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Problem 1 (Cancer Diagnosis, 10 Points)
Assume a patient visits a physician to undergo a test whether he has a certain type of cancer or not. The
probability that an arbitrary person will develop this type of cancer is 1 in 100,000.

1. The patient tests positive (= cancer) to a test with the following properties: in 99 out of 100 cases
it detects cancer if it is present. However, it raises a false alarm in 2 out of 1000 cases.

What is the probability of cancer, given that the test is positive.

2. Additionally, the patient exhibits a certain symptom that is typically associated with cancer. In
particular, all cancer patients show this symptom, however in one of 500 cases another disease
is responsible for this symptom. Assume that the presence of this symptom is independent of the
outcome of the previous test.

What is the probability of cancer now, given the knowledge about the symptom and the test.

Solution

1. We apply Bayes’ rule and find

Pr( cancer | test positive )

=
Pr( test positive | cancer ) Pr( cancer )

Pr( test positive )

=
Pr( test positive | cancer ) Pr( cancer )

Pr( test positive | cancer ) Pr( cancer ) + Pr( test positive |no cancer ) Pr( no cancer )

=
0.99 · 10−5

0.99 · 10−5 + 0.002 · (1− 10−5)
= 0.0049.

This means that the patient is not very likely to have cancer, given only the test.

2. The symptom can be treated just like another test, only with the difference that now the prior
probability of someone having cancer is no more 10−5 but 0.0049. This yields (we ignore the
additional conditioning in the notation)

Pr( cancer | symptom )

=
Pr( symptom | cancer ) Pr( cancer )

Pr( symptom | cancer ) Pr( cancer ) + Pr( symptom |no cancer ) Pr( no cancer )

=
1 · 0.0049

1 · 0.0049 + 0.002 · (1− 0.0049)
= 0.7112.

This means that most likely the patient has cancer. Note that it is not enough, to consider just the
presence of the symptom without any other information.
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Problem 2 (Weighting Patterns with Support Vectors, 15 Points)
Assume we have a linear Support Vector Machine with soft margin loss, i.e.

c(x, y, f(x)) = max(0, 1− yf(x)) (1)

which is to be trained on some training data (x1, y1), . . . (xm, ym). Moreover assume that we know that
some of the observations (xi, yi) are more important than others, specifically that there exist weighting
coefficients Ci > 0 such that we minimize a modified regularized risk functional

m∑
i=1

Cic(xi, yi, f(xi)) +
1
2
‖w‖2. (2)

1. Rewrite eq. (2) such that it becomes a constrained quadratic optimization problem, i.e. with linear
constraints and a quadratic objective function.

2. Derive the Lagrange function corresponding to the constrained optimization problem.

3. Compute the dual optimization problem.

4. Compare the result to the standard soft margin Support Vector Machine.

Solution

1. We know (see lecture notes) that we can rewrite c(x, y, f(x)) as the solution of the optimization
problem

minimize
ξ

ξ

subject to yf(x) ≥ 1− ξ and ξ ≥ 0

Therefore we obtain for the optimization problem over Ciξi and ‖w‖2 (with f(x) = 〈w,xi〉+ b)

minimize
ξi,w,b

m∑
i=1

Ciξi +
1
2
‖w‖2

subject to yi(〈w,xi〉+ b) ≥ 1− ξi and ξi ≥ 0 for all 1 ≤ i ≤ m

2. The Lagrange function is objective function plus constraints times Lagrange multipliers. This yields

L =
m∑
i=1

Ciξi +
1
2
‖w‖2 +

m∑
i=1

αi (1− ξi − yi(〈w,xi〉+ b)) +
m∑
i=1

ηi(−ξi) where αi, ηi ≥ 0

3. Partial derivatives with respect to w, ξi, b have to vanish due to the saddlepoint condition.

∂wL = w −
m∑
i=1

αiyixi and therefore w =
m∑
i=1

αiyixi

∂bL = −
m∑
i=1

αiyi and therefore
m∑
i=1

αiyi = 0

∂ξiL = Ci − αi − ηi and therefore αi ∈ [0, Ci] and ηi = Ci − αi

Substituting the saddlepoint equations into L yields the dual optimization problem

maximize
αi

−1
2

m∑
i,j=1

αiαjyiyj〈xi,xj〉+
m∑
i=1

αi

subject to αi ∈ [0, Ci] for all 1 ≤ i ≤ m and
m∑
i=1

αiyi = 0

4. The only difference to the standard SVM solution is that now αi ∈ [0, Ci] rather than [0, C]. This
means that we can now individually adjust the “force” each observation (xi, yi) applies.

