Exponential Families and Kernels Lecture 3

Alexander J. Smola Alex.Smola@nicta.com.au

Machine Learning Program National ICT Australia RSISE, The Australian National University

Outline

Exponential Families

- Maximum likelihood and Fisher information
- Priors (conjugate and normal)

Conditioning and Feature Spaces

- Conditional distributions and inner products
- Clifford Hammersley Decomposition

Applications

- Classification and novelty detection
- Regression

Applications

- Conditional random fields
- Intractable models and semidefinite approximations

Lecture 3

Novelty Detection

- Density estimation
- Thresholding and likelihood ratio

Classification

- Log partition function
- Optimization problem
- Examples
- Clustering and transduction

Regression

- Conditional normal distribution
- Estimating the covariance
- Heteroscedastic estimators

Density Estimation

Maximum a Posteriori

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{m} g(\theta) - \langle \phi(x_i), \theta \rangle + \frac{1}{2\sigma^2} \|\theta\|^2$$

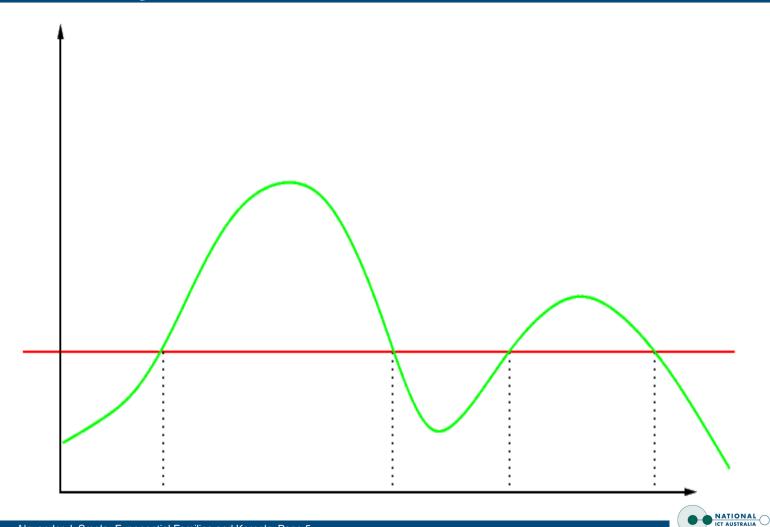
Advantages

- Convex optimization problem
- Concentration of measure

Problems

- Solution $g(\theta)$ may be painful to compute
- For density estimation we need no normalized $p(x|\theta)$
- No need to perform particularly well in high density regions

Novelty Detection



Novelty Detection

Optimization Problem

$$\begin{aligned} \mathsf{MAP} \quad & \sum_{i=1}^{m} -\log p(x_i|\theta) + \frac{1}{2\sigma^2} \|\theta\|^2 \\ \mathsf{Novelty} \quad & \sum_{i=1}^{m} \max\left(-\log \frac{p(x_i|\theta)}{\exp(\rho - g(\theta))}, 0\right) + \frac{1}{2} \|\theta\|^2 \\ & \sum_{i=1}^{m} \max(\rho - \langle \phi(x_i), \theta \rangle, 0) + \frac{1}{2} \|\theta\|^2 \end{aligned}$$

Advantages

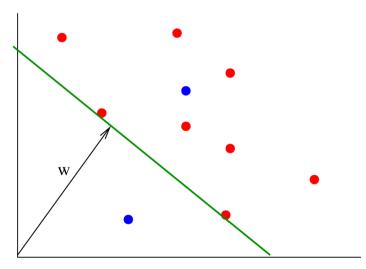
- No normalization $g(\theta)$ needed
- No need to perform particularly well in high density regions (estimator focuses on low-density regions)
- Quadratic program

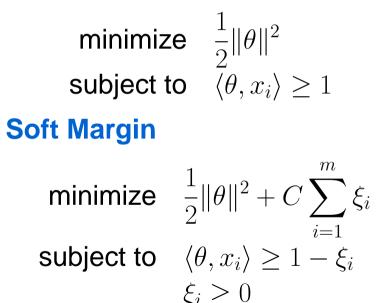
Geometric Interpretation

Idea

Find hyperplane that has **maximum distance from origin**, yet is still closer to the origin than the observations.

