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Homework 2 Solutions

1 Convexity [Dougal; 25 pts]

1.1 Calculus of convex functions
(@) Letf:R" - R, AecR"™™, beR™ define hy(z) = f(Az +b). Then

hi(Az 4 (1= N)y) = fF(AQz + (1 — Ny) +b)
= f(Mz + (1= N)Ay +b)
= f(M[Az + 0] + (1 = N\)[Ay + b))
< Af(Az +b) + (1= N f(Ay +b)
= Ay (2) + (1= N)ha(y).

(b) Letf:R™ - R, g:R" — R; define hy = max(f, g). Then

ho(Az + (1 = A)y) = max (f(Az + (1 = N)y), g(Az + (1 = A)y))

< max (Af(z) + (1 = A)f(y), Ag(z) + (1 = N)g(y))

< max (Af(z), Ag(z)) +max ((1 — N)f(y), (1 — N)g(y))
= Amax (f(x), g(x)) + (1 = A) max (f(y), 9(y))

= Ma(z) + (1 = A)ha(y).

(c) Letg:R — Rboth convex and nondecreasing, f : R” — R convex but not necessarily nondecreasing;
define h3(x) = g(f(z)). Then

hs(Az + (1= ANy) = g(f(Az + (1 = N)y))
< g\ (@) + (1 =N f(y))
< Ag(f(2) + (1= Ng(f(y))
= Ahg(x) + (1 = Ahs(y).

1.2 First-order condition

Let f : R — R be continuously differentiable and dom f be open.

Suppose that f is convex. For any z and y in its domain, (z, f(z)) and (y, f(y)) are in the epigraph; then
(x + Ay — ), f(x) + M(f(y) — f(x))) is also in the epigraph for any A € [0,1]. Thus x + A(y — =) € dom f,
so dom f must be convex. We also have that

[+ Ay —2)) < f2) + M(f(y) - f(2))
[+ Ay — =) = fz) _ < ) - (@)

A
fla+ Ay — =) — f(z)

Taking the limit as A(y — ) — 0 from above, we get f'(z) (y — z) < f(y) — f(x) as desired.
Suppose that dom f is convex and f(b) — f(a) > f'(a) (b — a) for all points a,b. Then for any A € [0, 1],
z,y €dom f, z = Az + (1 — Ny € dom f. Then f(z) — f(2) > f(z)(x — 2) and f(y) — f(2) > f'(2)(y — 2).
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Multiplying the first inequality by A and the second by (1 — A):

Af(@) = f(2) + L= N(f) = £(2) 2 Af'(2)(@ = 2) + (1 = N)(f'(2)(y = 2))
Af(@) = M (2) + £y) = £(2) = M) + Mf(2) = f(2) Ax = Az +y — 2 = dy + Az
AM(@)+ (1 =Nfy) = f(z) 2 f(z) Az + (1= Ay —2] =0

(
by the definition of z. Thus Af(x) + (1 —A) f(y) > f(z+ (1 —X) f(y)), and so (Af(z) + (1 — N) f(y), A f(x) +
(1 — X)f(y)) is in the epigraph of f. Since this is true for all A € [0, 1], the epigraph of f must be convex.

1.3 Strict and strong convexity

(a) Let f be an m-strongly convex function. By definition, for any z,y € dom f, A € [0, 1]:

FO -+ (1= 0)g) < AF@) + (1= N7 () — gm0 = Nllz — 43
= Af(@) (1= 0 f(y) — 3uA0 = Ve~ gl +

< AF()+ (1= N() — 3201 = Nz~ ol

S = mA(1 = Nz 3

sincen —m < 0,and A, 1 — ), and ||z — y||3 are all nonnegative.

(b) Let f be an m-strongly convex function. By definition, for any = # y € dom f, A € (0, 1):

FO@+ (1= Ny) <Af(@) + 1 =N f(y) — 5mA1 =N —yl3
<Af(2) + (1 =) f(y)

sincem, A\, 1 — )\, and ||z — y||3 are all positive.

N | =

(c) One solution is f(x) = e”.
e Note that f(xz) = f'(z) = f(z), so that V2f(z) = e” > 0 for all z, and by the second-order
condition f is strictly convex.

e But f is not m-strongly convex for any m. For that to be true, there would have to be some m > 0
for which f”(z) > m for all z. But then we’d have f’(logm — 1) = €¢™"! = 1y < m, a
contradiction.

Another possible solution is f(z) = z#, a case where we actually have f”(0) = 0. Then:

e f(z) is not m-strongly convex for any m. If it were, there would be an m such that V2 f(z) = mI
for all # € R, since f is twice differentiable. But V2 f(x) = 1222, which means V2 f(0) = 0.

o f(x)is strictly convex. There may be a nicer proof, but we will verify the first-order condition
Oz + (1= My)* < Azt + (1= Ayt (1)

forall A € (0,1), z #y € R.

— First, we can see that z* is (12¢2)-strongly convex on (e, o). Thus, by part (b), (1) holds for
allz >0,y > 0.