ENGN4520 Engineering S1 (Introduction to Machine Learning) Page 2 of 5



Problem 3 (Perceptron Algorithm and Stochastic Gradient Descent, 15 Points)
We use a loss function c(x, y, f(x)) = |y − f(x)|ε and want to minimize the empirical risk Remp[f ].

1. Compute derivatives of c with respect to w, b for a linear model f(x) = 〈w,x〉+ b.

2. State the general gradient descent rule regarding w, b for arbitrary c.

3. State the gradient descent rule for c specified as above.

4. With a learning rate η = 0.1 and ε = 0.5 calculate the values of w, b for the first four steps. The
data set of (x, y) is given by (1, 1), (3, 5), (2, 3), (1, 2) and we initialize w = 0 and b = 0.

5. Modify the stochastic gradient algorithm using |y − f(x)|ε as a loss function such that it works in
feature space using kernels, i.e. using Φ(x) and k(x,x′).

Solution

1. The loss function c(x, y, f(x)) = |y−f(x)|ε is linear for deviations larger than ε and zero otherwise.
It is not differentiable at ±ε (but we ignore that below). We obtain

∂b|y − 〈w,x〉 − b|ε =

 1 if y + ε < 〈w,x〉+ b
−1 if y − ε > 〈w,x〉+ b

0 otherwise

∂w|y − 〈w,x〉 − b|ε =

 x if y + ε < 〈w,x〉+ b
−x if y − ε > 〈w,x〉+ b

0 otherwise

2. For arbitrary c the stochastic gradient descent rule for a given learning rate Λ is

w → w − Λ∂wc(x, y, 〈w,x〉+ b)
b → b− Λ∂bc(x, y, 〈w,x〉+ b)

3. All we have to do is substitute the derivatives from 1. into the update equations given by 2.

b→ b+ Λ

 −1 if y + ε < 〈w,x〉+ b
1 if y − ε > 〈w,x〉+ b
0 otherwise

and w→ w + Λ

 −x if y + ε < 〈w,x〉+ b
x if y − ε > 〈w,x〉+ b
0 otherwise

4. We step through the data (η = 0.1) and obtain

Step 1: f(1) = 0, however y = 1, hence update w = 0 + 0.1 · 1, b = 0 + 0.1.
Step 2: f(3) = 0.4, however y = 5, hence update w = 0.1 + 0.1 · 3, b = 0.1 + 0.1.
Step 3: f(2) = 1, however y = 3, hence update w = 0.4 + 0.1 · 2, b = 0.2 + 0.1.
Step 4: f(1) = 0.8, however y = 2, hence update w = 0.6 + 0.1 · 1 = 0.7, b = 0.3 + 0.1 = 0.4.

5. All we have to do is replace x by Φ(x) wherever possible, and also keep track of w =
∑t
i=1 αiΦ(xi)

at step t+ 1. Finally, f(x) =
∑t
i=1 αik(xi,x). This yields

b → b+ Λ

 −1 if y + ε <
∑t
i=1 αik(xi,xt+1) + b

1 if y − ε >
∑t
i=1 αik(xi,xt+1) + b

0 otherwise

αt+1 =

 −Λ if y + ε <
∑t
i=1 αik(xi,xt+1) + b

Λ if y − ε >
∑t
i=1 αik(xi,xt+1) + b

0 otherwise

Here we keep the old αi with i ≤ t and only uptdate the new αt+1.
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Problem 4 (Admissible Kernel, 15 Points)

1. Show that the matrix Kij := yiyjk(xi,xj) is positive semidefinite if k satisfies Mercer’s condition.

2. Show that if k1, k2 satisfy Mercer’s condition, then also any k = α1k1 + α2k2 with α1, α2 ≥ 0 also
satisfy Mercer’s condition.

3. Show that the kernel k(x,x′) = κ(〈x,x′〉) with κ(ξ) =
∑n
l=1 clξ

l and cl ≥ 0 satisfies Mercer’s
condition.

4. Show that the kernel k(x, x′) = 1
1+(x−x′)2 with x, x′ ∈ R satisfies Mercer’s condition. Discuss its

regularization properties.

Solution

1. We know that the matrix K̃ ∈ Rm×m with K̃ij = k(xi,xj) is positive semidefinite, i.e. for any
α ∈ Rm we have α>K̃α ≥ 0. This is in particular also the case for β ∈ Rm where βi = yiαi.
Therefore

0 ≤ β>K̃β =
m∑

i,j=1

βiβjK̃ij =
m∑

i,j=1

αiαjyiyjK̃ij =
m∑

i,j=1

αiαjKij = α>Kα

In other words, K is positive semidefinite.