Hard Margin





Dual Optimization Problem

Primal Problem

minimize $\frac{1}{2} \|\theta\|^2 + C \sum_{i=1}^m \xi_i$ subject to $\langle \theta, x_i \rangle - 1 + \xi_i \ge 0$ and $\xi_i \ge 0$

Lagrange Function

We construct a Lagrange Function *L* by subtracting the constraints, multiplied by Lagrange multipliers (α_i and η_i), from the Primal Objective Function. *L* has a saddlepoint at the optimal solution.

$$L = \frac{1}{2} \|\theta\|^2 + C \sum_{i=1}^m \xi_i - \sum_{i=1}^m \alpha_i \left(\langle \theta, x_i \rangle - 1 + \xi_i\right) - \sum_{i=1}^m \eta_i \xi_i$$

where $\alpha_i, \eta_i \ge 0$. For instance, if $\xi_i < 0$ we could increase L without bound via η_i .

Dual Problem, Part II

Optimality Conditions

$$\partial_{\theta}L = \theta - \sum_{i=1}^{m} \alpha_i x_i = 0 \implies \theta = \sum_{i=1}^{m} \alpha_i x_i$$
$$\partial_{\xi_i}L = C - \alpha_i - \eta_i = 0 \implies \alpha_i \in [0, C]$$

Now we **substitute** the two optimality conditions **back into** *L* and eliminate the **primal variables**. **Dual Problem**

minimize
$$\frac{1}{2} \sum_{i=1}^{m} \alpha_i \alpha_j \langle x_i, x_j \rangle - \sum_{i=1}^{m} \alpha_i$$

subject to $\alpha_i \in [0, C]$

Convexity ensures uniqueness of the optimum.

The *v***-Trick**

Problem

Depending on how we choose C, the number of points selected as lying on the "wrong" side of the hyperplane $H := \{x | \langle \theta, x \rangle = 1\}$ will vary.

- Solution We would like to specify a certain fraction ν beforehand.
- We want to make the setting more adaptive to the data.

Solution

Use adaptive hyperplane that separates data from the origin, i.e. find

$$H := \{ x | \langle \theta, x \rangle = \rho \},\$$

where the threshold ρ is **adaptive**.

The ν -Trick

Primal Problem

minimize
$$\frac{1}{2} \|\theta\|^2 + \sum_{i=1}^m \xi_i - m\nu\rho$$

subject to $\langle \theta, x_i \rangle - \rho + \xi_i \ge 0$ and $\xi_i \ge 0$

Dual Problem

minimize
$$\frac{1}{2} \sum_{i=1}^{m} \alpha_i \alpha_j \langle x_i, x_j \rangle$$

subject to $\alpha_i \in [0, 1]$ and $\sum_{i=1}^{m} \alpha_i = \nu m$.

Difference to before

The $\sum_{i} \alpha_{i}$ term vanishes from the objective function but we get one more constraint, namely $\sum_{i} \alpha_{i} = \nu m$.

The *v***-Property**

Optimization Problem

$$\begin{array}{ll} \text{minimize} & \frac{1}{2} \|\theta\|^2 + \sum_{i=1}^m \xi_i - m\nu\rho \\ \text{subject to} & \langle \theta, x_i \rangle - \rho + \xi_i \ge 0 \text{ and } \xi_i \ge 0 \end{array}$$

Theorem

- At most a fraction of ν points will lie on the "wrong"
 side of the margin, i.e., $y_i f(x_i) < 1$.
- At most a fraction of 1 − ν points will lie on the "right" side of the margin, i.e., $y_i f(x_i) > 1$.
- In the limit, those fractions will become exact.

Proof Idea

At optimum, shift ρ slightly: only the active constraints will have an influence on the objective function.

