
Gradient Descent

Objective Function

Some differentiable function f : Rn → R.

Gradient Descent

Start with some x0, i = 0 and learning rate λ

repeat

xi+1 = xi − λ∇f (xi)

until ‖∇f (xi+1)‖ ≤ ε

Line Search Variant

Replace xi+1 = xi − λ∇f (xi) by

xi+1 = xi − λ̂∇f (xi) where λ̂ = argmin
λ

f (xi − λ∇f (xi))

This ensures that we walk downhill. For fixed λ not even this may be the case.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 3, http://axiom.anu.edu.au/∼smola/engn4520/lecture3.pdf Page 1

Problems with Gradient Descent

Left: Gradient descent takes a long time to converge since the landscape of values of

f forms a long and narrow valley, causing the algorithm to zig-zag along the walls

of the valley.

Right: due to the homogeneous structure of the minimum the algorithm converges

after very few iterations. Note that in both cases the next direction of descent is

orthogonal to the previous one, since line search provides the optimal step length.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 3, http://axiom.anu.edu.au/∼smola/engn4520/lecture3.pdf Page 2

Stochastic Gradient Descent

Basic Idea

Sometimes the gradient is not reliable and we have only noisy estimates. Here we

perform a descent step in the direction of the approximation of the gradient. Under

many conditions this will still converge.

Trick

If we have a function f : X→ R made up of many individual terms fi : X→ R via

f (x) = 1
m

∑m
i=1 fi(x) we may randomly select one fj at a time and perform gradient

with respect to fi. This leads to

xi+1 = xi − λ∇fj(x)

Advantage

This is much cheaper to compute than ∇f , in particular, if all fi are somewhat

similar. Later, the fj will be the the performance of our estimator on individual

observations.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 3, http://axiom.anu.edu.au/∼smola/engn4520/lecture3.pdf Page 3

Distorting the Space

Idea

We focus on the special case of convex quadratic functions. How easy it is to minimize

f (x) = c>x +
1

2
x>Kx

via gradient descent depends on K. If K is diagonal, we get to the minimum in at

most m steps.

Distort the metric such that ‖ · ‖K behaves as if K was diagonal.

K-Orthogonal Directions

Given a symmetric matrix K ∈ Rm×m, any two vectors x,x′ ∈ Rm are called

K-orthogonal if 〈x,x′〉K = x>Kx′ = 0.

Minimizer

Minimum at ∇f (x) = c + Kx = 0.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 3, http://axiom.anu.edu.au/∼smola/engn4520/lecture3.pdf Page 4

Conjugate Gradient Descent

Basic Idea

In order to solve c + Kx = 0 project x onto K and use orthogonal decomposition.

Decomposition Theorem

Denote by v1, . . . ,vm a set of mutually K-orthogonal vectors for a strictly positive

definite matrix K ∈ Rm×m. Then the following properties hold:

(i) The vectors v1, . . . ,vm form a basis.

(ii) Any x ∈ Rm can be expanded in terms of vi by

x =

m∑
i=1

vi
〈vi,x〉K
〈vi,vi〉K

=

m∑
i=1

vi
v>i Kx

v>i Kvi
.

In particular, for any −c = Kx we can find x by

x = −
m∑
i=1

vi
v>i c

v>i Kvi
.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 3, http://axiom.anu.edu.au/∼smola/engn4520/lecture3.pdf Page 5

Conjugate Gradient Descent Algotihm

Generating Descent Directions

We use a Taylor expansion f (x0 + w) = f (xo) + ∇f (x)>w + 1
2w
>Kw where

K = f ′′(x). Hence w is given by ∇f (x0 + w) = ∇f (x0) + Kw = 0. Apply the

decomposition trick of the previous page to ∇f (x0).

Require: x0 and Set i = 0 and v0 = g0 = f ′(x0)

repeat

xi+1 = xi + αivi where αi = − g>i vi
v>i Kvi

(project onto descent direction vi)

gi+1 = f ′(xi+1) (get new descent direction)

vi+1 = −gi+1 + βivi where βi =
g>i+1Kvi

v>i Kvi
. (make vi+1 orthogonal to vi).

i = i + 1

until gi = 0

Output: xi
This works since gi contains the part of the gradient∇f (x0) not spanned by v0, . . . ,vi−1.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 3, http://axiom.anu.edu.au/∼smola/engn4520/lecture3.pdf Page 6

Why Computers are Different

Accumulation of Errors

• Obviously, the following series will converge to ∞: x0 = 0 and xi+1 = xi + 1.