2. We exploit linearity of the integral and obtain for Mercer’s condition on k∫ ∫
k(x, x′)f(x)f(x′)dxdx′

=
∫ ∫

(α1k1(x, x′) + α2k2(x, x′)) f(x)f(x′)dxdx′

= α1

∫ ∫
k1(x, x′)f(x)f(x′)dxdx′ + α2

∫ ∫
k2(x, x′)f(x)f(x′)dxdx′ ≥ 0

The last inequality follows since k1, k2 are both Mercer kernels and α1, α2 nonnegative.

3. We know that k(x,x′) = 〈x,x′〉l is a Mercer kernel. Furthermore we know from 2. that also sums
of Mercer kernels are Mercer kernels, provided the expansion coefficients are nonnegative. This
means that the same must hold for the sum of several polynomial kernels as required in 3. and we
have a Mercer kernel.

4. All we need to do is look at the Fourier transform of 1
1+(x−x′)2 . Knowing that (up to scaling factors)

the Fourier transform of exp(−|x|) is 1
1+ω2 (see lecture notes about the Laplacian kernel) and using

the symmetry of k yields that the fourier transfrom of 1
1+x2 is, up to scaling factors, exp(−|ω|).

Therefore, the kernel of 4. is a Mercer kernel. Finally, we can see that the spectrum of k decays
exponentially (cf. exp(−|ω|)) which means that it is smoother than the Laplacian but less smooth
than the Gaussian kernel.
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Problem 5 (Hilbert Spaces, 15 Points)
We begin with the quadratic form on functions f : R→ R.

q(f) := ‖f‖2 + 2‖f ′‖2 + 3‖f ′′‖2 (3)

1. Use the polarization inequality to recover the dot product underlying the definition of the quadratic
form q(f), i.e. find a bilinear form from q(f) such that 〈f, f〉H = q(f). Show that what you obtained
is a dot product.

2. Compute q(f) for f = c0 +
n∑
l=1

(sl sin(lx) + cl cos(lx)).

3. Compute the representation of q(f) in the Fourier domain, i.e. in terms of f̃(ω).

4. Show that the corresponding kernel in feature space setting is translation invariant, i.e. k(x, x′) =
k(x− x′). Note: you need not compute k for that purpose!

Solution

1. The polarization reconstructs a dot product via

1
4

(q(f + g)− q(f − g)) = 〈f, g〉.

Using this for the quadratic form above and using that ‖f‖2 = 〈f, f〉 we obtain

〈f, g〉H = 〈f, g〉+ 2〈f ′, g′〉+ 3〈f ′′, g′′〉.

Substituting f in place of g recovers the quadratic form we started with. To show that 〈·, ·〉H is
a dot product we need to show bilinearity of the overall expression. Instead of writing out the
equations we simply exploit that 〈·, ·〉 is a dot product and that f ′ is obtained by a linear operation
from f (and f ′′, g′, g′′ analogously). This completes the proof.

2. Before we begin, note that 1, sin lx, and cos lx are orthogonal with respect to the dot product if
we choose a suitable domain. Since the domain of integration is not specified, we pick one, namely
[0, 2π]. Therefore we have

q(f) = 2πc0 + π
n∑
l=1

(s2
l + c2l ) + 2π

n∑
l=1

l2(s2
l + c2l ) + 3π

n∑
l=1

l4(s2
l + c2l ).

3. Computing q(f) in Fourier domain means using the fact that for f̃ being the Fourier transform of
f we have f̃ ′(ω) = ωf̃ , f̃ ′′(ω) = ω2f̃ , and 〈f, f〉 = 〈f ′, f ′〉. Therefore we may write q(f) as

q(f) = ‖f̃‖2 + 2‖f̃ ′‖2 + 3‖f̃ ′′‖2 = ‖f̃‖2 + 2‖ωf̃‖2 + 3‖ω2f̃‖2 =
∫
f̃2(ω)(1 + 2ω2 + 3ω4)dω

This is the Fourier representation of q(f).

4. From the lectures we know that a regularization term of the form ‖f‖2H :=
∫
P−1(ω)f̃2(ω)dω

corresponds to a tranlation invariant kernel. In our case P (ω) = 1
1+2ω2+3ω4 and therefore k is the

Fourier (back-)transform of P (ω).
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