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Overview for Week 5

Support Vector Classification
Hard Margin, Optimization Problem, Dual Objective Function, Soft Margin, Kernel

Formulation

Support Vector Regression
e-insensitive loss, Optimization Problem, Dual Objective Function, Soft Margin,

Kernel Formulation

Novelty Detection
Basic Idea, Optimization Problem, Applications

v-Trick
How to adjust the number of training errors automatically, optimization problems,

rules of thumb
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Classification

Data: Pairs of observations (x;,%;) generated from some distribution P(x,y), e.g.,
(blood status, cancer), (credit transaction information, fraud), (sound profile of jet
engine, defect)

Task: Predict y given x at a new location.
Modification: find a function f(x) that does the task.
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Optimal Separating Hyperplane

Note:

<W X >+b=+1
<W X,>+b = —1

=  <w(X=x,>= 2

<_ 2
=> <||w||’(X1 X)2= Iwii

____________________________________ '_ng (x| <w,x>+b = 0}

\

\ \
\ \
\ \

1
Minimize §||wH2 subject to y;({w, ;) + b) > 1 for all 4.
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Optimization Problem

Linear Function
f(x) = (w,x) +b

Classification Constraint
To ensure that all f(x;) lie on the “right” side of the margin we require that

f(xi)=(w,x;) +b>1 fory =1
f(x;) = (w,x;) +b< —1 fory, =—1

Maximum Margin

2
[

For maximum margin we want to minimize 3 ||w||%. This maximizes
Mathematical Programming Setting
Combining the above requirements we obtain
L2
)
subject to  y;((w,z;) +b) —1>0forall 1 <i<m

minimize
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Lagrange Function

Objective Function
We have 5||w||*.

Constraints

Clearly the constraint
ci(w,b) :=1—y;({w,x;) +b) <0
is a convex function. Hence we can use the default Lagrange approach.

Lagrange Function

L(w,b,a) = PrimalObjective + Z Qi C;

— _||WH2+ZO% yz W Xz> +b>)

Saddle Point Condition

We need that the partial derivatives of L with respect to w and b vanish.
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Solving the Equations

Lagrange Function

L(w,b,a) ——Hw|\2+z% (W, x;) + b))

Saddlepoint in w

m m
aWL(W, b, CV) =W — Z QX =0 <= w = Z oYX
1=1 =1

Saddlepoint in b

OpL(W, b, ) Z oYX, = 0 <— Z a;y; = 0

To obtain the dual optimization problem we have to substltute the values of w and
b into L. Note that the dual variables «; have the constraint «; > 0.
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Solving the Equations

Dual Optimization Problem
The terms linear in ) . a;y;, i.e. the b-dependent term, vanishes.

a Z yzy] Xlaxj + Z o — GY; Z@jyj<xiaxj> - 5 Z yzyj Xqu + Zaz

1,j=1 Jj=1 1,j=1

subject to Zaiyi —Qand a; >0forall<iz<m
i=1
Practical Modification
We have to maximize the dual objective function. Typically we rewrite this as

1 m m
minimize 5 g vy, (X, Xj) — g o
m

subject to Zozz-yz- —Qand a; > 0foralll <i:<m
i=1
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Support Vector Expansion

Solution in w
e w is given by a linear combination of training patterns x; and the solution is
independent of the dimensionality of X.
e The expansion of w depends on the Lagrange multipliers «;.

Kuhn-Tucker-Conditions
We know that at the optimal solution

Constraint - Lagrange Multiplier = 0

In the present context this means that a;(1 — y;((w,x;) + b)) = 0. In other words
a; # 0 implies that

y; (W, x;) +b0) =1
Only points at the decision boundary can contribute to the solution.

This also allows us to compute b via b = y; — (W, x;).
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Kernels
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Nonlinearity via Feature Maps
In the linear optimization problem

1 m
minimize 5 E QoYY (X, Xj) — g o7
ij=1 i=1

m
subject to Zozz-yi —Qand a; >0forall<z<m
i=1
we replace x; by ®(x;) to obtain the new objective function
1 m m
minimize 5 Z viyik (%, X;) — Z Q;
ij=1 i=1

Function Expansion
m

From w = Z a;y;®(x;) we conclude f(x) = (w,d(x)) +b = Z oYk (x;, X) + .
i=1

1=1
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Examples and Problems
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Advantage
Works well when the data is noise free.

Problem
Already a single wrong observation can
ruin our estimate completely — we re-

quire that for all ¢ we have y; f(x;) > 1.
Idea

We have to limit the influence of indi-
vidual observations by making the con-
straints less stringent (introduce slacks).
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Optimization Problem (Soft Margin)

Recall: Hard Margin Problem

L Lo
minimize §Hw||

subject to  y;((w,z;) +b) —1>0forall 1 <i<m

Softening the Constraints

minimize —HW||2 +C Z &

subject to y;({(w, x;) + b) — 14+ >0and & > 0forall 1 <i<m

Connection to Regularized Risk Functional
Up to scaling factors the margin term 3||w/||? is the regularization term, the term in

& together with the constraints is the loss term, i.e.

1 — A
Rieg|f] = - E (x4, yi, f(xi)) + §H’UJH2
=1

In our case c(x;, s, f(x;)) = maX(O_,l — i f(xi)).
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Lagrange Function and Constraints

Lagrange Function
We have m more constraints, namely those on the &;, for which we will use n; as

Lagrange multipliers.

L<W7ba€705777> — _HWH2 + CZ& + Z@z 1_ i — yl<<W Xz +b angz

1=1 1=1
Saddle Point in w

aWL<W, b, g, Q, 77) =W — Z QX =0 &= w = Z LY X
1=1 1=1
Saddle Point in b

OpL(W,b,& a,m) = Z —;y; = 0 <— Z a;y; = 0.
—1 —1

Saddle Point in &
C—a;—1n=0<= a; €|0,C] withn; =C — ;.
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Dual Optimization Problem

The terms linear in ) . a;y;, i.e. the b-dependent term, plus all the terms in &; and

7; vanish. This is so since

1 m
L(Wabaga&vn) — _HWHQ_'_ ‘fZ(C 772 ""b azyz + O‘z yz W XZ>)
2
= —||W!|2+Zozz — yi(W, X;))
- —= Z GO YY XZ7X] + Z@z

=1
This is the dual objective function which will be maximized subject to

Zozz-yi:Oand()gozingoraHlgigm.
i=1
The only difference to the unconstrained problem is that here 0 < a; < C.
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SV Classification Machine
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dx)) q)(Xz)‘ P(x)

output G (£, k (x,X;,))

weights

dot product <®P(x),P(x,;>= k(X,X;)

mapped vectors P(x), P(x)

support vectors Xy ... X,

(est veclor X
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