# Undirected Graphical Models for Sequence Analysis

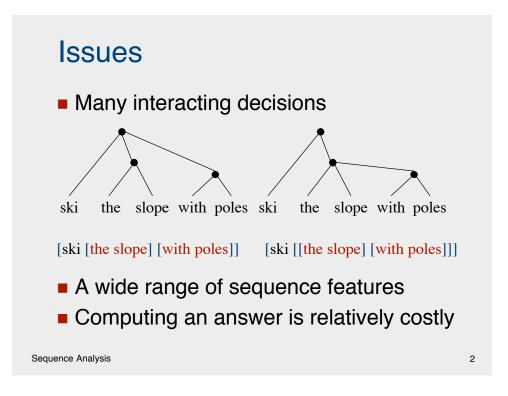
Fernando Pereira University of Pennsylvania

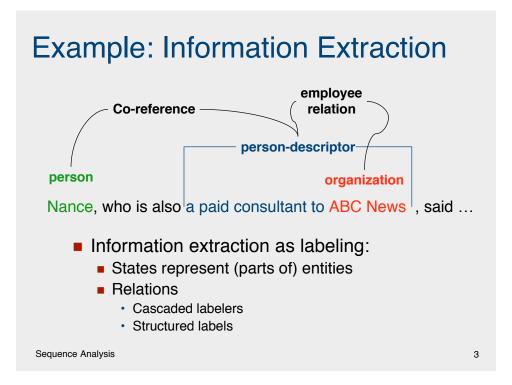
Joint work with John Lafferty, Andrew McCallum, and Fei Sha

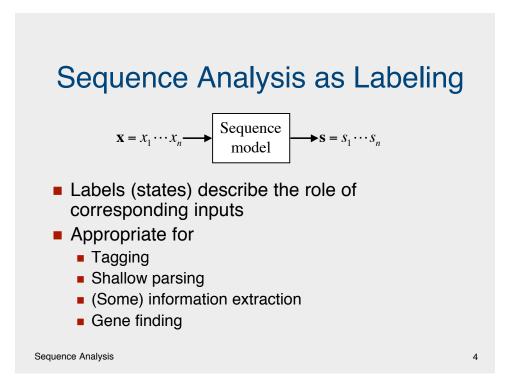


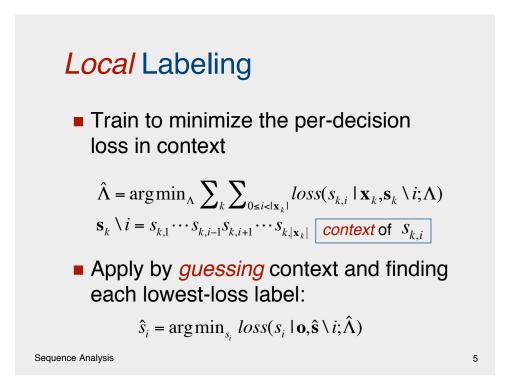
- Language
  - Syntactic structure
  - Sense tagging
  - Information extraction
- Biological sequences
  - Genes, regulatory regions
  - Secondary structure (folding)

Sequence Analysis









6

### **Global** Labeling

Minimize training labeling loss

$$\hat{\Lambda} = \arg\min_{\Lambda} \sum_{k} Loss(\mathbf{x}_{k}, \mathbf{s}_{k} \mid \Lambda)$$

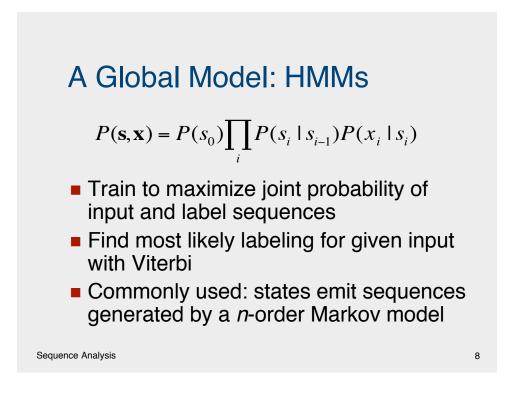
Computing the best labeling:

