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Kernel Properties

data is not linearly separable ! use feature vector of the
data �(x) in another space
we can even use infinite feature vectors
because of the Kernel trick you will not have to explicitly
compute the feature vectors �(x). (you will Kernelize an
algorithms in HW2).
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Kernels

dot product in feature space k(x, x

0) = h�(x),�(x0)i
we can write the kernel in matrix form over the data
sample: K

ij

= h�(x),�(x0)i = k(x, x

0). This is called a Gram
matrix.
K is positive semi-definite, i.e. ↵K↵ � 0 for all ↵ 2 Rm and
all kernel matrices K 2 Rm⇥m. Proof (from class):
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Kernels

by mercer’s theorem, any symmetric, square integrable
function k : X ⇥ X ! R that satisfies

Z

X⇥X
k(x, x

0)f (x)f (x0)dxdx

0 � 0

there exist a feature space �(x) and a � � 0
k(x, x

0) =
P

i

�
i

�
i

(x)�
i

(x0) ( we have k(x, x

0) = h�0(x),�0(x0)i)
in discrete space:

P
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any Gram matrix derived of a kernel k is positive semi definite
$ k is a valid kernel (dot product)
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k(x, x

0) is a valid kernel

show that f (x)f (x0)k(x, x

0) is a kernel
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Answer:

f (x)f (y)k(x, y) = f (x)f (y) < �(x),�(y) >=< f (x)�(x), f (y)�(y) >

=< �0(x),�0(y) >
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k1(x, x

0), k2(x, x

0) are valid kernels

show that c1 ⇤ k1(x, x

0) + c2 ⇤ k2(x, x

0) , where c1, c2 � 0 is a
valid Kernel (multiple ways to show it)
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Answer 1:
For any function f (.):

Z

x,x0
f (x)f (x0)[c1k1(x, x

0) + c2k2(x, x

0)] dx dx

0

= c1

Z

x,x0
f (x)f (x0)k1(x, x

0) dx dx

0 + c2

Z

x,x0
f (x)f (x0)k2(x, x

0) dx dx

0 � 0

since
R

x,x0 f (x)f (x0)k1(x, x

0) dx dx

0 � 0 andR
x,x0 f (x)f (x0)k2(x, x

0) dx dx

0 � 0 since k1 and k2 are valid kernels.
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Answer 2:
Here is another way to prove it:

Given any final set of instances {x1, . . . , x

n

}, let K1 (resp.,
K2) be the n ⇥ n Gram matrix associated with k1 (resp., k2).
The Gram matrix associated with c1k1 + c2k2 is just
K = c1K1 + c2K2.
K is PSD because any v 2 Rn,
v

T(c1K1 + c2K2)v = c1(vT

K1v) + c2(vT

K2v) � 0 as
v

T

K1v � 0 and v

T

K2v � 0 follows from K1 and K2 being
positive semi definite.
k is a valid kernel.
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Answer 3:
let �1 and �2 be the feature vectors associated with k1 and k2
respectively.
Take vector � which is the concatenation of pc1�1 and p

c2�2.
i.e. �(x) =
[
p

c1�1
1(x),

p
c1�1

2(x), ....
p

c1�1
m

(x),
p

c2�2
1(x),

p
c2�2

2(x), ....
p

c2�2
m

(x)].
It’s easy to check that

h�(x),�(x0)i =
NX

i=1

�
i

(x)⇥ �
i

(x0) = c1

mX

i=1

�1
i

(x)⇥ �1
i

(x0)

= c1h�1(x),�1(x0)i+ c2h�2(x),�2(x0)i
= c1k1(x, x

0) + c2k2(x, x

0) = k(x, x

0)

therefore k is a valid kernel.
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k1, k2 are valid kernels

show that k1(x, x

0)� k2(x, x

0) is not necessarily a kernel
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Proof by counter example:
Consider the kernel k1 being the identity (k1(x, x

0) = 1 iff x = x

0

and = 0 otherwise), and k2 being twice the identity (k1(x, x

0) = 2
iff x = x

0 and = 0 otherwise).
Let K1 = I

p

be the p ⇥ p identity matrix and K

p

= 2I

p

be 2 times
that identity matrix. K1 and K2 are the Gram matrices
associated with k1 and k2 respectively. Clearly both K1 and K2
are positive semi definite, however K1 � K2 = �I is not, as its
eigenvalues are -1.
Therefore k is not a valid kernel.
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PSD matrices A and B

show that AB is not necessarily PSD
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for PSD matrices A and B, it suffices to show that AB is not

symmetric – so just use A =

✓
1 0
0 2

◆
and B =

✓
2 1
1 2

◆
; here

AB =

✓
2 1
2 4

◆
which is not symmetric.
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k1, k2 are valid kernels

show that the element wise product
k(x

i

, x

j

) = k1(xi

, x

j

)⇥ k2(xi

, x

j

) is a valid kernel.
start by showing that if matrices A and B are PSD, then
C

ij

= A

ij

⇥ B

ij

is PSD
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Answer: First show that C s.t. C

ij

= A

ij

⇥ B

ij

is PSD:
One way to show it:

1 Any PSD matrix Q is a covariance matrix.
To see this, think of a p-dimensional random variable x with
a covariance matrix I

p

, the identity matrix. (Q is p ⇥ p)
Because Q is PSD it admits a non-negative symmetric
square root Q

1
2 .

