
Online Learning with Support Vectors

Alexander Johannes Smola

Department of Engineering and RSISE

Australian National University

Canberra, 0200 ACT, Australia

Alex.Smola@anu.edu.au

Joint work with Jyrki Kivinen and Bob Williamson

Outline

The Basic Ingredients of a Kernel Machine

Empirical Risk, Regularization, Feature Space, Quadratic Programming

Problems with Batch Learning

Scalability, Adaptation, Difficult to code

Stochastic Gradient Descent

Stochastic Approximation, Update Rules, Truncation

The Return of the Perceptron

Kernel Perceptron, + regularization, + margin

Examples

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 2

Ingredient 1: Empirical Risk

What we have

We have some observations x1, . . . ,xm ⊂ X with corresponding labels y1, . . . , ym,

drawn (independently identically distributed) from some Pr(x, y).

Goal

Find some function f : X→ Y which predicts y at some possibly new and unknown

location x which minimizes the cost c(x, y, f(x)) for predicting f (x) rather than y.

Standard Trick

We don’t know Pr(x, y), so we replace it by the data we have and we minimize the

training error, also called the empirical risk

Remp[f] :=
1

m

m∑
i=1

c(xi, yi, f(xi))

Examples

Misclassification (apples and oranges), confidence level (cancer diagnosis), prediction

(value of a stock tomorrow), novelty detection (network intrusion, car alarm).

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 3

Ingredient 2: Regularization

Problem

If we allow just any function f as a predictor, we typically will get overfitting and

numerical problems.

Solution

Restrict the class of possible functions, by introducing a trade-off term, to be added

to Remp[f], also called regularization term Ω[f].

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 4

Ingredient 2: Regularization

Specific Solution for Kernel Methods

We choose linear function (we come to a fancier setting later) f and a quadratic

regularization term Ω[f], given by

f (x) := 〈w,x〉 + b and Ω[f] :=
1

2
‖w‖2

This means that we favour flat functions. Usually we do not regularize b, but this

more a matter of taste than anything else.

Regularized Risk Functional

To specify how much more we prefer flat functions f than good minimizers of the

empirical risk (training error) we use a regularization constant λ > 0. We obtain

Rreg[f] = Remp[f] + λΩ[f] =
1

m

m∑
i=1

c(xi, yi, f(xi)) +
λ

2
‖w‖2.

This looks and feels like the weight decay term in Neural Networks . . .

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 5

Ingredient 3: Feature Spaces

Problem

Linear functions are boring. We want something much fancier than that. And we

want to use our prior knowledge of what f should be like.

Solution

Compute features Φ(x) which are more like the functions we want. This gives us

nonlinearity by
f (x) = 〈w,Φ(x)〉 + b

Problem

What, if we go and compute too many features, say all 5th order monomials of a

16 × 16 picture (that’s almost 1010 features). Or, if we don’t quite know which

features to get?

Solution: Kernels (Aizerman et al, 1964, Boser et al, 1992)

If our algorithm only needs dot products 〈Φ(x),Φ(x′)〉, we may compute the overlap

between features implicitly by a kernel function k(x,x′) := 〈Φ(x),Φ(x′)〉

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 6

Ingredient 3: Feature Spaces — Examples

Dot Product Kernels (Schoenberg 1942, Poggio 1975, Smola et al, 2000)

For feature spaces with dth order kernels use

k(x,x′) = (〈x,x′〉 + c)d where c ≥ 0

This is quite similar to polynomial networks. We can show that any of the following

kernel will do
k(x,x′) = κ(〈x,x′〉) =

∞∑
l=1

al〈x,x′〉l where al ≥ 0

The ‘tanh-kernel,’ as used in sigmoid networks is not a proper kernel.

Radial Basis Function Kernels (Bochner 1932, Aizerman et al, 1964)

A useful kernel is the Gaussian RBF kernel

k(x,x′) = exp

(
−‖x− x′‖2

2σ2

)
.

This is known from RBF networks. In general any of the following kernels will do

k(x,x′) = κ(‖x− x′‖) where κ̃(ω) ≥ 0 for all ω.