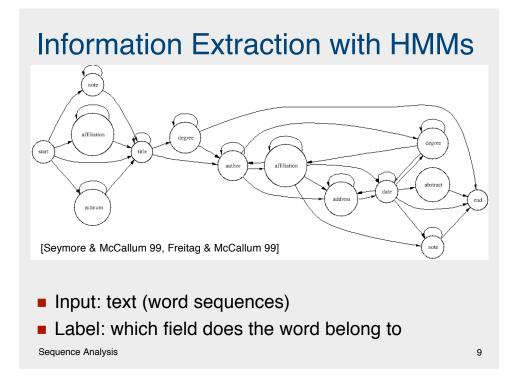
$$\hat{\mathbf{s}} = \arg\min_{\mathbf{s}} Loss(\mathbf{x}, \mathbf{s} \mid \hat{\Lambda})$$

- Efficient minimization requires:
  - A common currency for local labeling decisions
  - Efficient algorithm to combine the decisions

Sequence Analysis







10

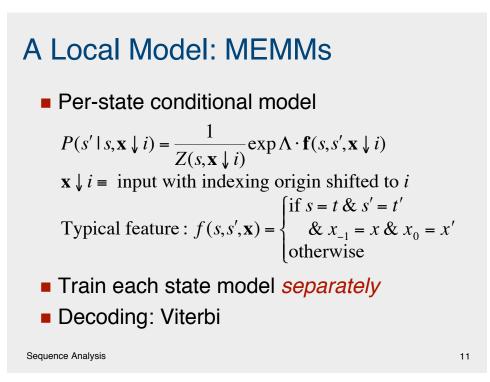
### Problems with HMMs

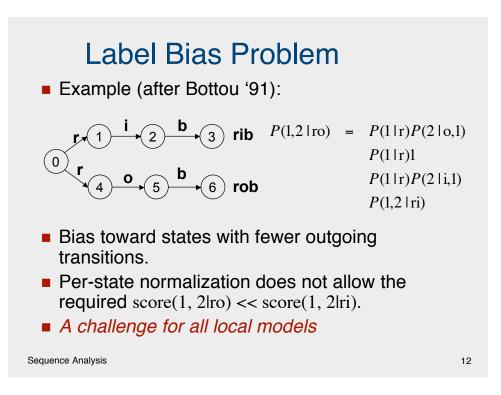
 Applications need richer input representation: multiple overlapping features, whole chunks of text

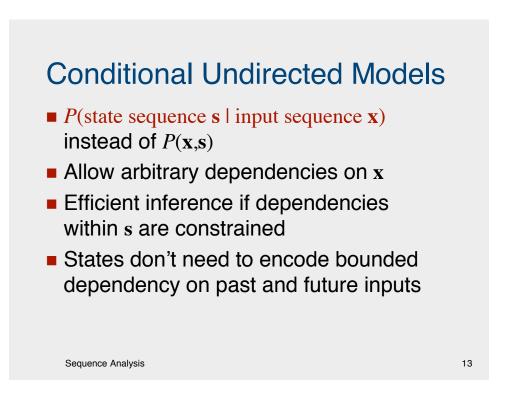
| Word features     | Context features |  |
|-------------------|------------------|--|
| word identity     | previous words   |  |
| capitalization    | next words       |  |
| ends in "-tion"   | markup           |  |
| word in word list | starts sentence  |  |

