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Kernel Properties
Kernel Properties

@ data is not linearly separable — use feature vector of the
data ®(x) in another space

@ we can even use infinite feature vectors

@ because of the Kernel trick you will not have to explicitly
compute the feature vectors ®(x). (you will Kernelize an
algorithms in HW2).
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Kernels

@ dot product in feature space k(x,x’) = (®(x), ®(x))
@ we can write the kernel in matrix form over the data

sample: K;; = (®(x), ®(x')) = k(x,x’). This is called a Gram
matrix.

@ K is positive semi-definite, i.e. aKa > 0 for all « € R™ and
all kernel matrices K € R™*™. Proof (from class):

Zaaj Za,a] O (x7))
— <Z i®(x;), Z a®(x)) = || ) a®(x)|* > 0
i j i
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Kernel Properties
Kernels

@ by mercer’s theorem, any symmetric, square integrable
function k : X x X — R that satisfies

/ k(x, X' )f (x)f (x")dxdx' > 0
XxX

there exist a feature space ®(x) anda A >0
k(x, x') = 32 Migi(x)¢i(x') (we have k(x,x') = (¢'(x), ' (x')))
@ in discrete space: }_; > K(x;, x;)cic;

any Gram matrix derived of a kernel k is positive semi definite
+ k is a valid kernel (dot product)
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k(x,x) is a valid kernel
@ show that f(x)f (x')k(x,x") is a kernel
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Answer:

FfWk(x,y) =F)f () < p(x), 9(y) >=<f(x)p(x),f(¥)p(y) >
=< ¢'(x),¢'(y) >
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Exercices

ki(x,x'), ka(x,x") are valid kernels

@ show that ¢; * ki (x,x') + ¢z * ka(x,x) , where ¢;,c; > 0lis a
valid Kernel (multiple ways to show it)
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Answer 1:
For any function f(.):

/ F)fF () [erki (x,x") 4+ caka(x,x")] dx dx’

—cl/ FEF( ey (x, X" dxdx’ —i—cz/ FEF (N (x, X ) dxdx’ > 0

since [, . f(x)f (x')ki (x,x') dxdx’ > 0 and
fxx,f( )f( "k (x xX')dxdx' > 0 since k; and k; are valid kernels.
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Answer 2:
Here is another way to prove it:

@ Given any final set of instances {xi,...,x,}, let K; (resp.,
K») be the n x n Gram matrix associated with k; (resp., k»).
The Gram matrix associated with c1k; + 2k is just
K = c1K| + 2 Ks.

@ Kis PSD because any v € R”,
vi(e1Ky + c2Ko)v = 1 (vVIKv) + c2(vIKpv) > 0 as
vIKv > 0 and vI'K,v > 0 follows from K; and K, being
positive semi definite.

@ kis a valid kernel.
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Answer 3:

let ®' and ®2 be the feature vectors associated with k; and &
respectively.

Take vector ® which is the concatenation of \/acbl and \/ECDQ.
i.e. (x) =

[V/E181 (x), V/E193(X), - /CT D (1), /€207 (x), /€203 (X), ... /C2 7 ().

It's easy to check that

m

N
(00, 20)) = 35 00) X 8) =1 Y0l
i=1

= c1(®'(x), @' (x)) + 02@2()6)7 @ (x'))
= crky (x,X) + caka (x, ') = k(x,x')

therefore k is a valid kernel.
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Exercices

ki, k, are valid kernels

@ show that & (x, x') — k»(x, x') is not necessarily a kernel
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Proof by counter example:

Consider the kernel k; being the identity (k;(x,x') = 1 iff x =X
and = 0 otherwise), and k;, being twice the identity (k;(x,x’) =2
iff x = x’ and = 0 otherwise).

Let K| = I, be the p x p identity matrix and K, = 21, be 2 times
that identity matrix. K; and K, are the Gram matrices
associated with k; and k, respectively. Clearly both K; and K,
are positive semi definite, however K; — K, = —I is not, as its
eigenvalues are -1.

Therefore k is not a valid kernel.
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PSD matrices A and B
@ show that AB is not necessarily PSD
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for PSD matrices A and B, it suffices to show that AB is not

. . 1
symmetric — so just use A = ( (1) (2) ) and B = ( f ) >;here

AB = ( ; 41‘ > which is not symmetric.
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ki1, k, are valid kernels

@ show that the element wise product
k(xi, x) = ki(x;,xj) % ka(x;,x;) is a valid kernel.
@ start by showing that if matrices A and B are PSD, then
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Answer: First show that C s.t. C;; = A;; x B;; is PSD:
One way to show it:

@ Any PSD matrix Q is a covariance matrix.
To see this, think of a p-dimensional random variable x with
a covariance matrix L,, the identity matrix. (Q is p x p)
Because Q is PSD it admits a non-negative symmetric
square root Q%.
Then:

ST
ST

cov(Q7x) = Q7cov(x))Q? = Q71Q? = Q

And therefore Q is a covariance matrix.

@ We also know that any covariance matrix is PSD. So given
A and B PSD, we know that they are covariance matrices.
We want to show that C is also a covariance matrix and
therefore PSD.
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Q Letu=(uy, ..., u,)" ~N(0y,A) and

v= (1, ..., v)! ~ N(0,,B) where 0 + p is a p-dimensional
vector of zeros
Define the vector w = (ujvy, ..., uv,)’

o
cov(w) = E[(w — u")(w — 1*)"] = E[ww"]

This is because 4} = 0 for all i. This is because « and v are
independent so p" = p* x p’ =0,
cov(w)ij = Eww] ] = E[(uvi) ;)] = E[(uitgj) (vivy)]
= Eluju] E[vivj]
This is again because « and v are independent.