Then:

cov(Q
1
2
x) = Q

1
2
cov(x))Q

1
2 = Q

1
2
IQ

1
2 = Q

And therefore Q is a covariance matrix.
2 We also know that any covariance matrix is PSD. So given

A and B PSD, we know that they are covariance matrices.
We want to show that C is also a covariance matrix and
therefore PSD.
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3 Let u = (u1, . . . , u

n

)T ⇠ N(0
p

,A) and
v = (v1, . . . , v

n

)T ⇠ N(0
p

,B) where 0 + p is a p-dimensional
vector of zeros
Define the vector w = (u1v1, . . . , u

n

v

n

)T

4

cov(w) = E[(w � µw)(w � µw)T ] = E[ww

T ]

This is because µw

i

= 0 for all i. This is because u and v are
independent so µw = µu ⇥ µv = 0

p

cov(w)
i,j = E[w

i

w

T

j
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i

v

i
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j
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]E[v
i

v

j

]

This is again because u and v are independent.
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i,j = E[u

i

u
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]E[v
i

v
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] = A

i,j ⇥ B

i,j = C

i,j
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5 Therefore C is a covariance matrix and therefore PSD
6 Since any kernel matrix created from

k(x
i

, x

j

) = k1(xi

, x

j

)⇥ k2(xi

, x

j

) is PSD, then k is PSD.
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A is PSD

show that A

m is PSD
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Answer:
Recall A = UDU

T

First we show that A

m = UD

m

U

T .
Proof by induction:

trivially true for m = 1.
A

m+1 = AA

m = UDU

T(UD

m

U

T) = UD(UT

U)Dm

U

T =
UDD

m

U

T = UD

m+1
U

T

Hence, the eigenvalues of A

m are the diagonal elements of D

m,
which are �m

i

(where {�
i

} are the diagonal elements of D).
Since �

i

� 0, these eigenvalues �m

i

are also � 0. This means
A

m is PSD.
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k(x, x

0) is a valid kernel

show that k(x, y)2  k(x, x)k(y, y)

Leila Wehbe Kernel Properties - Convexity



Kernel Properties

Exercices

Answer:

k(x, y)2 =< �(x),�(y) >2= ||�(x)||2||�(y)||2(cos(✓�(x),�(y)))
2

 ||�(x)||2||�(y)||2 = k(x, x)k(y, y)
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Convex Functions

Convex Sets

Definition
For x , x 0 2 X it follows that �x + (1 � �)x 0 2 X for � 2 [0, 1]
Examples

Empty set ;, single point {x0}, the whole space Rn

Hyperplane: {x | a>x = b}, halfspaces {x | a>x  b}
Euclidean balls: {x | ||x � xc ||2  r}
Positive semidefinite matrices: Sn

+ = {A 2 Sn|A ⌫ 0} (Sn is
the set of symmetric n ⇥ n matrices)
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Convex Sets
Convex Functions

Convexity Preserving Set Operations

Convex Set C,D
Translation {x + b | x 2 C}
Scaling {�x | x 2 C}
Affine function {Ax + b | x 2 C}
Intersection C \ D
Set sum C + D = {x + y | x 2 C, y 2 D}
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Convex Functions

Convex Functions

dom f is convex, � 2 [0, 1]
�f (x) + (1 � �)f (y) � f (�x + (1 � �)y)

First-order condition: if f is differentiable,

f (y) � f (x) +rf (x)>(y � x)

Second-order condition: if f is twice differentiable,

r2f (x) ⌫ 0

Strictly convex: r2f (x) � 0
Strongly convex: r2f (x) ⌫ dI with d > 0
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Convex Functions

Convex Functions

A quick matrix calculus reference: http://www.ee.ic.ac.
uk/hp/staff/dmb/matrix/calculus.html
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Convex Functions

Convex Functions

Below-set of a convex function is convex:
f (�x + (1 � �)y)  �f (x) + (1 � �)f (y)
hence �x + (1 � �)y 2 X for x , y 2 X
Convex functions don’t have local minima:
Proof by contradiction:
linear interpolation breaks local minimum condition
Convex Hull:
Conv(X ) = {x̄ | x̄ =

P
↵i xi where ↵i � 0 and

P
↵i = 1}

Convex hull of a set is always a convex set
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Convex Sets
Convex Functions

Convex Functions examples

Exponential. eax convex on R, any a 2 R
Powers. xa convex on R++ when a � 1 or a  0, and
concave for 0  a  1.
Powers of absolute value. |x |p for p � 1, convex on R.
Logarithm. log x concave on R++.
Norms. Every norm on Rn is convex.
f (x) = max{x1, ..., xn} convex on Rn

Log-sum-exp. f (x) = log(ex1 + ...+ exn) convex on Rn.
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Convex Sets
Convex Functions

Convexity Preserving Function Operations

Convex function f (x), g(x)
Nonnegative weighted sum: af (x) + bg(x)
Pointwise Maximum: f (x) = max{f1(x), ..., fm(x)}
Composition with affine function: f (Ax + b)
Composition with nondecreasing convex g: g(f (x))
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Constrained Optimization

First-order Methods
Newton’s Method

Gradient Descent

given a starting point x 2 domf .
repeat

1. �x := �rf (x)
2. Choose step size t via exact or backtracking line search.
3. update. x := x + t�x .

Until stopping criterion is satisfied.

Key idea
Gradient points into descent direction
Locally gradient is good approximation of objective function

Gradient Descent with line search
Get descent direction
Unconstrained line search
Exponential convergence for strongly convex objective
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Newton’s Method

Newton’s method

Convex objective function f
Nonnegative second derivative

@2
x f (x) ⌫ 0

Taylor expansion

f (x + �) = f (x) + �>@x f (x) +
1
2
�>@2

x f (x)� + O(�3)

Minimize approximation & iterate til converged

x  x � [@2
x f (x)]�1@x f (x)
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