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Exponential Families
$® Maximum likelihood and Fisher information
® Priors (conjugate and normal)
Conditioning and Feature Spaces
® Conditional distributions and inner products
® Clifford Hammersley Decomposition
Applications
® Classification and novelty detection
® Regression
Applications

® Conditional random fields
® Intractable models and semidefinite approximations
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Novelty Detection

® Density estimation
® Thresholding and likelihood ratio

Classification

® Log partition function

® Optimization problem

® Examples

® Clustering and transduction

Regression

® Conditional normal distribution
$® Estimating the covariance
® Heteroscedastic estimators
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Density Estimation

Maximum a Posteriori
m 1
minimize ;_1 9(0) = (é(x:),0) + 0]

Advantages

® Convex optimization problem
® Concentration of measure

Problems

® Normalization g(#) may be painful to compute

® For density estimation we need no normalized p(z|6)

® No need to perform particularly well in high density
regions
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Novelty Detection

i
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Novelty Detection

Optimization Problem

" |
MAP " —log p(i[6) + 5 16|
1=1

- p(zi|0) ) 1 2
Novelt E max | — lo O]+ =0
Y — < “explp — 9(0)) 511l

Z max(p — (¢(x;),0),0) + %HQHQ

Advantages

® No normalization ¢(¢) needed

® No need to perform particularly well in high density
regions (estimator focuses on low-density regions)

® Quadratic program
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Geometric Interpretation

ldea
Find hyperplane that has maximum distance from ori-
gin, yet is still closer to the origin than the observations.

Hard Margin
oL 1
minimize §\|9||2
subjectto (0,z;) > 1
Soft Margin

° minimize —\|9||2 + CZ&

subjectto (0,z;) > 1 — &
& >0
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Dual Optimization Problem

Primal Problem
minimize —HeH? + CZ&}

subjectto (0, x;) — 1 + 52 >0and & >0

Lagrange Function

We construct a Lagrange Function L by subtracting the
constraints, multiplied by Lagrange multipliers («; and
n;), from the Primal Objective Function .

L has a saddlepoint at the optimal solution.

L= b2+ 0O &~ as(fm) —1+6) — > mi&
=1 1=1 1=1

where «;,n; > 0. For instance, if ¢, < 0 we could increase
L without bound via 7.
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Dual Problem, Part Il

Optimality Conditions

Ol = 6 — Z%%—O:Q—ZO&Z%
(95.[,:6’—04@ =0 —= «o; € [OO]

1

Now we substitute the two optimality conditions back
iInto L and eliminate the primal variables .
Dual Problem

N 1 &
minimize 52042'0@-(:6@-,%) — ZOJ@
1=1 '
subjectto «; € [0,C]
Convexity ensures uniqueness of the optimum.
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The v-Trick

Problem
Depending on how we choose C, the number of points
selected as lying on the “wrong” side of the hyperplane
H = {x|(0,z) = 1} will vary.

® We would like to specify a certain fraction v before-
hand.

» We want to make the setting more adaptive to the
data.

Solution
Use adaptive hyperplane that separates data from the
origin, i.e. find
H = {z|(0,x) = p},

where the threshold p is adaptive .
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The v-Trick

Primal Problem
minimize —HeH? + Z@ mup
subjectto (0, x;) — p + S>0and & > 0

Dual Problem

minimize 5 Z Q; O <QZZ', SIZj>

subjectto «; € [0,1] and » ;= vm.
1=1
Difference to before
The ) . a; term vanishes from the objective function but
we get one more constraint, namely » . o; = vm.

A o

AAAAAAAAAAAA
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The v-Property

Optimization Problem
TV ST
minimize §HQH + ;_1 & — mup

subjectto (0, z;,) —p+& >0and§; >0

Theorem

® At most a fraction of v points will lie on the “wrong”
side of the margin, i.e., y; f(x;) < 1.

® At most a fraction of 1 — v points will lie on the “right”
side of the margin, i.e., y;f(x;) > 1.

® In the limit, those fractions will become exact.

Proof Idea
At optimum, shift p slightly: only the active constraints
will have an influence on the objective function.
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Classification

Maximum a Posteriori Estimation

” 1
1=1

Domain

® Finite set of observations Y = {1,...,m}
® | og-partition function g(f|x) easy to compute.
® Optional centering

d(x,y) — d(x,y) +c
leaves p(y|z, #) unchanged (offsets both terms).