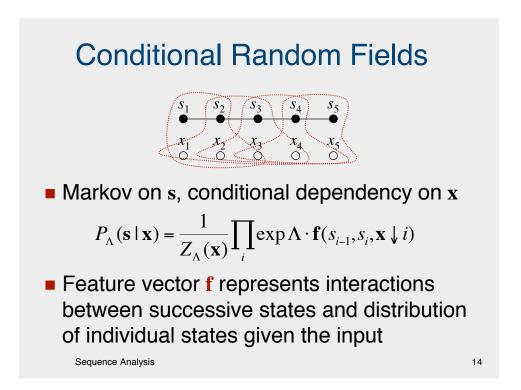
- Generative models do not handle easily overlapping, non-independent features
- Alternative: *conditional* model  $P(\mathbf{s}|\mathbf{x})$

Sequence Analysis

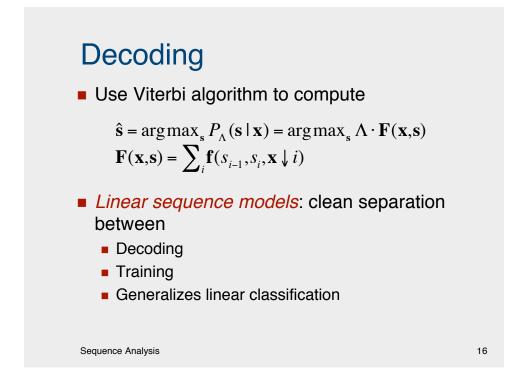








From HMMs to CRFs  $s = s_{1} \cdots s_{n} \qquad x = x_{1} \cdots x_{n}$ HMM  $P(s \mid x) = \frac{P(s_{0})}{P(x)} \prod_{i} P(s_{i} \mid s_{i-1}) P(x_{i} \mid s_{i})$ CRF  $P(s \mid x) = \frac{1}{Z(x)} \prod_{i} \exp \begin{pmatrix} \Lambda \cdot \mathbf{f}(s_{i}, s_{i-1}) \\ + \\ \Omega \cdot \mathbf{g}(s_{i}, x_{i}) \end{pmatrix}$ 



### **Efficient Estimation**

Matrix notation

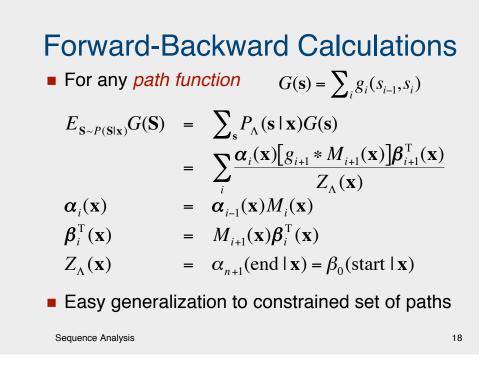
$$M_{i}(s,s' | \mathbf{x}) = \exp \Lambda \cdot \mathbf{f}(s,s',\mathbf{x} \downarrow i)$$
  

$$P_{\Lambda}(\mathbf{s} | \mathbf{x}) = \frac{1}{Z_{\Lambda}(\mathbf{o})} \prod_{i} M_{i}(s_{i-1},s_{i} | \mathbf{x})$$
  

$$Z_{\Lambda}(\mathbf{x}) = (M_{1}(\mathbf{x})M_{2}(\mathbf{x})\cdots M_{n+1}(\mathbf{x}))_{\text{start,stop}}$$

## Efficient normalization: *forward-backward* algorithm

Sequence Analysis



### Training

- Maximize  $L(\Lambda) = \sum_{k} \log P_{\Lambda}(\mathbf{s}_{k} | \mathbf{x}_{k})$ Log-likelihood *gradient*

$$\nabla L(\Lambda) = \sum_{k} \left( \mathbf{F}(\mathbf{x}_{k}, \mathbf{s}_{k}) - E_{\mathbf{S} \sim P_{\Lambda}(\mathbf{S}|\mathbf{x}_{k})} \mathbf{F}(\mathbf{x}_{k}, \mathbf{S}) \right)$$

