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Exponential Families
Maximum likelihood and Fisher information
Priors (conjugate and normal)

Conditioning and Feature Spaces
Conditional distributions and inner products
Clifford Hammersley Decomposition

Applications
Classification and novelty detection
Regression

Applications
Conditional random fields
Intractable models and semidefinite approximations
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Model
Log partition function
Expectations and derivatives
Maximum entropy formulation

Examples
Normal distribution
Discrete events
Laplacian distribution
Poisson distribution
Beta distribution

Estimation
Maximum Likelihood Estimator
Fisher Information Matrix and Cramer Rao Theorem
Normal Priors and Conjugate Priors



The Exponential Family
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Definition
A family of probability distributions which satisfy

p(x; θ) = exp(〈φ(x), θ〉 − g(θ))

Details
φ(x) is called the sufficient statistics of x.
X is the domain out of which x is drawn (x ∈ X).
g(θ) is the log-partition function and it ensures that the
distribution integrates out to 1.

g(θ) = log

∫
X

exp(〈φ(x), θ〉)dx



Example: Binomial Distribution
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Tossing coins
With probability p we have heads and with probability 1−
p we see tails. So we have

p(x) = px(1− p)1−x where x ∈ {0, 1} =: X

Massaging the math

p(x) = exp log p(x)

= exp (x log p + (1− x) log(1− p))

= exp
(
〈(x, 1− x)︸ ︷︷ ︸

φ(x)

, (log p, log(1− p))︸ ︷︷ ︸
θ

〉
)

The Normalization Once we relax the restriction on θ ∈ R2

we need g(θ) which yields

g(θ) = log
(
eθ1 + eθ2

)



Example: Binomial Distribution
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Example: Laplace Distribution
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Atomic decay
At any time, with probability θdx an atom will decay in
the time interval [x, x + dx] if it still exists. Consulting
your physics book tells us that this gives us the density

p(x) = θ exp(θx) where x ∈ [0,∞) =: X

Massaging the math

p(x) = exp
(
〈 −x︸︷︷︸

φ(x)

, θ〉 − − log θ︸ ︷︷ ︸
g(θ)

)



Example: Laplace Distribution
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Example: Normal Distribution
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Engineer’s favorite

p(x) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
where x ∈ R =: X

Massaging the math

p(x) = exp

(
− 1

2σ2
x2 +

µ

σ2
x− µ2

2σ2
− 1

2
log(2πσ2)

)
= exp

(
〈(x, x2)︸ ︷︷ ︸

φ(x)

, θ〉 − µ2

2σ2
+

1

2
log(2πσ2)︸ ︷︷ ︸

g(θ)

)
Finally we need to solve (µ, σ2) for θ. Tedious algebra
yields θ2 := −1

2σ
−2 and θ1 := µσ−2. We have

g(θ) = −1

4
θ2

1θ
−1
2 +

1

2
log 2π − 1

2
log−2θ2



Example: Normal Distribution
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Example: Multinomial Distribution
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Many discrete events
Assume that we have disjoint events [1..n] =: X which all
may occur with a certain probability px.

Guessing the answer
Use the map φ : x → ex, that is, ex is an element of the
canonical basis (0, . . . , 0, 1, 0, . . .). This gives

p(x) = exp(〈ex, θ〉 − g(θ))

where the normalization is

g(θ) = log

n∑
i=1

exp(θi)



Example: Multinomial Distribution
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Example: Poisson Distribution
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Limit of Binomial distribution
Probability of observing x ∈ N events which are all in-
dependent (e.g. raindrops per square meter, crimes per
day, cancer incidents)

p(x) = exp (x · θ − log Γ(x + 1)− exp(θ)) .

Hence φ(x) = x and g(θ) = eθ.
Differences

We have a normalization dependent on x alone,
namely Γ(x + 1). This leaves the rest of the theory
unchanged.
The domain is countably infinite.



Example: Poisson Distribution
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Example: Beta Distribution
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Usage
Often used as prior on Binomial distributions
(it is a conjugate prior as we will see later).

Mathematical Form

p(x) = exp(〈(log x, log(1− x)), (θ1, θ2)〉−log B(θ1+1, θ2+1))

where the domain is x ∈ [0, 1] and

g(θ) = log B(θ1 + 1, θ2 + 1)

= log Γ(θ1 + 1) + log Γ(θ2 + 1)− log Γ(θ1 + θ2 + 2)

Here B(α, β) is the Beta function.



