Overview

L1: Machine learning and probability theory
   Introduction to pattern recognition, classification, regression, novelty detection, probability theory, Bayes rule, inference

L2: Density estimation and Parzen windows
   Nearest Neighbor, Kernels density estimation, Silverman’s rule, Watson Nadaraya estimator, crossvalidation

L3: Perceptron and Kernels
   Hebb’s rule, perceptron algorithm, convergence, kernels

L4: Support Vector estimation
   Geometrical view, dual problem, convex optimization, kernels

L5: Support Vector estimation
   Regression, Novelty detection

L6: Structured Estimation
   Sequence annotation, web page ranking, path planning, implementation and optimization
L6 Structured Estimation

Multiclass Estimation
- Margin Definition
- Optimization Problem
- Dual Problem

Max-Margin-Markov Networks
- Feature map
- Column generation and SVMStruct
- Application to sequence annotation

Web Page Ranking
- Ranking Measures
- Linear assignment problems
- Examples
Binary Classification
Binary Classification
Multiclass Classification

Goal

Given $x_i$ and $y_i \in \{1, \ldots, N\}$, define a margin.

Binary Classification

$$\text{for } y_i = 1 \quad \langle x_i, w \rangle \geq 1 + \langle x_i, -w \rangle$$
$$\text{for } y_i = -1 \quad \langle x_i, -w \rangle \geq 1 + \langle x_i, w \rangle$$

Multiclass Classification

$$\langle x_i, w_y \rangle \geq 1 + \langle x_i, w_{y'} \rangle \text{ for all } y' \neq y.$$
Multiclass Classification
Multiclass Classification
Multiclass Classification
Structured Estimation

Key Idea
Combine \( x \) and \( y \) into \textbf{one} feature vector \( \phi(x, y) \).

Large Margin Condition and Slack

\[
\langle \Phi(x, y), w \rangle \geq \Delta(y, y') + \langle \Phi(x, y'), w \rangle - \xi \text{ for all } y' \neq y.
\]

- \( \Delta(y, y') \) is the cost of misclassifying \( y \) for \( y' \).
- \( \xi \geq 0 \) is as a slack variable.

\[
\text{minimize} \quad \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{m} \xi_i
\]

subject to \( \langle \Phi(x_i, y_i) - \Phi(x_i, y'), w \rangle \geq \Delta(y_i, y') - \xi_i \text{ for all } y' \neq y_i. \)
Dual Problem

Quadratic Program

minimize \( \frac{1}{2} \sum_{i,j,y,y'} \alpha_{iy} \alpha_{jy'} K_{iy,jy'} - \sum_{i,y} \alpha_{iy} \Delta(y_i, y) \)

subject to \( \sum_{y} \alpha_{iy} \leq C \) and \( \alpha_{iy} \geq 0 \).

Here \( K_{iy,jy'} = \langle \phi(x_i, y_i) - \phi(x_i, y), \phi(x_j, y_j) - \phi(x_j, y') \rangle \).

\( w = \sum_{i,y} \alpha_{iy} (\phi(x_i, y_i) - \phi(x_i, y)) \).

Solving It

- Use SVMStruct (by Thorsten Joachims)
- Column generation (subset optimization). At optimality:

\[ \alpha_{iy} [\langle \phi(x_i, y_i) - \phi(x_i, y), w \rangle - \Delta(y_i, y)] = 0 \]

Pick \((i, y)\) pairs for which this doesn’t hold.
Implementing It

Start
Use an existing structured SVM solver, e.g. SVMStruct.

Loss Function
Define a loss function $\Delta(y, y')$ for your problem.

Feature Map
Define a suitable feature map $\phi(x, y)$. More examples later.

Column Generator
Implement algorithm which maximizes

$$\langle \phi(x_i, y), w \rangle + \Delta(y_i, y)$$
Mini Summary

Multiclass Margin
- Joint Feature Map
- Relative margin using misclassification error
- Binary classification a special case

Optimization Problem
- Convex Problem
- Can be solved using existing packages
- Column generation
- Joint feature map
Named Entity Tagging

Goal
Given a document, i.e. a sequence of words, find those words which correspond to named entities.

Interaction
Adjacent labels will influence which words get tagged.

President Bush was hiding behind the bush.

Joint Feature Map

\[
\phi(x, y) = \left[ \sum_{i=1}^{l} y_i \phi(x_i), \sum_{i=1}^{l} y_i y_{i+1} \right]
\]
Loss Function
Count how many of the labels are wrong, i.e.
\[ \Delta(y, y') = \| y - y' \|_1. \]

Estimation
Find sequence \( y \) maximizing \( \langle \phi(x, y), w \rangle \), that is
\[
\sum_{i=1}^{l} y_i \langle \phi(x_i), w_1 \rangle + y_i y_{i+1} w_2
\]
For column generation additional term \( \sum_{i=1}^{l} |y_i - y'_i| \).

