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Exponential Families
Maximum likelihood and Fisher information
Priors (conjugate and normal)

Conditioning and Feature Spaces
Conditional distributions and inner products
Clifford Hammersley Decomposition

Applications
Classification and novelty detection
Regression

Applications
Conditional random fields
Intractable models and semidefinite approximations
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Novelty Detection
Density estimation
Thresholding and likelihood ratio

Classification
Log partition function
Optimization problem
Examples
Clustering and transduction

Regression
Conditional normal distribution
Estimating the covariance
Heteroscedastic estimators



Density Estimation
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Maximum a Posteriori

minimize
θ

m∑
i=1

g(θ)− 〈φ(xi), θ〉 +
1

2σ2
‖θ‖2

Advantages
Convex optimization problem
Concentration of measure

Problems
Normalization g(θ) may be painful to compute
For density estimation we need no normalized p(x|θ)
No need to perform particularly well in high density
regions



Novelty Detection
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Novelty Detection
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Optimization Problem

MAP
m∑

i=1

− log p(xi|θ) +
1

2σ2
‖θ‖2

Novelty
m∑

i=1

max

(
− log

p(xi|θ)

exp(ρ− g(θ))
, 0

)
+

1

2
‖θ‖2

m∑
i=1

max(ρ− 〈φ(xi), θ〉, 0) +
1

2
‖θ‖2

Advantages
No normalization g(θ) needed
No need to perform particularly well in high density
regions (estimator focuses on low-density regions)
Quadratic program



Geometric Interpretation
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Idea
Find hyperplane that has maximum distance from ori-
gin , yet is still closer to the origin than the observations.

Hard Margin

minimize
1

2
‖θ‖2

subject to 〈θ, xi〉 ≥ 1

Soft Margin

minimize
1

2
‖θ‖2 + C

m∑
i=1

ξi

subject to 〈θ, xi〉 ≥ 1− ξi

ξi ≥ 0



Dual Optimization Problem
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Primal Problem

minimize
1

2
‖θ‖2 + C

m∑
i=1

ξi

subject to 〈θ, xi〉 − 1 + ξi ≥ 0 and ξi ≥ 0

Lagrange Function
We construct a Lagrange Function L by subtracting the
constraints, multiplied by Lagrange multipliers (αi and
ηi), from the Primal Objective Function .
L has a saddlepoint at the optimal solution.

L =
1

2
‖θ‖2 + C

m∑
i=1

ξi −
m∑

i=1

αi (〈θ, xi〉 − 1 + ξi)−
m∑

i=1

ηiξi

where αi, ηi ≥ 0. For instance, if ξi < 0 we could increase
L without bound via ηi.



Dual Problem, Part II
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Optimality Conditions

∂θL = θ −
m∑

i=1

αixi = 0 =⇒ θ =

m∑
i=1

αixi

∂ξiL = C − αi − ηi = 0 =⇒ αi ∈ [0, C]

Now we substitute the two optimality conditions back
into L and eliminate the primal variables .

Dual Problem

minimize
1

2

m∑
i=1

αiαj〈xi, xj〉 −
m∑

i=1

αi

subject to αi ∈ [0, C]

Convexity ensures uniqueness of the optimum.



The ν-Trick
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Problem
Depending on how we choose C, the number of points
selected as lying on the “wrong” side of the hyperplane
H := {x|〈θ, x〉 = 1} will vary.

We would like to specify a certain fraction ν before-
hand.
We want to make the setting more adaptive to the
data.

Solution
Use adaptive hyperplane that separates data from the
origin, i.e. find

H := {x|〈θ, x〉 = ρ},
where the threshold ρ is adaptive .



The ν-Trick
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Primal Problem

minimize
1

2
‖θ‖2 +

m∑
i=1

ξi −mνρ

subject to 〈θ, xi〉 − ρ + ξi ≥ 0 and ξi ≥ 0

Dual Problem

minimize
1

2

m∑
i=1

αiαj〈xi, xj〉

subject to αi ∈ [0, 1] and
m∑

i=1

αi = νm.

Difference to before
The

∑
i αi term vanishes from the objective function but

we get one more constraint, namely
∑

i αi = νm.



The ν-Property

Alexander J. Smola: Exponential Families and Kernels, Page 12

Optimization Problem

minimize
1

2
‖θ‖2 +

m∑
i=1

ξi −mνρ

subject to 〈θ, xi〉 − ρ + ξi ≥ 0 and ξi ≥ 0

Theorem
At most a fraction of ν points will lie on the “wrong”
side of the margin, i.e., yif (xi) < 1.
At most a fraction of 1 − ν points will lie on the “right”
side of the margin, i.e., yif (xi) > 1.
In the limit, those fractions will become exact.

Proof Idea
At optimum, shift ρ slightly: only the active constraints
will have an influence on the objective function.



Classification

Alexander J. Smola: Exponential Families and Kernels, Page 13

Maximum a Posteriori Estimation

− log p(θ|X, Y ) =

m∑
i=1

−〈φ(xi, yi), θ〉 + g(θ|xi) +
1

2σ2
‖θ‖2 + c

Domain
Finite set of observations Y = {1, . . . ,m}
Log-partition function g(θ|x) easy to compute.
Optional centering

φ(x, y) → φ(x, y) + c

leaves p(y|x, θ) unchanged (offsets both terms).
Gaussian Process Connection

Inner product t(x, y) = 〈φ(x, y), θ〉 is drawn from Gaus-
sian process, so same setting as in literature.



