
Feature Selection for Document Ranking using Best First
Search and Coordinate Ascent

Van Dang and W. Bruce Croft
Center for Intelligent Information Retrieval

Department of Computer Science
University of Massachusetts

Amherst, MA 01003
{vdang, croft}@cs.umass.edu

ABSTRACT
Feature selection is an important problem in machine learn-
ing since it helps reduce the number of features a learner has
to examine and reduce errors from irrelevant features. Even
though feature selection is well studied in the area of classi-
fication, this is not the case for ranking algorithms. In this
paper, we propose a feature selection technique for rank-
ing based on the wrapper approach used in classification.
Our method uses the best first search strategy incremen-
tally to partition the feature set into subsets. Features in
each subset are then combined into a single feature using co-
ordinate ascent in such a way that it maximizes any defined
retrieval measure on a training set. Our experiments with
many state-of-the-art ranking algorithms, namely RankNet,
RankBoost, AdaRank and Coordinate Ascent, have shown
that the proposed method can reduce the original set of fea-
tures to a much more compact set while at least retaining
the ranking effectiveness regardless of the ranking method
in use.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Selection
process

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Learning to rank, feature selection

1. INTRODUCTION
An effective ranking framework is certainly the core com-

ponent of any information retrieval (IR) system. Many rank-
ing models have been proposed, the most popular of which
are BM25 [13] and the language modeling framework [6].
These models make use of a small number of features such as
term frequency, inverse document frequency and document
length. They have the advantage of being fast and pro-
duce reasonably good resutls. When more features become
available, however, incorporating them into these models is
usually difficult since it requires a significant change in the

Copyright is held by the author/owner(s).
WOODSTOCK ’97 El Paso, Texas USA
ACM X-XXXXX-XX-X/XX/XX.

underlying model. For example, the BM25 model was mod-
ified to include PageRank as a prior [5] or to incorporate
term proximity information [3].

Supervised learning to rank algorithms [10, 8, 1, 14, 7] can
help overcome that limitation. They treat query-document
pairs as objects to rank, each of which is represented using
any set of features. Existing work has shown, by incorporat-
ing many features, they produce better results than classical
models mentioned above [14, 7].

In the area of machine learning, feature selection is the
task of selecting a subset of features to be considered by the
learner. This is important since learning with too many fea-
tures is wasteful and even worse, learning from the wrong
features will make the resulting learner less effective. In the
classification problem, feature selection approaches can be
divided into three categories: the filter approach which se-
lects features based on some criterion that is independent
of the metric being optimized, the wrapper approach which
picks features that, with the learning technique in use, pro-
duces the best result with respect to the metric being consid-
ered, and the embedding approach which embeds the feature
selection procedure into the learning process.

Even though feature selection for classification is well stud-
ied, there has been less research on this topic for ranking.
The most recent technique that we are aware of is the work
by Geng et al. [9] which follows the filter approach. Instead,
we prefer the wrapper method since the selection of features
is based on the effective metric that will be optimized by the
learning procedure. Our approach uses best first search to
come up with subsets of features and uses coordinate ascent

to learn the weights for those features. Once a best subset
is obtained, a new feature is defined based on the learned
combination of features in this set and these features are
removed from the feature pool. The process is repeated un-
til all features are considered. The set of new features will
be used to train the ranker instead of the original features.
Our experiments with four well-known ranking algorithms –
RankNet [1], RankBoost [8], AdaRank [14] and Coordinate
Ascent [7] – show that the set of new features, while being
much more compact, is at least as effective as the original
set in terms of NDCG@5.

2. PROPOSED METHOD
Our proposed method is a simple modification of the stan-

dard wrapper approach that can be found in [11].

Table 1: A Best-First-Search procedure. R = 5 is
used in our experiments.