Classification

Maximum a Posteriori Estimation

$$-\log p(\theta|X,Y) = \sum_{i=1}^{m} -\langle \phi(x_i,y_i),\theta \rangle + g(\theta|x_i) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$

Domain

- Finite set of observations $\mathcal{Y} = \{1, ..., m\}$
- **D** Log-partition function $g(\theta|x)$ easy to compute.
- Optional centering

$$\phi(x,y) \to \phi(x,y) + c$$

leaves $p(y|x, \theta)$ unchanged (offsets both terms).

Gaussian Process Connection

Inner product $t(x,y) = \langle \phi(x,y), \theta \rangle$ is drawn from Gaussian process, so same setting as in literature.

Classification

Sufficient Statistic

We pick $\phi(x,y) = \phi(x) \otimes e_y$, that is

 $k((x,y),(x',y'))=k(x,x')\delta_{yy'}$ where $y,y'\in\{1,\ldots,n\}$

Kernel Expansion

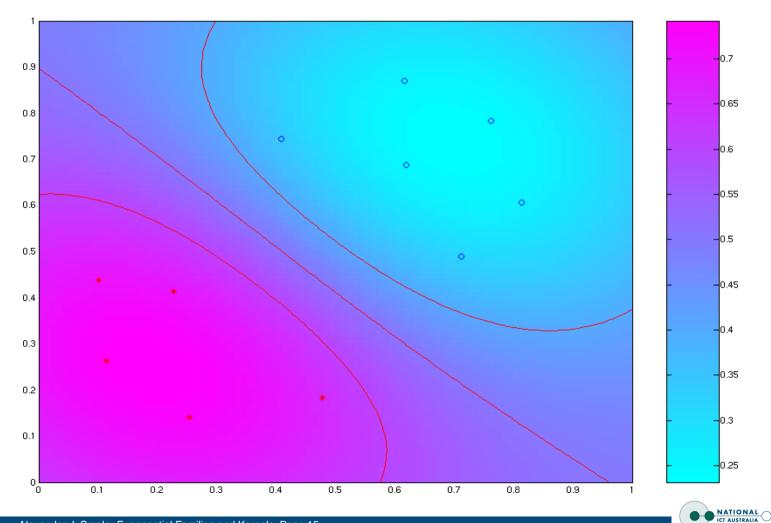
By the representer theorem we get that

$$\theta = \sum_{i=1}^{m} \sum_{y} \alpha_{iy} \phi(x_i, y)$$

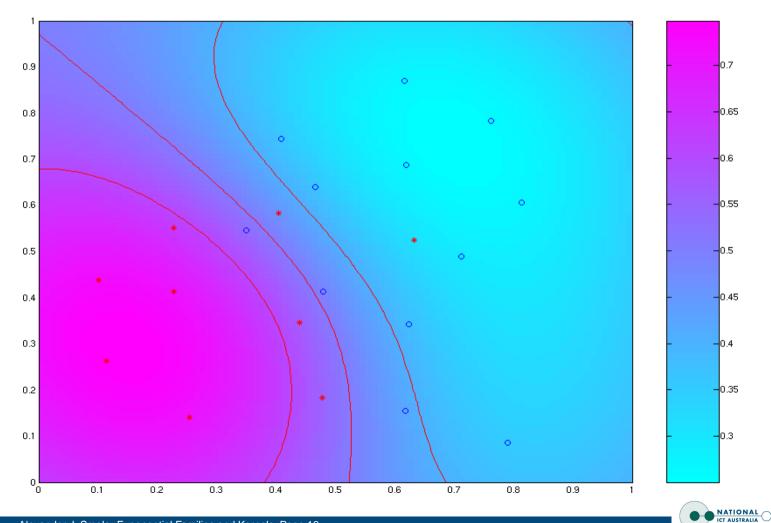
Optimization Problem

- Big mess . . . but convex.
- Solve by Newton or Block-Jacobi method.