Classification
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Sufficient Statistic
We pick φ(x, y) = φ(x)⊗ ey, that is

k((x, y), (x′, y′)) = k(x, x′)δyy′ where y, y′ ∈ {1, . . . , n}
Kernel Expansion

By the representer theorem we get that

θ =

m∑
i=1

∑
y

αiyφ(xi, y)

Optimization Problem
Big mess . . . but convex.
Solve by Newton or Block-Jacobi method.



A Toy Example
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Noisy Data
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SVM Connection
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Problems with GP Classification
Optimize even where classification is good
Only sign of classification needed
Only “strongest” wrong class matters
Want to classify with a margin

Optimization Problem

MAP
m∑

i=1

− log p(yi|xi, θ) +
1

2σ2
‖θ‖2

SVM
m∑

i=1

max

(
ρ− log

p(yi|xi, θ)

maxy 6=yi
p(y|xi, θ)

, 0

)
+

1

2
‖θ‖2

m∑
i=1

max(ρ− 〈φ(xi, yi), θ〉 + max
y 6=yi

〈φ(xi, y), θ〉, 0) +
1

2
‖θ‖2



Binary Classification
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Sufficient Statistics
Offset in φ(x, y) can be arbitrary
Pick such that φ(x, y) = yφ(x)where y ∈ {±1}.
Kernel matrix becomes

Kij = k((xi, yi), (xj, yj)) = yiyjk(xi, xj)

Optimization Problem
The max over other classes becomes

max
y 6=yi

〈φ(xi, y), θ〉 = −y〈φ(xi), θ〉

Overall problem
m∑

i=1

max(ρ− 2yi〈φ(xi), θ〉, 0) +
1

2
‖θ‖2



Geometrical Interpretation
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Minimize
1

2
‖θ‖2 subject to yi(〈θ, xi〉 + b) ≥ 1 for all i.



Optimization Problem
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Linear Function
f (x) = 〈θ, x〉 + b

Mathematical Programming Setting
If we require error-free classification with a margin, i.e.,
yf (x) ≥ 1, we obtain:

minimize
1

2
‖θ‖2

subject to yi(〈θ, xi〉 + b)− 1 ≥ 0 for all 1 ≤ i ≤ m

Result
The dual of the optimization problem is a simple
quadratic program (more later ...).

Connection back to conditional probabilities
Offset b takes care of bias towards one of the classes.



Regression
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Maximum a Posteriori Estimation

− log p(θ|X, Y ) =

m∑
i=1

−〈φ(xi, yi), θ〉 + g(θ|xi) +
1

2σ2
‖θ‖2 + c

Domain
Continuous domain of observations Y = R
Log-partition function g(θ|x) easy to compute in
closed form as normal distribution.

Gaussian Process Connection
Inner product t(x, y) = 〈φ(x, y), θ is drawn from Gaussian
process. In particular also rescaled mean and covari-
ance.



Regression
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Sufficient Statistic (Standard Model)
We pick φ(x, y) = (yφ(x), y2), that is

k((x, y), (x′, y′)) = k(x, x′)yy′ + y2y′
2 where y, y′ ∈ R

Traditionally the variance is fixed, that is θ2 = const..
Sufficient Statistic (Fancy Model)

We pick φ(x, y) = (yφ1(x), y2φ2(x)), that is

k((x, y), (x′, y′)) = k1(x, x′)yy′+k2(x, x′)y2y′
2 where y, y′ ∈ R

We estimate mean and variance simultaneously .
Kernel Expansion

By the representer theorem (and more algebra) we get

θ =

(
m∑

i=1

αi1φ1(xi),

m∑
i=1

αi2φ2(xi)

)



Training Data
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Mean ~k>(x)(K + σ21)−1y
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Variance k(x, x) + σ2 − ~k>(x)(K + σ21)−1~k(x)
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Putting everything together . . .
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Another Example
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Adaptive Variance Method
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Optimization Problem:

minimize
m∑

i=1

−1
4

 m∑
j=1

α1jk1(xi, xj)

>  m∑
j=1

α2jk2(xi, xj)

−1  m∑
j=1

α1jk1(xi, xj)


−1

2
log det−2

 m∑
j=1

α2jk2(xi, xj)

− m∑
j=1

[
y>i α1jk1(xi, xj) + (y>j α2jyj)k2(xi, xj)

]
+

1
2σ2

∑
i,j

α>1iα1jk1(xi, xj) + tr
[
α2iα

>
2j

]
k2(xi, xj).

subject to 0 �
m∑

i=1

α2ik(xi, xj)

Properties of the problem:
The problem is convex
The log-determinant from the normalization of the
Gaussian acts as a barrrier function .
We get a semidefinite program.



Heteroscedastic Regression
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Natural Parameters
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Novelty Detection
Density estimation
Thresholding and likelihood ratio

Classification
Log partition function
Optimization problem
Examples
Clustering and transduction

Regression
Conditional normal distribution
Estimating the covariance
Heteroscedastic estimators
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