Gaussian Process Connection
Inner product t(z,y) = {(¢(x,y),0) is drawn from Gaus-
sian process, so same setting as in literature.
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Classification

Sufficient Statistic
We pick ¢(z,y) = ¢(z) ® e,, that is
k((z,y), (2,y) = k(z,2")d,, where y,y" € {1,...,n}

Kernel Expansion
By the representer theorem we get that

Optimization Problem

® Big mess ... but convex.
® Solve by Newton or Block-Jacobi method.
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A Toy Example
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Noisy Data

; > NATIONAL O
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SVM Connection

Problems with GP Classification

® Optimize even where classification is good
® Only sign of classification needed

® Only “strongest” wrong class matters

® Want to classify with a margin

Optimization Problem

m 1
MAP Z — log p(yi|xs, 0) + 272H9||2
1= 1

p(yizi, 0) Lo
VM — 1 —116
S E max( 0g ‘ ,O) + 2|| |

MaXy Ly, p(y|x27 ‘9)

1
Zmax a:'z,yz-),6’> +max<¢($27y)76)>70)—'_5”9“2

Y7Yi
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Binary Classification

Sufficient Statistics

® Offsetin ¢(z,y) can be arbitrary
® Pick such that ¢(z,y) = yo(xz)where y € {£1}.
® Kernel matrix becomes

Kij = k((zi, i), (x5, y5)) = viyik(xi, x;)
Optimization Problem
® The max over other classes becomes

max(p(z;, y), 0) = —y(¢(i),0)

Y#Yi
® Overall problem

> maxtp = 20602, 010+ 5161
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Geometrical Interpretation

\
A\\

{x|<wsx>+b=-1}

Note:

<W X;>+b = +1
Qe ex. Y, <W X,>+b = -1

=> <Ws (X=X, >= 2

W ~_ 2
=> <jiwii* K1=%22= i

Alexander J. Smola: Exponential Families and Kernels, Page 19



Optimization Problem

Linear Function
flz)=(0,2) +b

Mathematical Programming Setting
If we require error-free classification with a margin, i.e.,
yf(x) > 1, we obtain:

L 1
minimize §||9||2
subjectto y;((f,x;) +b)—1>0foralll1 <i<m

Result
The dual of the optimization problem is a simple
guadratic program (more later ...).

Connection back to conditional probabilities
Offset b takes care of bias towards one of the classes.
@B 1iriona
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Regression

Maximum a Posteriori Estimation

- 1
1=1

Domain

® Continuous domain of observations Y = R
® |og-partition function g¢(f|x) easy to compute in
closed form as normal distribution.

Gaussian Process Connection
Inner product ¢t(x,y) = (¢(x,y), 0 is drawn from Gaussian
process. In particular also rescaled mean and covari-
ance.
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Regression

Sufficient Statistic (Standard Model)
We pick ¢(z,y) = (y¢(r),y%), that is
k((x,y), (') = k(z, 2 )yy' + y*y” where y,5/ € R

Traditionally the variance is fixed, that is 6, = const..
Sufficient Statistic (Fancy Model)

We pick ¢(z,y) = (y¢1(z), y°da(w)), that is
k((z,y), («,y)) = k(2,2 )yy'+o(z, 2')y’y” where y,y' € R

We estimate mean and variance simultaneously .
Kernel Expansion

By the representer theorem (and more algebra) we get

0 = (Z aind1(x;), Z 04i2¢2(55i)>
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Training Data

0.5 -
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Mean &' (z)(K + o21)~ Ly

0.5} %
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Variance k(z,z)+ o2 — k' (2)(K + 021) " k(z)

1.5

0.5

awes
* .

------
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- * .
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Putting everything together . ..

-------

f NATIONAL
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Another Example

0 0.5 1
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Alexander J. Smola: Exponential Families and Kernels, Page 27 \_ E €T AUSTRAUA




Adaptive Variance Method

Optimization Problem:

T
minimize Z |:i [Z Oz1jk1(mi7mj)] [Z Oézj/m(a?i,a?j)] [Z Oz1j/€1(37i,3?j)]
i=1 i=1 j=1 =1

—7logdet -2 |:Zazj]€2 T4, Xy ] Z Yi Oéljkl ZT; m])+(y;a2jyj)k2(zi,zj)]]
j=1

Jj=1

2 22041 ok (2, 25) +tr [o aQJ] (@i, x5).

subject to 0 > Z ik (x4, 25)
=1

Properties of the problem:

® The problem is convex

® The log-determinant from the normalization of the
Gaussian acts as a barrrier function

® We get a semidefinite program.

Alexander J. Smola: Exponential Families and Kernels, Page 28



Heteroscedastic Regression

regression estimation and training data

variance estimation

0 1

NATIONAL
Alexander J. Smola: Exponential Families and Kernels, Page 29 i i €T AUSTRAUA




Natural Parameters

01 estimation

02 estimation

0 1

NATIONAL
IIIIIIIIIIII

Alexander J. Smola: Exponential Families and Kernels, Page 30



Novelty Detection

® Density estimation
® Thresholding and likelihood ratio

Classification

® Log partition function

® Optimization problem

® Examples

® Clustering and transduction

Regression

® Conditional normal distribution
$® Estimating the covariance
® Heteroscedastic estimators
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