Example: Beta Distribution
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Example: Gamma Distribution
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Usage
Popular as a prior on coefficients
Obtained from integral over waiting times in Poisson
distribution

Mathematical Form

p(x) = exp(〈(log x, x), (θ1, θ2)〉−log Γ(θ1+1)+(θ1+1) log−θ2)

where the domain is x ∈ [0,∞] and

g(θ) = log Γ(θ1 + 1) + (θ1 + 1) log−θ2)

Note that θ ∈ [0,∞)× (−∞, 0).



Example: Gamma Distribution
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Zoology of Exponential Families
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Name φ(x) Domain Measure
Binomial (x, 1− x) {0, 1} discrete
Multinomial ex {1, . . . , n} discrete
Poisson x N0 discrete
Laplace x [0,∞) Lebesgue
Normal (x, x2) R Lebesgue
Beta (log x, log(1− x)) [0, 1] Lebesgue
Gamma (log x, x) [0,∞) Lebesgue
Wishart (log |X|, X) X � 0 Lebesgue
Dirichlet log x x ∈ Rn

+, ‖x‖1 = 1 Lebesgue



Recall
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Definition
A family of probability distributions which satisfy

p(x; θ) = exp(〈φ(x), θ〉 − g(θ))

Details
φ(x) is called the sufficient statistics of x.
X is the domain out of which x is drawn (x ∈ X).
g(θ) is the log-partition function and it ensures that the
distribution integrates out to 1.

g(θ) = log

∫
X

exp(〈φ(x), θ〉)dx



Benefits: Log-partition function is nice
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g(θ) generates moments:

g(θ) = log

∫
exp(〈φ(x), θ〉)dx

Taking the derivative wrt. θ we can see that

∂θg(θ) =

∫
φ(x) exp(〈φ(x), θ〉)dx∫

exp(〈φ(x), θ〉)dx
= Ex∼p(x;θ) [φ(x)]

∂2
θg(θ) = Covx∼p(x;θ) [φ(x)]

. . . and so on for higher order moments . . .
Corollary:

g(θ) is convex



Benefits: Simple Estimation
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Likelihood of a set: Given X := {x1, . . . , xm} we get

p(X ; θ) =

m∏
i=1

p(xi; θ) = exp

(
m∑

i=1

〈φ(xi), θ〉 −mg(θ)

)
Maximum Likelihood

We want to minimize the negative log-likelihood, i.e.

minimize
θ

g(θ)−

〈
1

m

m∑
i=1

φ(xi), θ

〉

=⇒ E[φ(x)] =
1

m

m∑
i=1

φ(xi) =: µ

Solving the maximum likelihood problem is easy .



Application: Laplace distribution
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Estimate the decay constant of an atom:
We use exponential family notation where

p(x; θ) = exp(〈(−x), θ〉 − (− log θ))

Computing µ
Since φ(x) = −x all we need to do is average over all
decay times that we observe.

Solving for Maximum Likelihood
The maximum likelihood condition yields

µ = ∂θg(θ) = ∂θ(− log θ) = −1

θ

This leads to θ = −1
µ.



Benefits: Maximum Entropy Estimate
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Entropy
Basically it’s the number of bits needed to encode a ran-
dom variable. It is defined as

H(p) =

∫
−p(x) log p(x)dx where we set 0 log 0 := 0

Maximum Entropy Density
The density p(x) satisfying E[φ(x)] ≥ η with maximum
entropy is exp(〈φ(x), θ〉 − g(θ)).

Corollary
The most vague density with a given variance is the
Gaussian distribution.

Corollary
The most vague density with a given mean is the Lapla-
cian distribution.



Using it
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Observe Data
x1, . . . , xm drawn from distribution p(x|θ)

Compute Likelihood

p(X|θ) =

m∏
i=1

exp(〈φ(xi), θ〉 − g(θ))

Maximize it
Take the negative log and minimize, which leads to

∂θg(θ) =
1

m

m∑
i=1

φ(xi)

This can be solved analytically or (whenever this is im-
possible or we are lazy) by Newton’s method.



Application: Discrete Events
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Simple Data
Discrete random variables (e.g. tossing a dice).

Outcome 1 2 3 4 5 6
Counts 3 6 2 1 4 4
Probabilities 0.15 0.30 0.10 0.05 0.20 0.20

Maximum Likelihood Solution
Count the number of outcomes and use the relative fre-
quency of occurrence as estimates for the probability:

pemp(x) =
#x

m

Problems

Bad idea if we have few data.
Bad idea if we have continuous random variables.



Tossing a dice
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Fisher Information and Efficiency
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Fisher Score
Vθ(x) := ∂θ log p(x; θ)

This tells us the influence of x on estimating θ. Its ex-
pected value vanishes, since

E [∂θ log p(X ; θ)] =

∫
p(X ; θ)∂θ log p(X ; θ)dX

= ∂θ

∫
p(X ; θ)dX = 0.

