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Analyzing Sequences
n Language
n Syntactic structure
n Sense tagging
n Information extraction

n Biological sequences
n Genes, regulatory regions
n Secondary structure (folding)
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Issues
n Many interacting decisions

n A wide range of sequence features
n Computing an answer is relatively costly

ski  the poleswithslope ski  the poleswithslope

[ski [the slope] [with poles]] [ski [[the slope] [with poles]]]
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Example: Information Extraction

n Information extraction as labeling:
n States represent (parts of) entities
n Relations

• Cascaded labelers
• Structured labels

Nance, who is also a paid consultant to ABC News  , said …

person

person-descriptor

employee
relationCo-reference

organization
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Sequence Analysis as Labeling

n Labels (states) describe the role of
corresponding inputs

n Appropriate for
n Tagging
n Shallow parsing
n (Some) information extraction
n Gene finding

  

† 

x = x1Lxn   

† 

s = s1Lsn
Sequence

model
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Local Labeling
n Train to minimize the per-decision

loss in context

n Apply by guessing context and finding
each lowest-loss label:

  

† 

ˆ L = argminL loss(sk,i | x k,sk \ i;L)
0£ i<|x k |ÂkÂ

sk \ i = sk,1Lsk,i-1sk,i+1Lsk, x k

† 

ˆ s i = argminsi
loss(si | o,ˆ s \ i; ˆ L )

context of 

† 

sk,i



Sequence Analysis December 02

NIPS Unreal Data Workshop 4

Sequence Analysis 6

Global Labeling
n Minimize training labeling loss

n Computing the best labeling:

n Efficient minimization requires:
n A common currency for local labeling decisions
n Efficient algorithm to combine the decisions† 

ˆ s = argmins Loss(x,s | ˆ L )† 

ˆ L = argminL Loss(xk ,sk | L)
kÂ
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Method Tradeoffs
n Assume: Markovian label dependencies
n Local

4 Easy to use any classifier
6 No common currency for balancing labeling

decisions
6 Search problem: guessing contexts

n Global
6 Restricted model forms
4 Easy to balance labeling decisions
4 Easy to compare alterative label sequences
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A Global Model: HMMs

n Train to maximize joint probability of
input and label sequences

n Find most likely labeling for given input
with Viterbi

n Commonly used: states emit sequences
generated by a n-order Markov model

† 

P(s,x) = P(s0) P(si | si-1)P(xi | si)
i

’
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Information Extraction with HMMs

n Input: text (word sequences)
n Label: which field does the word belong to

[Seymore & McCallum 99, Freitag & McCallum 99]
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Problems with HMMs
n Applications need richer input representation: multiple

overlapping features, whole chunks of text

n Generative models do not handle easily overlapping,
non-independent features

n Alternative: conditional model P(s|x)

Context featuresWord features

starts sentenceword in word list
markupends in “-tion”
next wordscapitalization
previous wordsword identity
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n Per-state conditional model

n Train each state model separately
n Decoding: Viterbi

A Local Model: MEMMs

† 

P( ¢ s | s,x Ø i) =
1

Z(s,xØ i)
expL ⋅ f(s, ¢ s ,xØ i)

xØ i ≡  input with indexing origin shifted to i

Typical feature :  f (s, ¢ s ,x) =
if s = t & ¢ s = ¢ t 

& x-1 = x & x0 = ¢ x 
otherwise

Ï 
Ì 
Ô 

Ó Ô 
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n Example (after Bottou ‘91):

n Bias toward states with fewer outgoing
transitions.

n Per-state normalization does not allow the
required score(1, 2|ro) << score(1, 2|ri).

n A challenge for all local models

Label Bias Problem

0

4 5

321

r

r
i

o b

b

6

rib

rob

† 

P(1,2 | ro) = P(1 | r)P(2 | o,1)
P(1 | r)1
P(1 | r)P(2 | i,1)
P(1,2 | ri)
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Conditional Undirected Models
n P(state sequence s | input sequence x)

instead of P(x,s)
n Allow arbitrary dependencies on x
n Efficient inference if dependencies

within s are constrained
n States don’t need to encode bounded

dependency on past and future inputs
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Conditional Random Fields

n Markov on s, conditional dependency on x

n Feature vector f represents interactions
between successive states and distribution
of individual states given the input† 

