
ENGN 4520: Introduction to Machine Learning

Alex Smola, RSISE ANU Teaching Period
Problem Sheet — Week 4 April 30 to June 8, 2001
The due date for these problems is Monday, May 28

A Theory

Problem 14 (Convolutions and Random Variables, 4 Points)
Show that for two random variables ξ1, ξ2 with densities p1(ξ1) and p2(ξ2) the density of the
random variable ξ := ξ1 + ξ2 is given by p(ξ) = p1 ◦ p2(ξ).

Problem 15 (Kernels, Bn-Splines, and Mercer’s Condition, 10 Points)
In this problem we will introduce a new class of kernels. For this purpose denote by B0 the
indicator function on the interval [−1

2
, 1

2
], i.e.

B0(x) =

{
1 if |x| ≤ 1

2

0 otherwise

Furthermore we introduce the splines Bn on R via Bn+1 := Bn ◦B0.

1. Compute the splines B1 and B2 analytically.

2. Show that Bn is a spline of order n, i.e. it is piecewise polynomial up to order n. Hint:
use induction, i.e. assume that it is true for Bn and show that it then holds for Bn+1.

3. Compute the Fourier transform of B0. Why does it follow from this that k(x, x′) :=
B0(x− x′) is not a vaild kernel?

4. Show that the Fourier transform of Bn is given by B̃n = (2π)
n
2

(
B̃0

)n
. Which k(x, x′) :=

Bn(x− x′) is therefore a valid kernel?

5. Bonus question (difficult): Show that pn(x) := n+1
12
Bn

(
n+1
12
x
)

converges to a normal
distribution with zero mean and unit variance.

Hint: Use the result of Problem 14. Next show that Bn is the density corresponding to
a sum of n+ 1 random variables uniformly distributed on [−1

2
, 1

2
]. Finally, show that pn

has zero mean and unit variance and apply the central limit theorem (from second week)
to prove the claim.

Problem 16 (Radial Basis Function Kernels, 6 Points)
Denote by k(x,x′) := κ(‖x− x′‖) a radial basis function kernel.

1. Show that for a strictly monotonically decreasing κ : [0,∞) → R the mapping into a
feature space is neighbourhood preserving, i.e. that

d(Φ(x),Φ(x′)) ≤ d(Φ(x),Φ(x′′)) is equivalent to d(x,x′) ≤ d(x,x′′)

2. Show that for the kernels given below the feature map Φ maps all x onto the surface of
a sphere, and more precisely, into an orthant of 90◦.

k(x,x′) = exp

(
− 1

2σ2
‖x− x′‖2

)
(1)

k(x,x′) = exp

(
− 1

σ
‖x− x′‖

)
(2)
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B Programming

Problem 17 (Kernels and Regression, 20 Points) As in previous week’s exercise, we
assume squared loss and we also keep the regularization terms. However, this time we are
going to use kernels. This means that f is given by

f(x) =
m∑
i=1

αik(xi,x)

where the xi are the training points.

1. Implement in MATLAB an algorithm that takes (x1, . . . ,xm), (y1, . . . , ym) and the kernel
object as an input and produces the vector of αi which minimize the empirical risk as
an output.

Note: the matrix K may have very small eigenvalues. You can use pinv in
MATLAB to deal with the problem.

2. Test your program on data generated by

y = f(x) + ξ where f(x) = 1 + 2x+ 3 exp(−(3− x)2) + 2 exp(−(5− x)2)

More specifically, draw x unformly at random from [0, 10] and let ξ be normally dis-
tributed with zero mean and variance σ. Plot the estimate of f(x) on [0, 10] for (m =
50, σ = 0) and (m = 50, σ = 0.5)
with the following kernels

• a Gaussian RBF kernel with kernel width ω = 1 and with ω = 0.5.

• a polynomial kernel k(x,x′) = (〈x,x′〉+ 1)5) and with (〈x,x′〉+ 1)3).

3. Now we introduce a quadratic regularization term via

Ω[f ] =
1

2
‖w‖2

to minimize
Rreg[f ] = Remp[f ] + λΩ[f ]

Modify your MATLAB code from above such that the algorithm takes (x1,xm), (y1, . . . , ym)
and the kernel object as an input and produces the vector of αi which minimize the reg-
ularized risk as an output.

4. Test your program in the above settings for λ = 1, 0.1, 0.01 where (m = 50, σ = 0.5) and
the following kernels

• a Gaussian RBF kernel with kernel width ω = 1 and with ω = 0.5.

• a polynomial kernel k(x,x′) = (〈x,x′〉+ 1)5) and with (〈x,x′〉+ 1)3).

(m: number of observations, σ: variance of additive noise, ω: width of the Gaussian RBF
kernel, λ: regularization constant)
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Instructions for SVLab Toolbox

Download SVLab http://axiom.anu.edu.au/∼smola/engn4520/svlab.zip (lite version)
and install it on your system. To use it you have to set

path(’svlab’, path);

path(’svlab/common’, path);

It allows you to compute kernel functions efficiently. You need to initialize a kernel object
first. This is done via

kernel = vanilla_dot; %the normal dot product as a kernel

kernel = rbf_dot; %this creates an RBF kernel

kernel.sigma = 10; %this uses the kernel exp(-sigma ||x-x’||^2)

kernel = poly_dot; %this creates a polynomial kernel

kernel.degree = 5; %polynomial kernel of degree 5

kernel.offset = 2; %and offset 2, i.e. (<x,x’> + 2)^5

Among others, the toolbox offers the functions sv dot and sv mult. They work as follows

mtrain = 1000; %generate 1000 training observations

mtest = 500; %test set 500

n = 100; %in 100 dimensions

xtrain = randn(n,mtrain);

xtrain = randn(n,mtest);

y = randn(mtrain,1); %labels

alpha = randn(mtrain,1); %weights

k = sv_dot(kernel, xtrain);

%this computes the kernel matrix K_ij = k(x_i, x_j)

f = sv_mult(kernel, xtrain, alpha);

%compute the function values f(x_j) given by sum_i alpha_i k(x_i, x_j)

ktest = sv_dot(kernel, xtrain, xtest);

%this computes the kernel matrix K_ij = k(xtrain_i, xtest_j)

ftest = sv_mult(kernel, xtest, xtrain, alpha);

%compute the function values f(xtest_j) given by sum_i alpha_i k(xtrain_i, xtest_j)
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