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 7

Problems with Batch 1: Scalability

Representer Theorem (Kimeldorf et al, 1971, Schölkopf et al, 2001)

When minimizing a regularized risk functional, the estimate f (x) is given by

f (x) =

m∑
i=1

αik(xi,x) + b

And a significant fraction of the αi are nonzero (only for very clean data and special

loss functions this can be different).

Problem (Joachims, 1999, Platt 1999, Kowalczyk 2000)

Training complexity increases with sample size and number of basis functions. Typ-

ically training time scales with O(m2+γ) and prediction time with O(m). O(m3) is

an upper bound for the training time and O(m2) an upper bound for the storage

requirements.

Problem

Coding an efficient algorithm is usually quite difficult . . .

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 8

Problems with Batch 2: Drift and Offline

Problem

What happens if the distribution which generated (x, y) changes over time?

Example

Novelty detection with an aging device (parameter drift), predicting the stock market

(adaptation to betting on variance, butterfly portfolio, . . .), dynamical system.

Problem

What happens if we want to have a good predictor instantly.

Example

Real-time systems, security and surveillance applications (“someone hacked your

computer three weeks ago”, “this plane was going to crash one hour ago”, . . . is

rather useless information).

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 9

Stochastic Gradient Descent 1: Risk

Idea

In batch learning we want to minimize the regularized risk functional

Rreg[f] =
1

m

m∑
i=1

c(xi, yi, f(xi)) +
λ

2
‖w‖2.

Approximate the empirical risk term by the loss at time t and perform gradient

descent with respect to it. This yields

Rstoch[f, t] = c(xt, yt, f(xt)) +
λ

2
‖w‖2.

We perform the updates w← w − Λ∂wRstoch[f, t].

Good News (Kivinen et al, 2001)

One can show that stochastic gradient descent with respect to Rstoch[f, t] will con-

verge to the minimum of Rreg[f].

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 10

Stochastic Gradient Descent 2: Updates

Explicit Update Rule

For a given learning rate (we will come to that later) we have

w ← w − Λ∂wRstoch[f, t]

= w − Λ∂w

(
c(xt, yt, 〈w,Φ(xt)〉 + b) +

λ

2
‖w‖2

)
= (1− Λλ)w − Λc′(xt, yt, f(xt))Φ(xt)

b ← b− Λc′(xt, yt, f(xt))

Explicit Kernel Notation

For a function f (x) given by f (x) =
∑
l

αl〈Φ(xl),Φ(x) + b =
∑
l

αlk(xl,x) + b

we get the update in the coefficients as

αi ←

{
(1− Λλ)αi for i 6= t

−Λc′(xt, yt, f(xt)) for i = t
and b← b− Λc′(xt, yt, f(xt))

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 11

Stochastic Gradient Descent 3: Examples

The Perceptron Learning Rule
We set the regularization term

λ = 0 and use the hinge loss

c(x, y, f(x)) = max(0,−yf (x))

Here the derivative of c is given by

c′(x, y, f(x)) =

{
−y if yf (x) < 0

0 otherwise

Kernel Perceptron

αt =

{
Λy if yf (x) < 0

0 otherwise
and b← b +

{
Λy if yf (x) < 0

0 otherwise

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 12

Stochastic Gradient Descent 3: Examples

The Perceptron with Regularization (weight decay)
We use a nonzero regularization term

λ and the hinge loss

c(x, y, f(x)) = max(0,−yf (x))

Here the derivative of c is given by

c′(x, y, f(x)) =

{
−y if yf (x) < 0

0 otherwise

Regularized Kernel Perceptron

αi = (1− λΛ)αi and αt =

{
Λyt if ytf (xt) < 0

0 otherwise
and b← b +

{
Λyt if ytf (xt) < 0

0 otherwise

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 13

Stochastic Gradient Descent 3: Examples

Large Margin Perceptron with Regularization
We use a nonzero regularization term

λ and the soft margin loss

c(x, y, f(x)) = max(0, 1− yf (x))