A Toy Example



Noisy Data



SVM Connection

Problems with GP Classification

- Optimize even where classification is good
- Only sign of classification needed
- Only "strongest" wrong class matters
- Want to classify with a margin

Optimization Problem

$$\begin{aligned} \mathsf{MAP} \quad & \sum_{i=1}^{m} -\log p(y_i | x_i, \theta) + \frac{1}{2\sigma^2} \|\theta\|^2 \\ \mathsf{SVM} \quad & \sum_{i=1}^{m} \max\left(\rho - \log \frac{p(y_i | x_i, \theta)}{\max_{y \neq y_i} p(y | x_i, \theta)}, 0\right) + \frac{1}{2} \|\theta\|^2 \\ & \sum_{i=1}^{m} \max(\rho - \langle \phi(x_i, y_i), \theta \rangle + \max_{y \neq y_i} \langle \phi(x_i, y), \theta \rangle, 0) + \frac{1}{2} \|\theta\|^2 \end{aligned}$$

Binary Classification

Sufficient Statistics

- Offset in $\phi(x, y)$ can be arbitrary
- **●** Pick such that $\phi(x, y) = y\phi(x)$ where $y \in \{\pm 1\}$.
- Kernel matrix becomes

$$K_{ij} = k((x_i, y_i), (x_j, y_j)) = y_i y_j k(x_i, x_j)$$

Optimization Problem

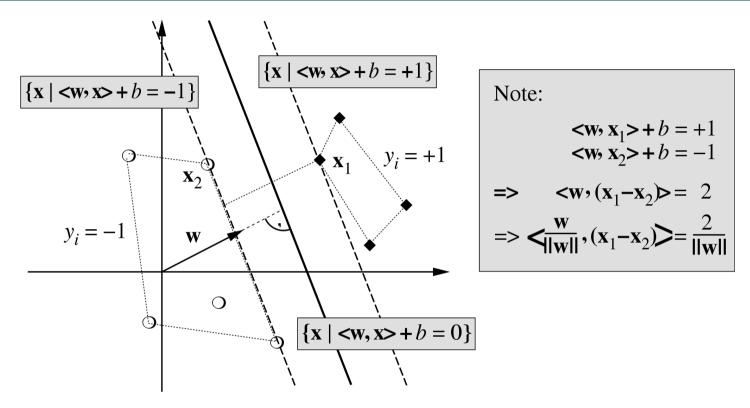
The max over other classes becomes

$$\max_{y \neq y_i} \langle \phi(x_i, y), \theta \rangle = -y \langle \phi(x_i), \theta \rangle$$

Overall problem

$$\sum_{i=1}^{m} \max(\rho - 2y_i \langle \phi(x_i), \theta \rangle, 0) + \frac{1}{2} \|\theta\|^2$$

Geometrical Interpretation



Minimize $\frac{1}{2} \|\theta\|^2$ subject to $y_i(\langle \theta, x_i \rangle + b) \ge 1$ for all *i*.

Optimization Problem

Linear Function

$$f(x) = \langle \theta, x \rangle + b$$

Mathematical Programming Setting

If we require error-free classification with a margin, i.e., $yf(x) \ge 1$, we obtain:

$$\begin{array}{ll} \text{minimize} & \frac{1}{2} \|\theta\|^2 \\ \text{subject to} & y_i(\langle \theta, x_i \rangle + b) - 1 \geq 0 \text{ for all } 1 \leq i \leq m \end{array} \\ \end{array}$$

Result

The dual of the optimization problem is a simple quadratic program (more later ...).

Connection back to conditional probabilities

Offset b takes care of bias towards one of the classes.

Regression

Maximum a Posteriori Estimation

$$-\log p(\theta|X,Y) = \sum_{i=1}^{m} -\langle \phi(x_i,y_i),\theta \rangle + g(\theta|x_i) + \frac{1}{2\sigma^2} \|\theta\|^2 + c$$

Domain

- Solution Continuous domain of observations $\mathcal{Y} = \mathbb{R}$
- Log-partition function $g(\theta|x)$ easy to compute in closed form as normal distribution.

Gaussian Process Connection

Inner product $t(x, y) = \langle \phi(x, y), \theta$ is drawn from Gaussian process. In particular also rescaled mean and covariance.

