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Goal

• Develop a simple, practical non-parametric
density estimator for linear shape change.



Miller and Chefd’hotel

Previous Work

• Probabilities on non-Euclidean group structures:
– Grenander (‘63)

• Parameter estimation on groups:
– Grenander, M. Miller, and Srivastava (‘98)

• Theoretical results (convergence) for non-
parametric density estimators on groups:
– Hendriks (’90)

• Diffeomorphisms:
– Grenander, Younes, M. Miller, Mumford, others
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Outline

• Latent image-transform factorized image models.
– Focus on transform density.

• Justification of matrix group structure for
transformations.

• A natural inheritance structure:
– The group difference.
– An equivariant distance metric.
– An equivariant kernel function.
– An equivariant density estimator.

• Experiments:
– Comparison of Euclidean transform density to

equivariant estimator.
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Latent Image-Transform Modeling

• Grenander

• Vetter, Jones, Poggio (’97)

• Jojic and Frey (‘99)

• E. Miller, Matsakis, Viola (‘00)
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A Generative
Image Model

• A factored model:

Prob(Observed Image) =
     Prob(Latent Image) *Prob(Transform)
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An Image Decomposition
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Estimating a Factored
Image Model

• Step 1
– Estimate latent images and linear transforms

from observed images.

• Step 2
– Build densities on sets of latent images and

transforms.
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Before After

Congealing: Automatic Factorization

Observed
Images

Latent image estimates

Transform estimates

See Miller et al, CVPR 2000 for details.
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A Set of Transforms
From Congealing

Why not just treat them as 4-vectors?
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Desired Invariance

• The difference between A and B should be
invariant to the choice of model:

S
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Equivariance of Group
Difference
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General Linear Group

• GL(2): 2x2 non-singular matrices with 
matrix multiplication as group operator.

• GL+(2): 2x2 matrices with positive 
determinant.

• Equivariant difference is
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An Equivariant Distance

• Matrix logarithm: inverse of
Not necessarily unique.

• Generalization of geodesic distance on
SO(N).
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An Equivariant Kernel

• Generalization of log-normal density to multiple
dimensions.
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A Subtlety
• Kernel function is equivariant, but is integral

of kernel function? Not necessarily!

– Must use group invariant measure for integration:
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An Equivariant Estimator
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Choosing the Bandwidth

• Bandwidth parameter is not equal to
variance.

• To maximize likelihood, must compute
normalization constant.
– Use Monte Carlo methods.

• Slow, but doable.
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Experiments

• Likelihood of held-out points
– Cross-validated mean log-likelihood based on 100

examples:   1.7 vs. 0.2.

• One example classifier
– 89.3% vs. 88.2%

• Transform-only classifier:
– Align a test digit to each model:

– Classify based only on transform.

– 9-6 example.
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Transform-only classifier
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Summary

• A simple density estimator based on the
group difference.

• Easy to implement.

• Improves performance over naïve Gaussian
kernel estimate.
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Equivariance of Euclidean Kernel