Here the derivative of c is given by

c′(x, y, f(x)) =

{
−y if yf (x) < 1

0 otherwise

Regularized Kernel Perceptron

αi = (1− λΛ)αi and αt =

{
Λyt if ytf (xt) < 1

0 otherwise
and b← b +

{
Λyt if ytf (xt) < 1

0 otherwise

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 14

Stochastic Gradient Descent 3: Examples

Least Mean Square Regression with Regularization

We use a nonzero regularization term

λ and squared loss

c(x, y, f(x)) = (f (x)− y)2

Here the derivative of c is given by

c′(x, y, f(x)) = f (x)− y

Explicit Update Equations

αi = (1− λΛ)αi and αt = Λ(y − f (xt)) and b← b + Λ(y − f (xt))

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 15

Stochastic Gradient Descent 3: Examples

Novelty Detection
We use a nonzero regularization term

λ and the novelty detection loss

c(x, f(x)) = max(0, 1− f (x))

Here the derivative of c is given by

c′(x, y, f(x)) =

{
−1 if f (x) < 1

0 otherwise

We classify an event as novel if f (x) < 1.

Explicit Update Equations

αi = (1− λΛ)αi and αt =

{
Λ if f (xt) < 1

0 otherwise
and b← b +

{
Λ if f (xt) < 1

0 otherwise

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 16

Stochastic Gradient Descent 3: Truncation

Problem

We have to add one kernel function k(xt,x) every time we make a mistake, commit

a margin error, see a novel event, and also pretty much every time in regression.

This means that prediction time increases linearly with the number of data we see.

Good News

All coefficients αi decay with (1 − λΛ) per iteration. So, all we need to do is wait

until they are small enough. In particular, after τ steps, we have

‖αt−τΦ(xt−τ)‖ ≤ Λ(1− λΛ)τ |c′(xt−τ , yt−τ , ft−τ(xt−τ))|‖Φ(xt−τ‖
≤ ΛCκ(1− λΛ)τ

Here |c′(x, y, f(x))| ≤ C (for the hinge loss C = 1), and k(x,x) ≤ κ2 (for RBF

kernels κ = 1).

So, by dumping αt−τΦ(xt−τ) we commit an error of no more than ΛCκ(1− λΛ)τ .

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 17

Stochastic Gradient Descent 3: Truncation

Geometric Series Expansion

The error by discarding all terms older than τ is bounded by λ−1Cκ(1− λΛ)τ .

Interpretation

The term (1 − λΛ) determines how many past instances we keep. The larger λΛ

becomes, the fewer instances we keep. This can be done for two reasons:

Small Memory Footprint: we do not have enough memory (or CPU power) to

deal with many terms in the expansion

Rapidly Changing Distribution: if Pr(x, y) changes too rapidly, it does not

make sense to store too old data.

Effective Limit on Learning

The fact that we can only store a finite number of examples limits the capacity of

the estimator. It depends on the regularization constant and the speed of updates.

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 18

Stochastic Gradient Descent 4: ν-trick

Goal

We want to limit the number of updates we make. And get rid of one parameter.

Solution

Make the threshold parameter (so far set to 1) adaptive (works for classification,

regression, novelty detection) and decrease it if too many updates are made and vice

versa.

Example: Novelty Detection

Standard Loss Function

c(x, f(x)) = max(0, 1− f (x))

We classify an event as novel if

f (x) < 1.

Loss Function with ν

c(x, f(x)) = max(0, ρ− f (x))− νρ

The updates on ρ are Λν if the pattern is

not novel, and Λ(ν − 1) if the pattern is

novel. On average, a fraction of ν points

will be classified as novel.

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 19

Online Training Run

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 20

Worst Training Examples

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 21

Worst Test Examples

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 22

Summary and Outlook

Related Work

(Csato and Opper, 2001, Gentile 2001, Herbster 2001, Tresp 2000)

Extensions

We can use the ν trick also for Huber’s robust loss function (not possible for SV

batch learning). This gives us trimmed mean estimators.

Stochastic Gradient Descent in Feature Space

Can be used for many other applications (pretty much anything that works with

kernels).

Weight Decay Term

Keeps expansion tractable.

For more information see

http://www.kernel-machines.org

Alex Smola: A Tutorial on Support Vector Machines, http://axiom.anu.edu.au/∼smola/online icann2001.pdf Page 23