Regression

Sufficient Statistic (Standard Model) We pick $\phi(x, y) = (y\phi(x), y^2)$, that is

 $k((x,y),(x',y')) = k(x,x')yy' + y^2{y'}^2 \text{ where } y,y' \in \mathbb{R}$

Traditionally the variance is fixed, that is $\theta_2 = \text{const.}$. Sufficient Statistic (Fancy Model)

We pick $\phi(x,y) = (y\phi_1(x), y^2\phi_2(x))$, that is

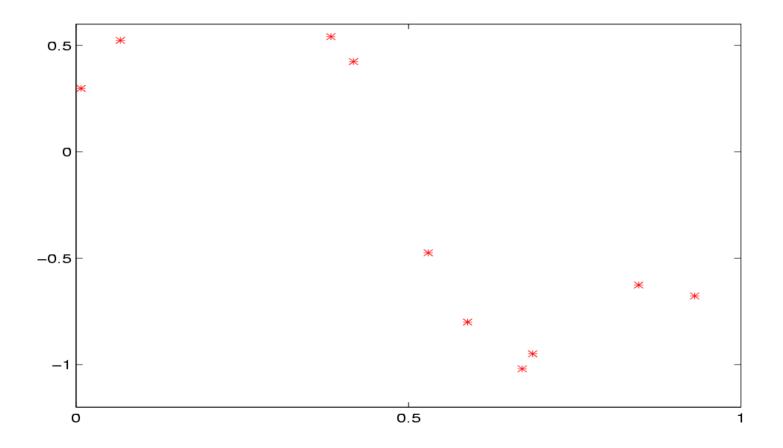
 $k((x,y),(x',y')) = k_1(x,x')yy' + k_2(x,x')y^2y'^2$ where $y,y' \in \mathbb{R}$

We estimate mean and variance **simultaneously**. **Kernel Expansion**

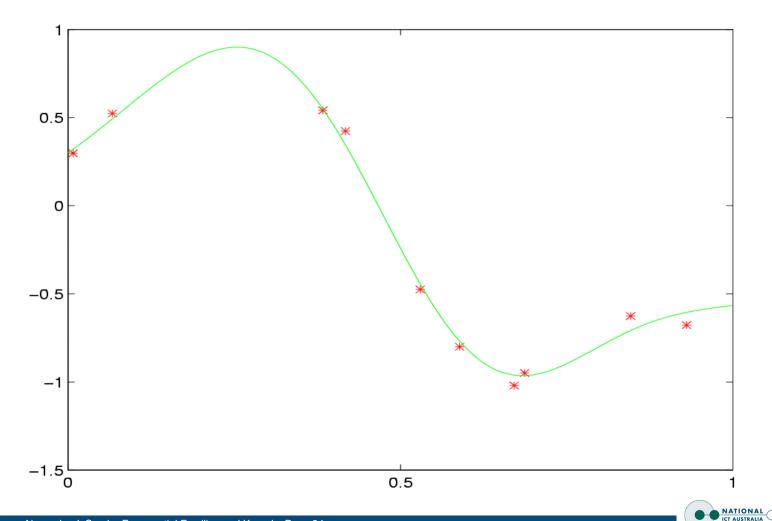
By the representer theorem (and more algebra) we get

$$\theta = \left(\sum_{i=1}^{m} \alpha_{i1}\phi_1(x_i), \sum_{i=1}^{m} \alpha_{i2}\phi_2(x_i)\right)$$