P = ∅
best = null

Randomly pick a node v

Train A on T using v to maximize Λ(T ,Av)
Add v to P

while |P | > 0
v ← arg maxu∈P Λ(T ,Au)
Remove v from P

if Λ(T ,Av) > Λ(T ,Abest) then best← v

if best did not change in the last R rounds
then STOP and RETURN best

for each of v’s neighbors u

Train A on T using u to maximize Λ(T ,Au)
add u to P

end for
end while
RETURN best

2.1 Notation
Let F = {f1, f2, ..., fn} be the set of original features. Let
T = {r1, r2, ..., rm} be the set of training samples where ri

is the list of documents for the query qi. Let d
j
i be the j-th

document in the list ri. Each d
j
i is represented as a feature

vector {f (i)(j)
1 , f

(i)(j)
2 , ..., f

(i)(j)
n }

Let AF be any ranking algorithm that utilizes the set
of features F . To rank a list of documents ri using AF , we
reorder all d

j
i based on AF (dj

i), which is the score the ranker
assigns to this document.

Let Λ be the metric that the learner tries to optimize.
It can be any effectiveness metric such as NDCG or MAP.
We define Λ(T ,AF) to be the metric score that the rank-
ing algorithm A using the set of features F achieves on the
dataset T . Note that the goal of the training process is to
learn A such that it maximizes Λ(T ,AF).

2.2 Method
The goal of our technique is to partition F in a greedy

way into k non-overlapping subsets {F1,F2, ...,Fk} – each
of which has size of at most s – together with a set of learned
rankers {AF1

,AF2
, ...,AFk

} where each AFt
is trained to

maximize Λ(T ,AFt
) using the set of features Ft.

We do that in a slightly different way than the method
described in [11]. We first put all the features into a pool.
We build an undirected graph where each node represents a
subset of features in that pool that has size at most s. An
edge is created for any pairs of nodes where one of them can
be obtained from the other by adding exactly one feature.
Then we apply the best first search procedure described in
Table 1 to come up with F1 and AF1

(R = 5 is used in all of
our experiments). All features in F1 are then removed from
the pool. We rebuild the graph from the remaining features
and repeat the same procedure until the pool is empty.

Once the feature selection procedure is done, we define a
new feature f ′

t corresponding to each Ft such that

f ′(i)(j)
t = AFt

(dj
i). Therefore, each original feature vector

{f
(i)(j)
1 , f

(i)(j)
2 , ..., f

(i)(j)
n } becomes {f ′(i)(j)

1 , f ′(i)(j)
2 , ..., f ′(i)(j)

k }
where k < n. The learning process then proceeds with this
new feature vector.

3. RANKING METHODS
To evaluate our feature selection technique, we test it with

four popular ranking algorithms: RankNet [1], RankBoost
[8], AdaRank [14] and Coordinate Ascent [7].

3.1 RankNet
RankNet [1] is a probabilistic pair-wise ranking frame-

work based on neural networks. For every pair of correctly
ranked documents, each document is propagated through
the net separately. The difference between the two outputs
are mapped to a probability by the logistic function. The
cross entropy loss is then computed from that probability
and the true label for that pair. Next, all weights in the
network are updated using the error back propagation and
the gradient descent method.

3.2 RankBoost
RankBoost [8] is a pair-wise boosting technique for rank-

ing. Training proceeds in rounds. It starts with all docu-
ment pairs being assigned with an equal weight. At each
round, the learner selects the weak ranker that achieves
the smallest pair-wise loss on the training data with re-
spect to the current weight distribution. Pairs that are cor-
rectly ranked have their weight decreased and those that
are incorrectly ranked have their weight increased so that
the learner will focus more on the hard samples in the next
round. The final model is essentially a linear combination
of weak rankers. Weak rankers theoretically can be of any
type but they are most commonly chosen as a binary func-
tion with a single feature and a threshold. This function
assigns a score of 1 to a document of which feature value
exceeds the threshold and 0 otherwise.

3.3 AdaRank
The idea of AdaRank [14] is similar to that of RankBoost

except that it is a list-wise approach. Hence, it directly
maximizes any desired IR metric such as NDCG and MAP

whereas RankBoost’s objective is to minimize the pair-wise
loss.

3.4 Coordinate Ascent
Metzler and Croft [7] have proposed a list-wise linear model

for information retrieval which uses coordinate ascent to op-
timize the model’s parameters. Coordinate ascent is a well-
known technique for unconstrained optimization. It opti-
mizes multivariate objective functions by sequentially doing
optimization in one dimension at a time. It cycles through
each parameter and optimizes over it while fixing all the
others. Note that in the context of this paper, we use the
term Coordinate Ascent to refer to this particular ranking
technique other than the general optimization method.

