
Overview for Week 5

Support Vector Classification

Hard Margin, Optimization Problem, Dual Objective Function, Soft Margin, Kernel

Formulation

Support Vector Regression

ε-insensitive loss, Optimization Problem, Dual Objective Function, Soft Margin,

Kernel Formulation

Novelty Detection

Basic Idea, Optimization Problem, Applications

ν-Trick

How to adjust the number of training errors automatically, optimization problems,

rules of thumb
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Classification

Data: Pairs of observations (xi, yi) generated from some distribution P(x, y), e.g.,

(blood status, cancer), (credit transaction information, fraud), (sound profile of jet

engine, defect)

Task: Predict y given x at a new location.

Modification: find a function f (x) that does the task.
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Optimal Separating Hyperplane

Minimize
1

2
‖w‖2 subject to yi(〈w, xi〉 + b) ≥ 1 for all i.
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Optimization Problem

Linear Function

f (x) = 〈w,x〉 + b

Classification Constraint

To ensure that all f (xi) lie on the “right” side of the margin we require that

f (xi) = 〈w,xi〉 + b > 1 for yi = 1

f (xi) = 〈w,xi〉 + b < −1 for yi = −1

Maximum Margin

For maximum margin we want to minimize 1
2‖w‖

2. This maximizes 2
‖w‖.

Mathematical Programming Setting

Combining the above requirements we obtain

minimize
1

2
‖w‖2

subject to yi(〈w, xi〉 + b)− 1 ≥ 0 for all 1 ≤ i ≤ m
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Lagrange Function

Objective Function

We have 1
2‖w‖

2.

Constraints

Clearly the constraint

ci(w, b) := 1− yi(〈w,xi〉 + b) ≤ 0

is a convex function. Hence we can use the default Lagrange approach.

Lagrange Function

L(w, b, α) = PrimalObjective +
∑
i

αici

=
1

2
‖w‖2 +

m∑
i=1

αi(1− yi(〈w,xi〉 + b))

Saddle Point Condition

We need that the partial derivatives of L with respect to w and b vanish.
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Solving the Equations

Lagrange Function

L(w, b, α) =
1

2
‖w‖2 +

m∑
i=1

αi(1− yi(〈w,xi〉 + b))

Saddlepoint in w

∂wL(w, b, α) = w −
m∑
i=1

αiyixi = 0⇐⇒ w =

m∑
i=1

αiyixi

Saddlepoint in b

∂bL(w, b, α) = −
m∑
i=1

αiyixi = 0⇐⇒
m∑
i=1

αiyi = 0

To obtain the dual optimization problem we have to substitute the values of w and

b into L. Note that the dual variables αi have the constraint αi ≥ 0.
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Solving the Equations

Dual Optimization Problem

The terms linear in
∑

i αiyi, i.e. the b-dependent term, vanishes.

1

2

m∑
i,j=1

yiyj〈xi,xj〉 +

m∑
i=1

αi − αiyi m∑
j=1

αjyj〈xi,xj〉

 = −1

2

m∑
i,j=1

yiyj〈xi,xj〉 +

m∑
i=1

αi

subject to

m∑
i=1

αiyi = 0 and αi ≥ 0 for all 1 ≤ i ≤ m

Practical Modification

We have to maximize the dual objective function. Typically we rewrite this as

minimize
1

2

m∑
i,j=1

yiyj〈xi,xj〉 −
m∑
i=1

αi

subject to

m∑
i=1

αiyi = 0 and αi ≥ 0 for all 1 ≤ i ≤ m
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Support Vector Expansion

Solution in w

•w is given by a linear combination of training patterns xi and the solution is

independent of the dimensionality of X.

• The expansion of w depends on the Lagrange multipliers αi.

Kuhn-Tucker-Conditions

We know that at the optimal solution

Constraint · Lagrange Multiplier = 0

In the present context this means that αi(1− yi(〈w,xi〉 + b)) = 0. In other words

αi 6= 0 implies that

yi (〈w,xi〉 + b) = 1

Only points at the decision boundary can contribute to the solution.

This also allows us to compute b via b = yi − 〈w,xi〉.
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Kernels

Nonlinearity via Feature Maps

In the linear optimization problem

minimize
1

2

m∑
i,j=1

αiαjyiyj〈xi,xj〉 −
m∑
i=1

αi

subject to

m∑
i=1

αiyi = 0 and αi ≥ 0 for all 1 ≤ i ≤ m

we replace xi by Φ(xi) to obtain the new objective function

minimize
1

2

m∑
i,j=1

yiyjk(xi,xj)−
m∑
i=1

αi

Function Expansion

From w =

m∑
i=1

αiyiΦ(xi) we conclude f (x) = 〈w,Φ(x)〉+ b =

m∑
i=1

αiyik(xi,x) + b.
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Examples and Problems

Advantage

Works well when the data is noise free.

Problem

Already a single wrong observation can

ruin our estimate completely — we re-

quire that for all i we have yif (xi) ≥ 1.

Idea

We have to limit the influence of indi-

vidual observations by making the con-

straints less stringent (introduce slacks).
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Optimization Problem (Soft Margin)

Recall: Hard Margin Problem

minimize
1

2
‖w‖2

subject to yi(〈w, xi〉 + b)− 1 ≥ 0 for all 1 ≤ i ≤ m

Softening the Constraints

minimize
1

2
‖w‖2 + C

m∑
i=1

ξi

subject to yi(〈w,xi〉 + b)− 1+ξi ≥ 0 and ξi ≥ 0 for all 1 ≤ i ≤ m

Connection to Regularized Risk Functional

Up to scaling factors the margin term 1
2‖w‖

2 is the regularization term, the term in

ξi together with the constraints is the loss term, i.e.

Rreg[f ] =
1

m

m∑
i=1

c(xi, yi, f(xi)) +
λ

2
‖w‖2

In our case c(xi, yi, f(xi)) = max(0, 1− yif (xi)).
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Lagrange Function and Constraints

Lagrange Function

We have m more constraints, namely those on the ξi, for which we will use ηi as

Lagrange multipliers.

L(w, b, ξ, α, η) =
1

2
‖w‖2 + C

m∑
i=1

ξi +

m∑
i=1

αi (1− ξi − yi(〈w,xi〉 + b))−
m∑
i=1

ηiξi

Saddle Point in w

∂wL(w, b, ξ, α, η) = w −
m∑
i=1

αiyixi = 0⇐⇒ w =

m∑
i=1

αiyixi.

Saddle Point in b

∂bL(w, b, ξ, α, η) =

m∑
i=1

−αiyi = 0⇐⇒
m∑
i=1

αiyi = 0.

Saddle Point in ξi

C − αi − ηi = 0⇐⇒ αi ∈ [0, C] with ηi = C − αi.
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Dual Optimization Problem

The terms linear in
∑

i αiyi, i.e. the b-dependent term, plus all the terms in ξi and

ηi vanish. This is so since

L(w, b, ξ, α, η) =
1

2
‖w‖2 +

m∑
i=1

ξi(C − αi − ηi) + b
m∑
i=1

αiyi +

m∑
i=1

αi(1− yi〈w,xi〉)

=
1

2
‖w‖2 +

m∑
i=1

αi(1− yi〈w,xi〉)

= −1

2

m∑
i,j=1

αiαjyiyj〈xi,xj〉 +

m∑
i=1

αi

This is the dual objective function which will be maximized subject to
m∑
i=1

αiyi = 0 and 0 ≤ αi ≤ C for all 1 ≤ i ≤ m.

The only difference to the unconstrained problem is that here 0 ≤ αi ≤ C.
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SV Classification Machine
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