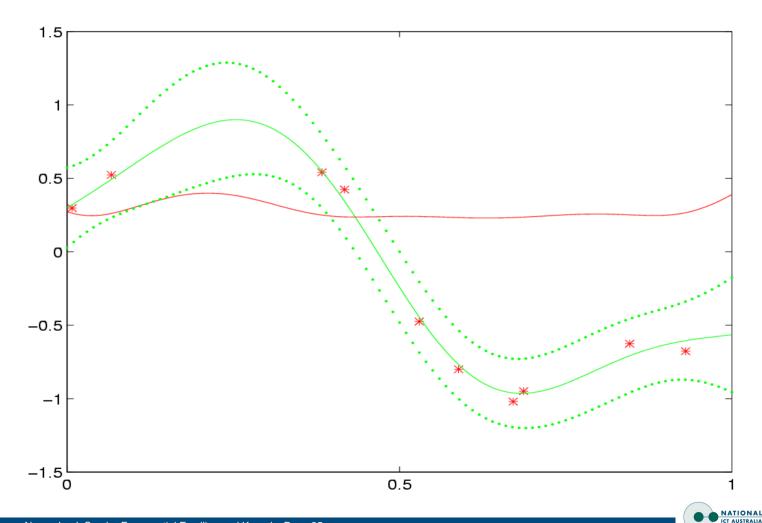
Training Data



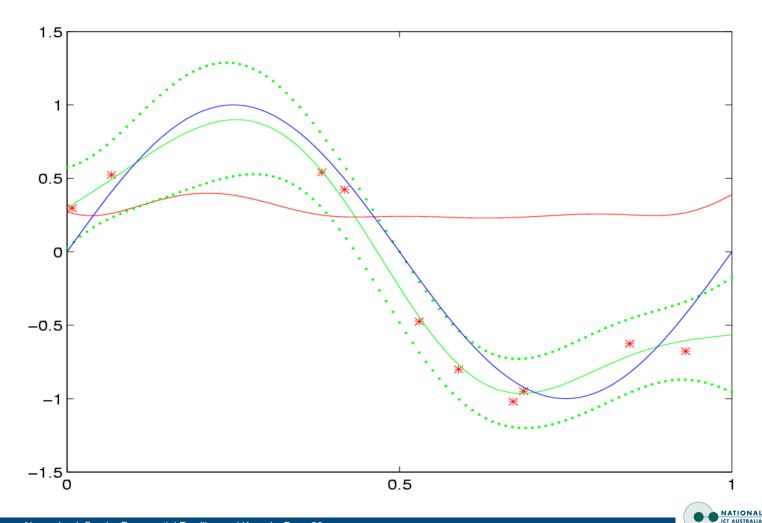
Mean $\vec{k}^{\top}(x)(K+\sigma^2\mathbf{1})^{-1}y$



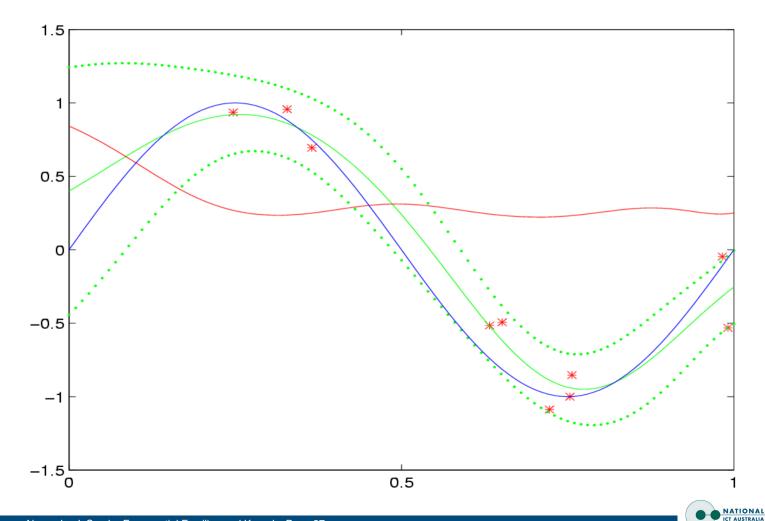
Variance $k(x,x) + \sigma^2 - \vec{k}^{\top}(x)(K + \sigma^2 \mathbf{1})^{-1}\vec{k}(x)$



Putting everything together ...