4. EXPERMENTS

4.1 Datasets
We conduct our experiments on the LETOR 4.0 dataset.

It was created from the Gov-2 document collection which
contains roughly 25 million web pages. Two query sets from
Million Query TREC 2007 and 2008 are included in this
dataset, referred to as MQ2007 and MQ2008 respectively.
MQ2007 contains roughly 1700 queries and MQ2008 has
about 800. Each query-document pair is represented by a
46-feature vector.

Figure 1: Results on the MQ2007 dataset: (a) Performance of rankers using different set of features and (b)
the number of features they use. The first and the second bar in each group correspond to the system using
the set of all original features and the set produced by best@m respectively. The last three bars are for systems
using features generated by our approach with s equals 2, 3, and 4 respectively. ∗ and † indicate significant
difference to orig. and best@m respectively.

4.2 Experimental Design
For our feature selection procedure, we experiment with

different values for s (the size of the feature subset Fi) vary-
ing from 2 to 4. For each value of s, we consider using top-k
subsets {F1,F2, ...,Fk} where k ∈ {1..5} to train the ranker
and use a validation set to select k.

Holding the ranker fixed to a particular technique, we
compare systems with different s values to the baseline which
uses all original features. We will refer to the baseline as
orig. and systems using features generated by our method
as BFSW.

We also consider another baseline in which we use each
feature from the original set to rank all the list of documents
and sort them based on the NDCG@5 they produce. We
then use the top-m of these features to train the ranker. m

is also chosen in the range {1..5} based on a validation set.
The idea is to see whether simply considering only some of
the best features from the original set gives better results
than using the whole set, and whether our method can do
any better than that. This second baseline will be refered
to as best@m.

All experiments are done using five-fold cross validation.
The dataset in each fold is divided into three subsets: the
training set, the validation set and the test set. We train all
the systems on the training set and select the model that
has the best performance on the validation set as the final
model which is evaluated on the test set. NDCG@5 averaged
over five folds is used as the performance measure for each
system.

4.3 Parameter Settings
We implement our proposed technique as described in sec-

tion 2.2. Though the ranking algorithm A used by this pro-
cedure can be freely chosen (e.g. to be the same as whatever
used in learning process), we fix it to Coordinate Ascent for
simplicity.

For both RankNet and RankBoost, we train the ranker for
300 rounds since we observed no performance change after

that in our preliminary experiments. In our implementa-
tion of RankNet, we use the logistic function as its activa-
tion function. We set the learning rate to be 0.001 which is
halved everytime the cross entropy loss on training data in-
creases as suggested in [1]. For AdaRank, we train the ranker
until observing a drop in NDCG@5 between two consecu-
tive rounds that is smaller than a tolerance of 0.002. Since
AdaRank might have the problem of selecting the same fea-
ture again and again, we also apply the trick provided in [4].
For Coordinate Ascent, we train the ranker with 5 random
restarts to avoid local extrema.

4.4 Results
Fig. 1a demonstrates the results on MQ2007. Each group

of bars corresponds to one ranking algorithm. Within each
group, the first and the second bar show the results obtained
using the original set of features and the set of features pro-
duced by best@m respectively. The last three bars indicates
the performance of systems using features generated by our
method with s set to 2, 3 and 4 respectively.

It is worth noting from Fig. 1a that with original fea-
tures, RankNet is less effective than other learning to rank
algorithms. RankNet is based on neural networks which
are known to be hard to train. Many important tricks are
pointed out in [12]. For this paper, however, we implemented
it in a rather straight-forward way. This might be the reason
for the bad performance.

The second thing to note from Fig. 1a is that best@m is al-
most always worse than using the original features except for
the case of RankNet. This suggests that all features are im-
portant to some extent and simply using the top-performing
features will not help.

