An Introduction to Information Theory

Carlton Downey

November 12, 2013

Introduction

- Today's recitation will be an introduction to Information Theory
- Information theory studies the quantification of Information
- Compression
- Transmission
- Error Correction
- Gambling
- Founded by Claude Shannon in 1948 by his classic paper "A Mathematical Theory of Communication"
- It is an area of mathematics which I think is particularly elegant

Outline

Motivation
Information
Entropy
Marginal Entropy
Joint Entropy
Conditional Entropy
Mutual Information
Compressing Information
Prefix Codes
KL Divergence

Outline

Motivation

Information
Entropy
Marginal Entropy
Joint Entropy
Conditional Entropy
Mutual Information

Compressing Information
Prefix Codes
KL Divergence

Motivation: Casino

- You're at a casino
- You can bet on coins, dice, or roulette
- Coins $=2$ possible outcomes. Pays 2:1
- Dice $=6$ possible outcomes. Pays 6:1
- roulette $=36$ possible outcomes. Pays 36:1
- Suppose you can predict the outcome of a single coin toss/dice roll/roulette spin.
- Which would you choose?

Motivation: CASINO

- You're at a casino
- You can bet on coins, dice, or roulette
- Coins $=2$ possible outcomes. Pays 2:1
- Dice $=6$ possible outcomes. Pays 6:1
- roulette $=36$ possible outcomes. Pays 36:1
- Suppose you can predict the outcome of a single coin toss/dice roll/roulette spin.
- Which would you choose?
- Roulette. But why? these are all fair games

Motivation: CASINo

- You're at a casino
- You can bet on coins, dice, or roulette
- Coins $=2$ possible outcomes. Pays 2:1
- Dice $=6$ possible outcomes. Pays 6:1
- roulette $=36$ possible outcomes. Pays 36:1
- Suppose you can predict the outcome of a single coin toss/dice roll/roulette spin.
- Which would you choose?
- Roulette. But why? these are all fair games
- Answer: Roulette provides us with the most Information

Motivation: Coin Toss

- Consider two coins:
- Fair coin C_{F} with $P(H)=0.5, P(T)=0.5$
- Bent coin C_{B} with $P(H)=0.99, P(T)=0.01$
- Suppose we flip both coins, and they both land heads
- Intuitively we are more "surprised" or "Informed" by first outcome.
- We know C_{B} is almost certain to land heads, so the knowledge that it lands heads provides us with very little information.

Motivation: Compression

- Suppose we observe a sequence of events:
- Coin tosses
- Words in a language
- notes in a song
- etc.
- We want to record the sequence of events in the smallest possible space.
- In other words we want the shortest representation which preserves all information.
- Another way to think about this: How much information does the sequence of events actually contain?

Motivation: Compression

To be concrete, consider the problem of recording coin tosses in unary.

$$
T, T, T, T, H
$$

Approach 1:

H	T
0	00

$00,00,00,00,0$
We used 9 characters

Motivation: Compression

To be concrete, consider the problem of recording coin tosses in unary.

$$
T, T, T, T, H
$$

Approach 2:

H	T
00	0

$$
0,0,0,0,00
$$

We used 6 characters

Motivation: Compression

- Frequently occuring events should have short encodings
- We see this in english with words such as "a", "the", "and", etc.
- We want to maximise the information-per-character
- seeing common events provides little information
- seeing uncommon events provides a lot of information

Outline

Motivation

Information

Entropy

Marginal Entropy
Joint Entropy
Conditional Entropy
Mutual Information

Compressing Information
Prefix Codes
KL Divergence

INFORMATION

- Let X be a random variable with distribution $p(X)$.
- We want to quantify the information provided by each possible outcome.
- Specifically we want a function which maps the probability of an event $p(x)$ to the information $I(x)$
- Our metric $I(x)$ should have the following properties:
- $I\left(x_{i}\right) \geq 0 \quad \forall i$.
- $I\left(x_{1}\right)>I\left(x_{2}\right)$ if $p\left(x_{1}\right)<p\left(x_{2}\right)$
- $I\left(x_{1}, x_{2}\right)=I\left(x_{1}\right)+I\left(x_{2}\right)$