PL (s | x) =
1

ZL (x)
expL ⋅ f(si-1,si,xØ i)

i
’

s1 s2 s3 s4 s5

x1 x2 x3 x4 x5
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From HMMs to CRFs
  

† 

s = s1Lsn x = x1Lxn

HMM

CRF† 

P(s | x) =
P(s0)
P(x)

P(si | si-1)P(xi | si)
i

’

† 

P(s | x) =
1

Z(x)
exp

L ⋅ f(si,si-1)
+

W ⋅ g(si, xi)

Ê 

Ë 

Á 
Á 

ˆ 

¯ 

˜ 
˜ 

i
’
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Decoding
n Use Viterbi algorithm to compute

n Linear sequence models: clean separation
between
n Decoding
n Training
n Generalizes linear classification

† 

ˆ s = argmaxs PL (s | x) = argmaxs L ⋅ F(x,s)
F(x,s) = f(si-1,si,xØ i)

iÂ
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n Matrix notation

n Efficient normalization: forward-backward
algorithm

Efficient Estimation

  

† 

Mi(s, ¢ s | x) = expL ⋅ f(s, ¢ s ,xØ i)

PL (s | x) =
1

ZL (o)
Mi(si-1,si | x)

i
’

ZL (x) = (M1(x)M2(x)LMn +1(x))start,stop
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Forward-Backward Calculations
n For any path function

n Easy generalization to constrained set of paths

† 

G(s) = gi(si-1,si)iÂ

† 

ES~P(S|x )G(S) = PL (s | x)G(s)
sÂ

=
a i(x) gi+1 * Mi+1(x)[ ]b i+1

T (x)
ZL (x)i

Â
a i(x) = a i-1(x)Mi(x)
b i

T (x) = Mi+1(x)b i
T (x)

ZL (x) = an +1(end | x) = b0(start | x)
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Training
n Maximize
n Log-likelihood gradient

n Methods: iterative scaling, conjugate gradient,
L-BFGS

n Partially-observable case (labeled states)

† 

L(L) = log PL (sk | x k )
kÂ

† 

—L(L) = F(x k,sk ) - ES~PL (S|x k )F(x k,S)( )kÂ

  

† 

PL (y | x) = PL (s | x)
s:l(s )= yÂ

—L(L) =
ES~PL (S|x k ,l(S)= y k )F(x k,S)

-ES~PL (S|x k )F(x k,S)
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

kÂ
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Alternative Training Method
n Generalized perceptron [Collins 02]

n Questions:
n Could it lose something from Viterbi?
n Partially observable?† 

w0 = 0; j = 0
for t =1,...,T

for k =1,...,N
ˆ s = argmaxs w j ⋅ F(x k,s)
if ˆ s ≠ sk then w j +1 = w j + F(x k,sk ) - F(x k,ˆ s ) else w j +1 = w j

j ¨ j +1
L = w j /NT

jÂ
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Example: Shallow Parsing

n Noun phrase chunking from POS-
tagged text

[Rockwell International Corp.] [‘s Tulsa
unit] said [it] signed [a tentative
agreement] extending [its contract] with
[Boeing Co.] to provide [structural parts]
for [Boeing] [‘s 747 jetliners]

n Standard benchmark task
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NP Chunking Results

93.70%MEMM [Sha & Pereira 03]

93.89%Winnow
[Zhang, Damerau & Johnson 02]

94.22%24 SVM combination
[Kudo & Matsumoto 01]

94.09%Voted perceptron
[Collins 02; Sha & Pereira 03]

FModel

94.20%CRF [Sha & Pereira 03]

† 

F =
2PR
P + R

n Warning: different feature sets
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Fine Tuning
n Preconditioned conjugate gradient
n Approximate diagonal of Hessian (exact

diagonal is too expensive to compute)
n 820K features
n Input predicate & transition predicate
n Pre-compute input predicates

n Gaussian weight prior
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Further Questions
n Limited by dimensionality (number of

features): kernels?
n Generalization bounds
n Parsing

n Trees instead of chains
n Inside-outside replaces forward-backward
n Computationally challenging: large label set

n  General graphs using loopy BP
n Suggestive results for collective classification

[Taskar & al 02]