• On a computer (in MATLAB) this series will converge to 4.5036 · 1015.

Operations smaller than machine precision are ignored! This is a problem of the

mantissa (number of digits) of the representation.

Overflow and Underflow

•We can only store numbers up to a limit, determined by the exponent of the

representation. In MATLAB this is 1.7977 · 10308 and 2.2251 · 10−308.

Rule of Thumb

• Do not mix additions and subtractions if possible. Combine all additions and all

subtractions separately first. Use a tree-based scheme.

• Balance off multiplications and divisions to avoid over- or underflow.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 3, http://axiom.anu.edu.au/∼smola/engn4520/lecture3.pdf Page 7

More Rules of Thumb

Function Calls: Invoke a function f (x)

Call by Value

Passing data to a function is only a good thing if we are talking about one or two

numbers. Otherwise avoid.

Cannot be avoided in MATLAB. It tries to be clever, though.

Call by Reference

Passing a pointer to data to a function is much cheaper. However, it costs an

indirection to look up. Use for large amounts of data.

Cannot be done in MATLAB. Best workaround (ugly) via global variables.

Divisions and Multiplications

Multiplications are cheaper. Hence, pool divisions if possible and use them once.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 3, http://axiom.anu.edu.au/∼smola/engn4520/lecture3.pdf Page 8

The Cache and Missing It

Many Levels of Memory

• Registers: very few on CPU (less than 100), extremely fast access (1ns)

• Level 1 Cache: typically around 64kB, very fast access (2ns)

• Level 2 Cache: typically around 512KB, fast access (5ns)

•Main Memory: often around 256MB, reasonably fast access (10ns)

• Hard Disk (swap space): in the order of 20GB, slow access (10ms)

Fast and Slow Index

When computing the sum
∑

i,jMij it makes a big difference whether we use
m∑
i=1

n∑
j=1

Mij or

n∑
j=1

m∑
i=1

Mij

What’s Happening

In once case, we get continuous cache misses and have to wait for the Main Mem-

ory (like a 100MHz CPU), in the other case we can use the L1/L2 cache an get

performance closer to 500MHz.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 3, http://axiom.anu.edu.au/∼smola/engn4520/lecture3.pdf Page 9

Do It NOT Yourself

Consequence

If possible, avoid coding up matrix operations yourself. Careful cache tuning needed.

Use ready-made libraries instead.

LINPACK/EISPACK

LINear PACKage: old and reliable. Not very cache optimized. MATLAB until

version 5.x runs on it.

BLAS

Basic Linear Algebra Subroutines: new standard. You can get optimized implemen-

tations from Sun, Intel, Compaq, Aberdeen and Baxter won the Gordon-Bell

prize by coding up one.

LAPACK

Linear Algebra Package: runs on top of BLAS, more sophisticated. Usually, you can

get BLAS/LAPACK in a self optimizing version, called ATLAS.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 3, http://axiom.anu.edu.au/∼smola/engn4520/lecture3.pdf Page 10

Inverting Matrices

An Innocuous Example

M = O>ΛO with some small and some reasonably large λi. Then M−1x may

change a lot depending on small changes in x.

Why Things go Wrong

Assume x corresponds to the smallest eigenvalue λmin of M . Then M−1x = λ−1
minx.

This can be huge.

Matrix Inversion in Eigensystem Notation

Denote by vi, λi the eigensystem of M . Then for x =
∑

i αivi we have

M−1x = M−1
m∑
i=1

αivi =

m∑
i=1

αi
λi

vi

Small changes in αi may translate into big changes in M−1x.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 3, http://axiom.anu.edu.au/∼smola/engn4520/lecture3.pdf Page 11

Condition of a Matrix

Definition The condition of a matrix is given by

cond(M) = ‖M‖‖M−1‖ =

∣∣∣∣λmax

λmin

∣∣∣∣
The smaller cond(M), the better behaved M is.