COV(W)[J = E[uiuj] E[V,‘Vj] = AiJ X B,‘J = CiJ

Leila Wehbe Kernel Properties - Convexity



Kernel Properties
Exercices

© Therefore C is a covariance matrix and therefore PSD

© Since any kernel matrix created from
k(xi,xj) =k (xi,xj) X kz(xi,xj) is PSD, then k is PSD.
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Ais PSD
@ show that A™ is PSD
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Answer:
Recall A = UDUT
First we show that A” = UD"UT.
Proof by induction:

@ trivially true for m = 1.

e Amtl = AAm = yDUT(UD"UT) = UD(UTU)D"UT =

upp"uT = upmtiy?

Hence, the eigenvalues of A™ are the diagonal elements of D",
which are A" (where {\;} are the diagonal elements of D).
Since \; > 0, these eigenvalues A" are also > 0. This means
A" is PSD.
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k(x,x) is a valid kernel
@ show that k(x,y)? < k(x, x)k(y,y)
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Answer:

k(x,3)? =< 6(x),6(y) >*= [[o(x)|Pllo ()] *(cos (Ve 6()))
< [le@)IP[leW)II* = k(e x)k(y, )
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Outline

@ Convexity
@ Convex Sets

@ Convex Functions

e Unconstrained Convex Optimization
@ First-order Methods
@ Newton’s Method
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Convex Functions

Convex Sets

@ Definition
For x, x’ € X it follows that Ax 4+ (1 — \)x" € X for A € [0,1]
@ Examples
e Empty set 0, single point {xo}, the whole space R"

Hyperplane: {x | a’ x = b}, halfspaces {x | a" x < b}
Euclidean balls: {x | ||x — x¢|]2 < r}

Positive semidefinite matrices: S = {A< S"|A = 0} (S is
the set of symmetric n x n matrices)
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Convexity Preserving Set Operations

Convex Set C, D
@ Translation {x + b | x € C}
@ Scaling {\x | x € C}
@ Affine function {Ax + b | x € C}
@ Intersection Cn D
@ SetsumC+D={x+y|xeC,yeD}
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Outline

@ Convexity

@ Convex Functions
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Convex Functions

Convex Functions

\ /A dom fis convex, A € [0,1]
— M) + (1= Nf(y) = FOx + (1 = \)y)
@ First-order condition: if f is differentiable,
f(y) = f(x) + VI(x)" (y = x)
@ Second-order condition: if f is twice differentiable,
V2f(x) = 0

@ Strictly convex: V2f(x) = 0
Strongly convex: V2f(x) = dl with d > 0
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Convex Functions

A quick matrix calculus reference: http://www.ee.ic.ac.
uk/hp/staff/dmb/matrix/calculus.html
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Convex Functions

Convex Functions

@ Below-set of a convex function is convex:
fOAX + (1= A)y) < AM(x)+ (1= Nf(y)
hence Ax + (1 — Ay e Xforx,y € X
@ Convex functions don’t have local minima:
Proof by contradiction:
linear interpolation breaks local minimum condition
@ Convex Hull:
Conv(X)={x|Xx=> ajxijwherea;>0and > a;=1}
Convex hull of a set is always a convex set
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Convex Functions examples

@ Exponential. €@ convex on R, any a€ R

Powers. x2 convex on R, whena > 1ora<0, and
concave for0 < a<1.

Powers of absolute value. |x|P for p > 1, convex on R.
Logarithm. log x concave on R, .

Norms. Every norm on R” is convex.

f(x) = max{xy, ..., Xxn} convex on R"

Log-sum-exp. f(x) = log(e* + ... + €*") convex on R".
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Convexity Preserving Function Operations

Convex function f(x), g(x)
@ Nonnegative weighted sum: af(x) + bg(x)
@ Pointwise Maximum: f(x) = max{f;(x), ..., fm(x)}
@ Composition with affine function: f(Ax + b)
@ Composition with nondecreasing convex g: g(f(x))
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Outline

e Unconstrained Convex Optimization
@ First-order Methods
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First-order Methods
Newton’s Method

Unconstrained Convex Optimization

Gradient Descent

given a starting point x € domf.

repeat
1. Ax := —VIf(x)
2. Choose step size t via exact or backtracking line search.
3. update. x := x + tAx.

Until stopping criterion is satisfied.

@ Key idea

o Gradient points into descent direction

e Locally gradient is good approximation of objective function
@ Gradient Descent with line search

o Get descent direction
e Unconstrained line search
e Exponential convergence for strongly convex objective
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Outline

e Unconstrained Convex Optimization

@ Newton’s Method
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First-order Methods
Unconstrained Convex Optimization Newton’s Method

Newton’s method

@ Convex objective function f
@ Nonnegative second derivative

2f(x) = 0
@ Taylor expansion

1
2

@ Minimize approximation & iterate til converged

f(x +8) = f(x) + 0T xf(x) + =6 92F(x)d + O(6%)

X < x — [02f(x)] 71 Oxf(x)
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