Dynamic Programming
We are maximizing a function \( \sum_{i=1}^{l} f(y_i, y_{i+1}) \).
Dynamic Programming

Background
Generalized distributive law, Viterbi, Shortest path

Key Insight
To maximize $\sum_{i=1}^{l} f(y_i, y_{i+1})$, once we’ve picked $y_j = 1$ the problems on either side become independent. In equations

$$\text{maximize } \sum_{i=1}^{l} f(y_i, y_{i+1})$$

$$= \text{maximize } \left[ \sum_{i=2}^{l} f(y_i, y_{i+1}) + \text{maximize } f(y_1, y_2) \right]$$

$$= \text{maximize } \left[ \sum_{i=3}^{l} f(y_i, y_{i+1}) + \text{maximize } f(y_2, y_3) + g_2(y_2) \right]$$

$$:= g_3(y_3)$$
Implementing It

Forward Pass

- Compute recursion

$$g_{i+1}(y_{i+1}) := \max_{y_i} f(y_i, y_{i+1}) + g_i(y_i)$$

- Store best answers

$$y_i(y_{i+1}) := \arg\max_{y_i} f(y_i, y_{i+1}) + g_i(y_i)$$

Backward Pass

After computing the last term $y_l$, solve recursion $y_i(y_{i+1})$.

Cost

- Linear time for forward and backward pass
- Linear storage
Extensions

Fancy Feature Maps
Can use more complicated interactions between words and labels.

Fancy Labels
More sophisticated than binary labels. E.g. tag for place, person, organization, etc.

Fancy Structures
Rather than linear structure, have a 2D structure. Annotate images.
Mini Summary

Named Entity Tagging
- Sequence of words, find named entities
- Can be written as a structured estimation problem
- Feature map decomposes into separate terms

Dynamic Programming
- Objective function a sum of adjacent terms
- Same as Viterbi algorithm
- Linear time and space
Web Page Ranking

Goal
Given a set of documents $d_i$ and a query $q$, find ranking of documents such that most relevant documents come first.

Data
At training time, we have ratings of pages $y_i \in \{0, 5\}$.

Scoring Function
Discounted cumulative gain. That is, we gain more if we rank relevant pages highly, namely

$$\text{DCG}(\pi, y) = \sum_{i,j} \pi_{ij} \frac{2^{y_i} + 1}{\log(j + 1)}.$$ 

$\pi$ is a permutation matrix (exactly one entry per row / column is 1, rest is 0).
Goal
We need a loss function, not a performance score.

Idea
Use performance relative to the best as loss score.

Practical Implementation
Instead of $\text{DCG} (\pi, y)$ use $\Delta(1, \pi) = \text{DCG}(1, y) - \text{DCG}(\pi, y)$. 
Feature map . . .

Goal

Find $w$ such that $\langle w, \phi(d_i, q) \rangle$ gives us a score (like PageRank, but we want to learn it from data).

Joint feature map

- Need to map $q, \{d_1, \ldots, d_l\}$ and $\pi$ into feature space.
- Want to get sort operation at test time from $\langle \phi(q, D, \pi), w \rangle$.

Solution

$$\phi(q, D, \pi) = \sum_{i,j} \pi_{ij} c_i \phi(q, d_j) \text{ where } c_i \text{ is decreasing.}$$

Consequence

$$\sum_{i,j} \pi_{ij} c_i \langle \phi(q, d_j), w \rangle \text{ is maximized by sorting documents along } c_i, \text{ i.e. in descending order.}$$
### Sorting

#### Unsorted:
- Score: 57

<table>
<thead>
<tr>
<th>$c_i$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page ranks</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Sorted:
- Score: 71

<table>
<thead>
<tr>
<th>$c_i$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page ranks</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

This is also known as the Polya-Littlewood-Hardy inequality.
Column Generation

Goal

Efficiently find permutation which maximizes

\[ \langle \phi(q, D, \pi), w \rangle + \Delta(1, \pi) \]

Optimization Problem

\[
\text{maximize } \sum_{\pi} \sum_{i,j} \pi_{ij} \left[ c_i \langle \phi(d_j, q), w \rangle + \frac{2^{y_i} + 1}{\log(j + 1)} \right]
\]

This is a linear assignment problem. Efficient codes exist (Hungarian marriage algorithm) to solve this in \( O(l^3) \) time.

Putting everything together

- Use existing SVM solver (e.g. SVMStruct)
- Implement column generator for training
- Design sorting kernel
NDCG Optimization
NDCG Optimization

The graph shows the performance of different methods (BM25, SVM, R SVM, R SVM-IR-QP, prec@n, ROC Area, DORM) across various truncation levels. The x-axis represents the truncation level, and the y-axis shows the NDCG (Normalized Discounted Cumulative Gain) value. Each method is represented by a different color, allowing for easy comparison of performance across different levels of truncation.
Mini Summary

Ranking Problem

- Web page ranking (documents with relevance score)
- Multivariate performance score
- Hard to optimize directly

Feature Map

- Maps permutations and data jointly into feature space
- Simple sort operation at test time

Column Generation

- Linear assignment problem
- Integrate in structured SVM solver
Summary

Structured Estimation
- Basic idea
- Optimization problem

Named Entity Tagging
- Annotation of a sequence
- Joint featuremap
- Dynamic programming

Ranking
- Multivariate performance score
- Linear assignment problem