Features provided by our selection method with s ≥ 3,
on the other hand, are always more effective than the set of
original features and s = 4 gives the best NDCG@5 across
learning techniques. Meanwhile, in terms of the number of
features the learner needs to consider, Fig. 1b shows that
the set generated by our method is much more compact

Figure 2: Results on the MQ2008 dataset: (a) Performance of rankers using different set of features and (b)
the number of features they use. The first and second bar in each group correspond to the system using the
set of all original features and the set produced by Best@m respectively. The last three bars are for systems
using features generated by our approach with s equals 2, 3, and 4 respectively. ∗ and † indicate significant
difference to orig. and best@m respectively.

compared to the original set.
We did hypothesis testing using the two-tailed t-test and

note that at p < 0.05, the improvement our method pro-
vide over orig. is not significant except in the case of
RankNet. The performance drop that best@m introduces,
on the other hand, is significant. Thus, the difference be-
tween our method and best@m is almost always significant
as indicated in Fig. 1a, suggesting that our method is much
better than only considering the top-performing features.

One of the goals of any feature selection method is to get
the learner to concentrate on important features and neglect
those that are not. Our method works by optimizing a small
group of features locally then collapsing them into a single
features. The learner then only needs to consider a smaller
group – compared to the original set – of better features.
This is our explanation for the consistency of our results
across learning techniques. The results with RankNet, in
fact, further supports our claim. While its performance us-
ing the orginal features is quite bad since we do not apply
any tricks, it becomes comparable to other ranking tech-
niques when using feature selection. This indicates that the
learning task is easier with fewer features.

Fig. 2 shows results obtained on the MQ2008 dataset.
These reveal similar trends except that the system with
s = 3 performs better than s = 4.

5. CONCLUSIONS
In this paper, we propose a simple wrapper-based method

that uses best first search and coordinate ascent to greedily
partition a set of features into subsets. Each subset is then
replaced by a single new feature. Our results on the LETOR
4.0 dataset have shown that learning from the set of new
features, which is much smaller in size, can produce com-
parable or even better NDCG@5 performance than learning
from the original features.

Future work includes looking into more recent work in
feature selection for classification, experimenting with other
ranking algorithms such as SVMRank [10] and LambdaRank

[2] and comparing our method to other feature selection
techniques such as the one proposed in [9].

6. ACKNOWLEDGMENT
This work was supported in part by the Center for Intelli-

gent Information Retrieval and in part by NSF grant #IIS-
0711348. Any opinions, findings and conclusions or recom-
mendations expressed in this material are the author(s) and
do not necessarily reflect those of the sponsor.

7. REFERENCES
[1] C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N.

Hamilton and G. Hullender. Learning to rank using gradient
descent. In Proc. of ICML, pages 89-96, 2005.

[2] C.J.C. Burges, R. Ragno, and Q.V. Le. Learning to rank with
nonsmooth cost functions. In Proc. of NIPS, 2006.

[3] S. Buttcher, C. L. A. Clarke, and B. Lushman. Term proximity
scoring for ad-hoc retrieval on very large text collections. In
Proc. of SIGIR, pages 621-622, 2006.

[4] M. Cartright, J. Seo and M. Lease. UMass Amherst and UT
Austin @ The TREC 2009 Relevance Feedback Track. In Proc.
of TREC, 2009.

[5] N. Craswell, S. Robertson, H. Zaragoza, and M. Taylor.
Relevance weighting for query independent evidence. In Proc.
of SIGIR, pages 416-423, 2005.

[6] W.B. Croft, D. Metzler, and T. Strohman. Search Engines:
Information Retrieval in Practice. Addison-Wesley, 2009.

[7] D. Metzler and W.B. Croft. Linear feature-based models for
information retrieval. Information Retrieval, 10(3): 257-274,
2000.

[8] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An efficient
boosting algorithm for combining preferences. The Journal of
Machine Learning Research, 4: 933-969, 2003.

[9] X. Geng, T.Y. Liu, T. Qin and H. Li. Feature selection for
ranking. In Proc. of SIGIR, pages 407-414, 2007.

[10] T. Joachims. Optimizing search engines using clickthrough
data. In Proceedings of KDD, pages 133-142, 2002.

[11] R. Kohavi and G. H. John. Wrappers for feature subset
selection. Artificial Intelligence, 1997.

[12] Y. LeCun, L. Bottou, G.B. Orr and K.R. Muller. Efficient
Backprop. Neural Networks: Tricks of the trade, 1998.

[13] S. E. Robertson and D. A. Hull. The TREC-9 filtering track
final report. In TREC, pages 25-40, 2000.

[14] J. Xu and H. Li. AdaRank: a boosting algorithm for
information retrieval. In Proc. of SIGIR, pages 391-398, 2007.

