE WORK
The greedy RankRLS implementation presented in this

paper is computationally feasible when dealing with data
sets, such as LETOR, in which the overall number of avail-
able features is not very large. However, the situation is
different if the data points are represented, for example, as

3http://www.cs.cornell.edu/People/tj/svm_light/
svm_rank.html



Table 1: Selected features on MQ2007.
Model fold1 fold2 fold3 fold4 fold5
λ 28 26 29 28 27

k 11 40 46 44 12
selected 1 39 39 39 39 39
selected 2 19 32 27 28 25
selected 3 25 19 23 45 19
selected 4 23 26 19 23 43
selected 5 32 23 13 43 23
selected 6 16 16 18 33 29
selected 7 43 5 42 13 22
selected 8 22 33 33 18 18
selected 9 5 18 16 22 5
selected 10 33 3 5 15 16

Table 2: Selected features on MQ2008
Model fold1 fold2 fold3 fold4 fold5
λ 20 210 23 26 20

k 1 4 7 4 1
selected 1 39 39 39 39 39
selected 2 23 29 29
selected 3 37 25 25
selected 4 32 23 23
selected 5 46
selected 6 37
selected 7 19

raw text documents, and the words or their composites oc-
curring in the documents form the set of available features.
In this case, there is the drawback that m × n-dimensional
dense matrices has to be maintained in memory, while the
data are stored in a sparse matrix of the same size having
only a few nonzero entries. This is, because each document
has nonzero values only for a small subset of features. In ad-
dition to the feasibility problems with memory, the O(mn)
time required per iteration may be too expensive in practise.
Fortunately, it is possible to design such variations of greedy
RankRLS that are better suited for this type of data.

First, we can avoid storing the dense m × n-matrices by
spending more computational resources. This is possible
with a variation whose time complexity is O(k2mn). As
an additional modification, we can reduce the time spent in
each iteration by selecting the new feature from a random
subset of the available features, resulting to a time complex-
ity O(k2mκ), where κ is the size of random subsets. This
type of idea is used, for example, for selecting the basis vec-
tors for Gaussian process regressors by [22]. Finally, we can
take advantage of the sparsity of the data matrix in reduc-
ing the time complexity down to O(k2mκ), where m is the
average number of training examples for which the features
have nonzero values, if we use so-called back-fitting varia-
tion of our algorithm instead of performing pre-fitting as our
current implementation does. For descriptions of the terms
back-fitting and pre-fitting, we refer to [23]. The detailed

Table 3: Map results on MQ2007
Fold GRankRLS RankRLS RankSVM
1 0.4859 0.4912 0.4894
2 0.4571 0.4573 0.4573
3 0.4655 0.4655 0.4676
4 0.4423 0.4425 0.4401
5 0.4709 0.4687 0.4680
avg 0.4643 0.4650 0.4645

Table 4: P@10 results on MQ2007
Fold GRankRLS RankRLS RankSVM
1 0.3958 0.3997 0.4036
2 0.3858 0.3855 0.3932
3 0.3684 0.3684 0.3699
4 0.3670 0.3673 0.3652
5 0.3808 0.3811 0.3847
avg 0.3796 0.3804 0.3833

Table 5: MeanNDCG results on MQ2007
Fold GRankRLS RankRLS RankSVM
1 0.5228 0.5281 0.5278
2 0.4840 0.4841 0.4810
3 0.5056 0.5056 0.5042
4 0.4757 0.4754 0.4699
5 0.5033 0.5003 0.5003
avg 0.4983 0.4987 0.4966

Table 6: NDCG@10 results on MQ2007
Fold GRankRLS RankRLS RankSVM
1 0.4735 0.4784 0.4818
2 0.4247 0.4246 0.4266
3 0.4466 0.4466 0.4461
4 0.4221 0.4221 0.4163
5 0.4487 0.4460 0.4485
avg 0.4431 0.4435 0.4439

Table 7: Map results on MQ2008
Fold GRankRLS RankRLS RankSVM
1 0.4311 0.4524 0.4502
2 0.4239 0.4300 0.4213
3 0.4582 0.4542 0.4529
4 0.5283 0.5225 0.5284
5 0.5183 0.5006 0.4950
avg 0.4720 0.4719 0.4696

Table 8: P@10 results on MQ2008
Fold GRankRLS RankRLS RankSVM
1 0.2333 0.2391 0.2423
2 0.2178 0.2217 0.2229
3 0.2363 0.2325 0.2357
4 0.2975 0.2949 0.2981
5 0.2484 0.2503 0.2465
avg 0.2467 0.2477 0.2491

Table 9: MeanNDCG results on MQ2008
Fold GRankRLS RankRLS RankSVM
1 0.4454 0.4633 0.4577
2 0.4186 0.4269 0.4296
3 0.4787 0.4741 0.4686
4 0.5403 0.5407 0.5442
5 0.5369 0.5138 0.5159
avg 0.4840 0.4838 0.4832

Table 10: NDCG@10 results on MQ2008
Fold GRankRLS RankRLS RankSVM
1 0.1920 0.2145 0.2117
2 0.1585 0.1669 0.1738
3 0.2558 0.2489 0.2494
4 0.2940 0.2874 0.2892
5 0.2254 0.2165 0.2155
avg 0.2251 0.2268 0.2279
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Figure 1: Average MAP on validation sets for
MQ2007.
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Figure 2: Average Mean NDCG on validation sets
for MQ2007.

descriptions of these variations are left for future work.
The greedy forward selection approach can sometimes suf-

fer from the so-called nesting effect, meaning that the best
subset of size k, for example, may not necessarily cover the
features included in the best subset of size k − 1. Float-
ing search methods (see e.g. [13, 20, 27]), which are able to
discard features selected in previous iterations, have been
proposed as a means to deal with this issue. Replacing the
greedy search strategy with a floating search would be a
fairly straightforward extension to the presented algorithm.

6. CONCLUSION
To conclude, we propose a computationally efficient

method for learning sparse predictors for ranking tasks. The
method uses on greedy forward selection as a search strategy
and leave-query-out cross-validation as a selection criterion.
The computational complexity of the method is linear in the
number of training examples, in the overall number of fea-
tures, and in the number of features to be selected. Thus,
the method is computationally highly efficient despite the
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Figure 3: Average MAP on validation sets for
MQ2008.
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Figure 4: Average Mean NDCG on validation sets
for MQ2008.

fact that the method optimizes a pairwise ranking loss func-
tion and uses a complex cross-validation criterion. Empiri-
cal evaluation with the LETOR benchmark data set demon-
strates the soundness of the proposed approach.
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