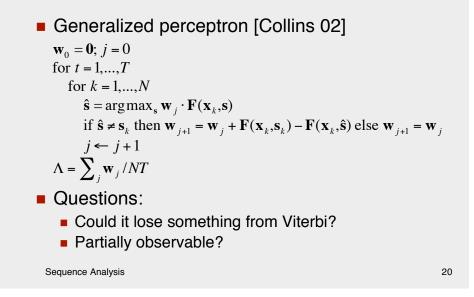
 Methods: iterative scaling, conjugate gradient, L-BFGS

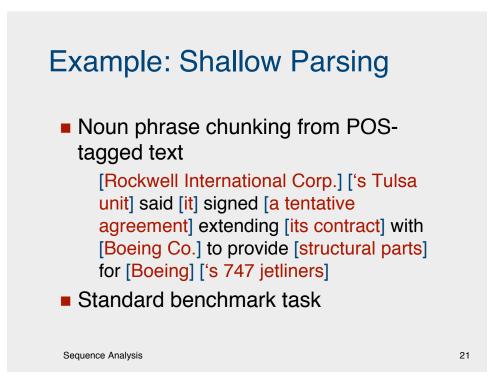
Partially-observable case (labeled states)

$$P_{\Lambda}(\mathbf{y} \mid \mathbf{x}) = \sum_{\mathbf{s}:\ell(\mathbf{s})=\mathbf{y}} P_{\Lambda}(\mathbf{s} \mid \mathbf{x})$$

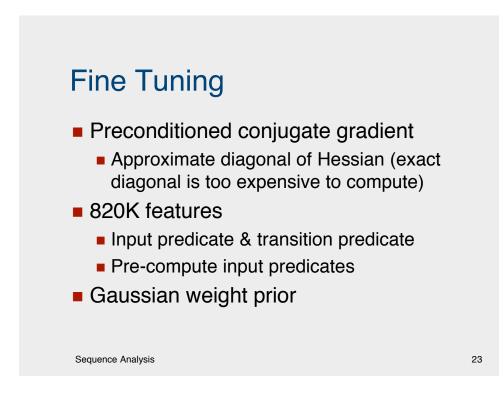
$$\nabla L(\Lambda) = \sum_{k} \begin{pmatrix} E_{\mathbf{S}\sim P_{\Lambda}(\mathbf{S}\mid\mathbf{x}_{k},\ell(\mathbf{S})=\mathbf{y}_{k}) \mathbf{F}(\mathbf{x}_{k},\mathbf{S}) \\ -E_{\mathbf{S}\sim P_{\Lambda}(\mathbf{S}\mid\mathbf{x}_{k})} \mathbf{F}(\mathbf{x}_{k},\mathbf{S}) \end{pmatrix}$$
Sequence Analysis

### **Alternative Training Method**





| NP Chunking Results                                 |        |                       |
|-----------------------------------------------------|--------|-----------------------|
| Model                                               | F      |                       |
| 24 SVM combination<br>[Kudo & Matsumoto 01]         | 94.22% |                       |
| CRF [Sha & Pereira 03]                              | 94.20% |                       |
| Voted perceptron<br>[Collins 02; Sha & Pereira 03]  | 94.09% | $F = \frac{2PR}{P+R}$ |
| <i>Winnow</i><br>[Zhang, Damerau & Johnson 02]      | 93.89% |                       |
| MEMM [Sha & Pereira 03]                             | 93.70% |                       |
| <ul> <li>Warning: different feature sets</li> </ul> |        |                       |
| Sequence Analysis                                   |        | 22                    |



### **Further Questions**

- Limited by dimensionality (number of features): kernels?
- Generalization bounds
- Parsing
  - Trees instead of chains
  - Inside-outside replaces forward-backward
  - Computationally challenging: large label set
- General graphs using loopy BP
  - Suggestive results for *collective classification* [Taskar & al 02]

Sequence Analysis