Regularization

Quite often we do not know x exactly in M−1x anyway. Can we find a M̃ such that

M−1 is well behaved?

Trick: add a small term of size ε on the main diagonal. This idea will come back

later . . .

Doing It Again (now the condition is
λmax + ε

λmin + ε
)

(M + ε1)−1x = (M + ε1)−1
m∑
i=1

αivi =

m∑
i=1

αi
λi + ε

vi

Small changes in αi may translate into bounded changes in (M + ε1)−1x.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 3, http://axiom.anu.edu.au/∼smola/engn4520/lecture3.pdf Page 12

Triangular Matrices

Definition

A matrix T ∈ Rm×m where Tij 6= 0 only if j ≥ i (upper triangular matrix).

T =

 T11 . . . T1m

0 Tii Tim
0 0 Tmm


Elimination Method

To solve Tx = y we use an iterative method.

• For m we have Tmmxm = ym and thus xm = T−1
mmym

• For i < m we have Tiixi +

m∑
j=1

Tijxj = yi which allows us to solve for xi.

• Each xi costs us roughly (m− i) operations. This yields a total of O(m2) opera-

tions to invert a triangular matrix

• For lower triangular matrices we start from 1 rather than m.

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 3, http://axiom.anu.edu.au/∼smola/engn4520/lecture3.pdf Page 13

Factorization Methods

LU Decomposition

We decompose M ∈ Rm×m into M = LU where L is a lower triangular matrix and

U is an upper triangular one.

Cholesky Decomposition

We decompose M into L>L where L is a lower triangular matrix. This works only

for positive definite matrices. Method of choice.

Bunch-Kaufmann Decomposition

Modification which of the Cholesky decomposition which works also for indefinite

matrices (positive and negative eigenvalues). Part of LAPACK.

SVD

Decomposition of M into M = UΛO where U and O are orthogonal matrices. This

also allows for fast inversion via U>U = OO> = 1. Expensive to compute, though.

Rule of Thumb: Use Numerical Recipes

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 3, http://axiom.anu.edu.au/∼smola/engn4520/lecture3.pdf Page 14

Cholesky Decomposition

Factorization for M ∈ R1×1

M = L>L and hence L11 =
√
M11

Iteration Step

To go from M ∈ Rm×m with M = LL> to M ∈ R(m+1)×(m+1) we posit[
M m>

m µ

]
=

[
L 0

l λ

][
L> l>

0 λ

]
Writing out the equations this means

•M = LL> (satisfied by induction assumption)

•m> = Ll> (satisfied by solving for l> = L−1m>).

mj =

j∑
k=1

Ljklk and thus lj =
1

Ljj

(
mj −

j−1∑
k=1

Ljklk

)
for all j < m

• µ = l>l + λ2 (satisfied by solving λ =
√
µ− l>l)

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 3, http://axiom.anu.edu.au/∼smola/engn4520/lecture3.pdf Page 15

Cholesky Decomposition

for i = 1 until m do

for j = i until m do

tmp = Mij

for k = i− 1 step −1 until 1 do

tmp− = MjkMik

end for

if i = j then

pi = 1√
tmp

(the (Lii)
−1 entry, fail if tmp ≤ 0)

else

Mji = tmp · pi
end if

end for

end for

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 3, http://axiom.anu.edu.au/∼smola/engn4520/lecture3.pdf Page 16

Cholesky Decomposition

In Place Factorization

The Cholesky decomposition uses only the upper diagonal matrix, and writes its

results into the lower diagonal entries.

Pivoting

Sometimes we will find some small µ for which subsequently λ is very small. This

causes error propagation. We avoid this by choosing the next large µ instead.

Incomplete Factorizations

We stop if we cannot find any λ ≥ 0 any more.

More Info

Numerical Recipes (www.nr.com), Luenberger (Introduction to Linear and Nonlinear

Programming), Mangasarian (Nonlinear Programming)

Alex Smola: SISE 9128 - Introduction to Machine Learning, Lecture 3, http://axiom.anu.edu.au/∼smola/engn4520/lecture3.pdf Page 17