Fisher Information Matrix
It is the covariance matrix of the Fisher scores, that is

I := Cov[Vθ(x)]



Cramer Rao Theorem
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Efficiency
Covariance of estimator θ̂(X) rescaled by I:

e := det Cov[θ̂(X)]Cov[∂θ log p(X ; θ)]

Theorem
The efficiency for unbiased estimators is never better
(i.e. smaller) than 1. Equality is achieved for MLEs.

Proof (scalar case only)
By Cauchy-Schwartz we have(

Eθ

[
(Vθ(X)− Eθ [Vθ(X)])

(
θ̂(X)− Eθ

[
θ̂(X)

])])2

≤Eθ

[
(Vθ(X)− Eθ [Vθ(X)])2

]
Eθ

[(
θ̂(X)− Eθ

[
θ̂(X)

])2
]

= IB.



Cramer Rao Theorem
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Proof
At the same time, Eθ [Vθ(X)] = 0 implies that

Eθ

[
(Vθ(X)− Eθ [Vθ(X)])

(
θ̂(X)− Eθ

[
θ̂(X)

])]
=Eθ

[
Vθ(X)θ̂(X)

]2
=

(∫
p(X|θ)∂θp(X|θ)θ̂(X)dX

)
=∂θ

∫
p(X|θ)θ̂(X)dX = ∂θθ = 1.

Cautionary Note
This does not imply that a biased estimator might not
have lower variance.



Fisher and Exponential Families
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Fisher Score

Vθ(x) = ∂θ log p(x; θ)

= φ(x)− ∂θg(θ)

Fisher Information

I = Cov[Vθ(x)]

= Cov[φ(x)− ∂θg(θ)]

= ∂2
θg(θ)

Efficiency of estimator can be obtained directly from log-
partition function.

Outer Product Matrix
It is given (up to an offset) by 〈φ(x), φ(x′). This leads to
Kernel-PCA . . .



Priors
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Problems with Maximum Likelihood
With not enough data, parameter estimates will be bad.

Prior to the rescue
Often we know where the solution should be. So we
encode the latter by means of a prior p(θ).

Normal Prior
Simply set p(θ) ∝ exp(− 1

2σ2‖θ‖2).
Posterior

p(θ|X) ∝ exp

(
m∑

i=1

〈φ(xi), θ〉 − g(θ)− 1

2σ2
‖θ‖2

)



Tossing a dice with priors
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Conjugate Priors
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Problem with Normal Prior
The posterior looks different from the likelihood. So
many of the Maximum Likelihood optimization algorithms
may not work ...

Idea
What if we had a prior which looked like additional data,
that is

p(θ|X) ∼ p(X|θ)

For exponential families this is easy. Simply set

p(θ|a) ∝ exp(〈θ, m0a〉 −m0g(θ))

Posterior

p(θ|X) ∝ exp

(
(m + m0)

(〈
mµ + m0a

m + m0
, θ

〉
− g(θ)

))



Example: Multinomial Distribution
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Laplace Rule
A conjugate prior with parameters (a, m0) in the multino-
mial family could be to set a = (1

n,
1
n, . . . ,

1
n). This is often

also called the Dirichlet prior . It leads to

p(x) =
#x + m0/n

m + m0
instead of p(x) =

#x

m

Example
Outcome 1 2 3 4 5 6
Counts 3 6 2 1 4 4
MLE 0.15 0.30 0.10 0.05 0.20 0.20
MAP (m0 = 6) 0.25 0.27 0.12 0.08 0.19 0.19
MAP (m0 = 100) 0.16 0.19 0.16 0.15 0.17 0.17



Optimization Problems
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Maximum Likelihood

minimize
θ

m∑
i=1

g(θ)− 〈φ(xi), θ〉 =⇒ ∂θg(θ) =
1

m

m∑
i=1

φ(xi)

Normal Prior

minimize
θ

m∑
i=1

g(θ)− 〈φ(xi), θ〉 +
1

2σ2
‖θ‖2

Conjugate Prior

minimize
θ

m∑
i=1

g(θ)− 〈φ(xi), θ〉 + m0g(θ)−m0〈µ̃, θ〉

equivalently solve ∂θg(θ) =
1

m + m0

m∑
i=1

φ(xi) +
m0

m + m0
µ̃



Summary
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Model
Log partition function
Expectations and derivatives
Maximum entropy formulation

A Zoo of Densities
Estimation

Maximum Likelihood Estimator
Fisher Information Matrix and Cramer Rao Theorem
Normal Priors and Conjugate Priors
Fisher information and log-partition function
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