- x%is also (12¢2)-strongly convex on (—o0, —¢). So (1) holds forall z < 0, y < 0.
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- Suppose © > 0,y < 0, |z| # |y|. Note
Az + (1= = Mzt + 40323 (1 — Ny + 62222 (1 — N2 + Dz (1 — V)% + (1 — M)yt
Since (1) holds for x and |y|, we know that
Mot 44322 (1 — N)Jy| + 63222 (1 — M) 2yl? + 4 z(1 — N3y + (1= NAy|* < Xzt + (1= N)|y|h
But [y = —y, [y|* = * [yI° = —¢?, |yl = y*, so we have
Mzt —aN323(1 — Ny + 632221 — V292 —dz(1 — 233 + (1= Dt < xzt 4+ (1= Nyt

Note that A\3z3(1 — X)y < 0, so we can add 8 times that to the LHS without breaking the
inequality. The same is true for Az(1 — \)?y>. We then get

Mzt 403231 — Ny 4+ 63222 (1 — N\)%y? +4dz(1 = N33 + (1 = Ny < Ao + (1 - Nyt

as desired.
— Suppose z < 0,y > 0, |z| # |y|- By symmetry with the last part, (1) holds.
- Suppose y = —z. Then

Az + 1=y =0z—1-Nz)* =2\ —1)"*
Azt 4+ (1= Nyt = o + (1= Na? =2,
Since0 < A <1, -1 <2\ —1< 1. Thus (2A — 1)* < 1,and (2\ — 1)*2z* < 2%, and (1) holds.
We have thus shown that (1) holds for all z,y € R, so that 2# is strictly convex.

1.4 Examples
(a) The second derivative of 22 + 2 is 2 + 1222 > 2, s0 2% + 2* is 2-strongly convex on R.

(b) 22 + 2% is still strongly-convex on [1,5]. It's 14-strongly convex, in fact, though we didn’t ask for the
constant.

() An arbitrary norm is convex, because || Az + (1 — Ny|| < |[Az]| + |[|(1 — Ny|| = Allz]| + (1 — N)||y]|. It
is not necessarily strictly convex; a simple counterexample is the absolute value on R, where if z > 0,

y>0wehave |Az + (1 — Ny| =z + (1 — N)y.

2 Linear Regression, Again ? [Ahmed; 20 pts]

2.1 Why Lasso Works
@
T (8) = 3ly— XBIP + A5
= Syl + B7XT X5 - 27 XB) + A|Bl:

= Sl + 117 — 257 XB) + Mgl

d
1 1
= —|lyl* + —B7 —yT X.iB; + A|Bi
2 P 2
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(b)

(©)

(d)

(e)

2.2
(a)

Note that d|3|/d = 1iff B > 0. Setting the partial derivative of the objective function w.r.t 5; to 0 we
get

DB = Py By N) = B~y X 4 A =0

aﬁ] A 7857 .]7y7 VR — My Yy .J -

, which gives

B =y"X;— A

Note that d|3|/dS = 1iff 8 < 0. Using the same procedure we can show that

ﬁj = yTX,j + A

B; = 0 what it can neither be greater then or less than 0- that is, when
y'X ;-\ <0,
y'X,;+A>0

which can be formulated as

" X 1 < A

Note that y7 X ; indicates how much X ; and y are (anti)correlated— that is, how strong X ; is as
a predictor for y. This condition means that 3; will be set to 0 if the corresponding feature is not
(anti)correlated enough with the output.

Setting the partial derivative of the objective function w.r.t 3; to 0 we get
Bj — yTX,j + )\ﬁ] = 0

which means 3 = 0 iff y” X ; is exactly 0. This is a much stronger condition than the lasso case.

Kernel Ridge Regression

One way to show it is to write 3* as X ¢ for some vector c:

(XTX +ADB* = XTy
B* — A_l(XTy—XTXﬁ*) :XT()\_l(y—Xﬂ*)) _ XTC7

where
c=A"1y - XpB)

Another way is to use the orthogonal decomposition 8 = 3 + 3. where 3, is the component orthog-
onal to all training points. Then X3, = 0 and we get

1 1 1
T(B) = Slly = X8y = XBLI* + S8y I1* + 181" = T(8)),

with equality holding only if 5, = 0, which means that unless 3, = 0, 8 cannot be optimal.
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(b) Note that 8 = X"«
(XTX +ADB* = XTy
(XTX +ADXTar = XTy
XTXXTor + \XTar = XTy
XT(XXT + Ao = XTy
The last equality shown o* given by

(XXT + A" =y,

results in the optimal 5*, which is the desired result. The part that depends on training inputs is
XXT, but (XXT)i,j = <.Ti,$j>

(c)
f(:lc) =pTz = ZaixiTx = Zai@i, x)

(d) For non-kernelized version we need d numbers to store 3, for the kernelized version we need n num-
bers to store « and n x d numbers to store training inputs.
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