Another Example



Adaptive Variance Method

Optimization Problem:

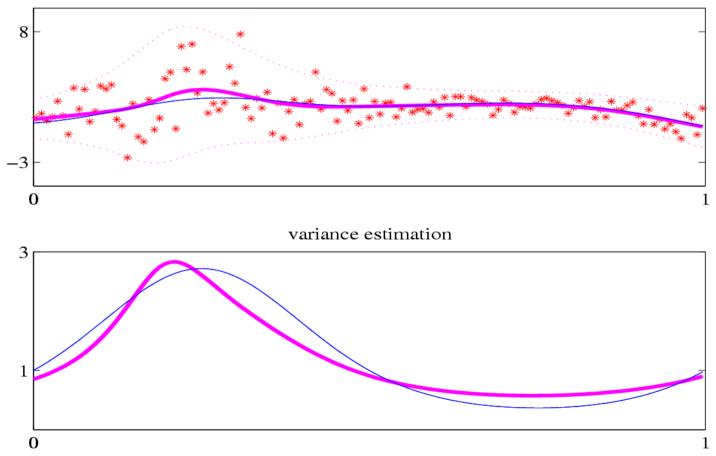
$$\begin{split} \text{minimize} \ & \sum_{i=1}^{m} \left[-\frac{1}{4} \left[\sum_{j=1}^{m} \alpha_{1j} k_1(x_i, x_j) \right]^{\top} \left[\sum_{j=1}^{m} \alpha_{2j} k_2(x_i, x_j) \right]^{-1} \left[\sum_{j=1}^{m} \alpha_{1j} k_1(x_i, x_j) \right] \right. \\ & \left. -\frac{1}{2} \log \det -2 \left[\sum_{j=1}^{m} \alpha_{2j} k_2(x_i, x_j) \right] - \sum_{j=1}^{m} \left[y_i^{\top} \alpha_{1j} k_1(x_i, x_j) + (y_j^{\top} \alpha_{2j} y_j) k_2(x_i, x_j) \right] \right] \\ & \left. + \frac{1}{2\sigma^2} \sum_{i,j} \alpha_{1i}^{\top} \alpha_{1j} k_1(x_i, x_j) + \operatorname{tr} \left[\alpha_{2i} \alpha_{2j}^{\top} \right] k_2(x_i, x_j) \right. \\ \\ & \text{subject to } 0 \succ \sum_{i=1}^{m} \alpha_{2i} k(x_i, x_j) \end{split}$$

Properties of the problem:

- The problem is convex
- The log-determinant from the normalization of the Gaussian acts as a barrrier function.
- We get a semidefinite program.

Heteroscedastic Regression

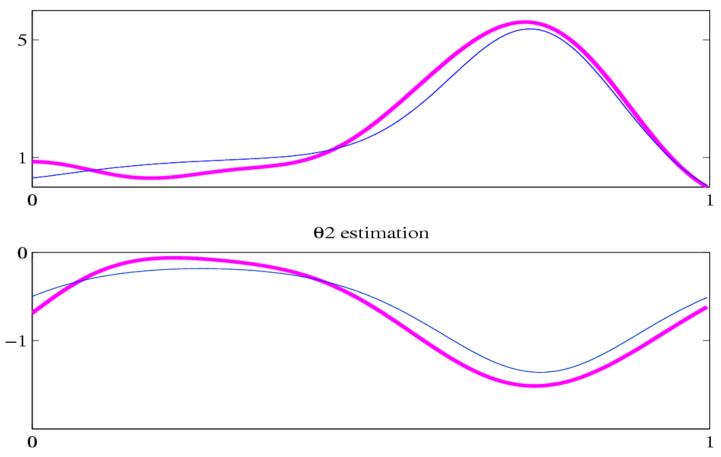
regression estimation and training data



CT AUSTRALIA

Natural Parameters

 θ 1 estimation



Alexander J. Smola: Exponential Families and Kernels, Page 30

Lecture 3

Novelty Detection

- Density estimation
- Thresholding and likelihood ratio

Classification

- Log partition function
- Optimization problem
- Examples
- Clustering and transduction

Regression

- Conditional normal distribution
- Estimating the covariance
- Heteroscedastic estimators