INFORMATION

$$
I(x)=f(p(x))
$$

- We want $f()$ such that $I\left(x_{1}, x_{2}\right)=I\left(x_{1}\right)+I\left(x_{2}\right)$
- We know $p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right)$
- The only function with this property is $\log ()$: $\log (a b)=\log (a)+\log (b)$
- Hence we define:

$$
I(X)=\log \left(\frac{1}{p(x)}\right)
$$

Information: Coin

Fair Coin: | h | t |
| :---: | :---: |
| | 0.5 |

$$
\begin{aligned}
I(h) & =\log \left(\frac{1}{0.5}\right)=\log (2)=1 \\
I(t) & =\log \left(\frac{1}{0.5}\right)=\log (2)=1
\end{aligned}
$$

Information: Coin

Bent Coin: | h | t |
| :---: | :---: |
| 0.25 | 0.75 |

$$
\begin{aligned}
& I(h)=\log \left(\frac{1}{0.25}\right)=\log (4)=2 \\
& I(t)=\log \left(\frac{1}{0.75}\right)=\log (1.33)=0.42
\end{aligned}
$$

Information: Coin

$$
\begin{aligned}
& I(h)=\log \left(\frac{1}{0.01}\right)=\log (100)=6.65 \\
& I(t)=\log \left(\frac{1}{0.99}\right)=\log (1.01)=0.01
\end{aligned}
$$

Information: Two Events

Question: How much information do we get from observing two events?

$$
\begin{aligned}
I\left(x_{1}, x_{2}\right) & =\log \left(\frac{1}{p\left(x_{1}, x_{2}\right)}\right) \\
& =\log \left(\frac{1}{p\left(x_{1}\right) p\left(x_{2}\right)}\right) \\
& =\log \left(\frac{1}{p\left(x_{1}\right)} \frac{1}{p\left(x_{2}\right)}\right) \\
& =\log \left(\frac{1}{p\left(x_{1}\right)}\right)+\log \left(\frac{1}{p\left(x_{2}\right)}\right) \\
& =I\left(x_{1}\right)+I\left(x_{2}\right)
\end{aligned}
$$

Answer: Information sums!

Information is Additive

- $\mathrm{I}(\mathrm{k}$ fair coin tosses $)=\log \frac{1}{1 / 2^{k}}=k$ bits
- So:
- Random word from a 100,000 word vocabulary: $\mathrm{I}($ word $)=\log (100,000)=16.61$ bits
- A 1000 word document from same source: I (documents) $=16,610$ bits
- A 480 pixel, 16-greyscale video picture: I (picture) $=307,200 \times \log (16)=1,228,800$ bits
- A picture is worth (a lot more than) 1000 words!
- In reality this is a gross overestimate

Information: Two Coins

$$
\begin{aligned}
I(h h) & =I(h)+I(h)=4 \\
I(h t) & =I(h)+I(t)=2.42 \\
I(t h) & =I(t)+I(h)=2.42 \\
I(t h) & =I(t)+I(t)=0.84
\end{aligned}
$$

Information: Two Coins

Bent Coin Twice: | hh | ht | th | tt |
| :---: | :---: | :---: | :---: |
| | 0.0625 | 0.1875 | 0.1875 |
| | 0.5625 | | |

$$
\begin{aligned}
I(h h) & =\log \left(\frac{1}{0.0625}\right)=\log (4)=4 \\
I(h t) & =\log \left(\frac{1}{0.1875}\right)=\log (4)=2.42 \\
I(t h) & =\log \left(\frac{1}{0.1875}\right)=\log (4)=2.42 \\
I(t t) & =\log \left(\frac{1}{0.5625}\right)=\log (4)=0.84
\end{aligned}
$$

Outline

Motivation

Information

Entropy

Marginal Entropy
Joint Entropy
Conditional Entropy
Mutual Information

Compressing Information
Prefix Codes
KL Divergence

ENTROPY

- Suppose we have a sequence of observations of a random variable X.
- A natural question to ask is what is the average amount of information per observation.
- This quantitity is called the Entropy and denoted $H(X)$

$$
H(X)=E[I(X)]=E\left[\log \left(\frac{1}{p(X)}\right)\right]
$$

Entropy

- Information is associated with an event - heads, tails, etc.
- Entropy is associated with a distribution over events - $\mathrm{p}(\mathrm{x})$.

Entropy: Coin

Fair Coin: | x | h | t |
| :---: | :---: | :---: |
| | $\mathrm{p}(\mathrm{x})$ | 0.5 |
| I | 0.5 | |
| $\mathrm{I}(\mathrm{x})$ | 1 | 1 |
| | | |

$$
\begin{aligned}
H(X) & =E[I(X)] \\
& =\sum_{i} p\left(x_{i}\right) I(X) \\
& =p(h) I(h)+p(t) I(t) \\
& =0.5 \times 1+0.5 \times 1 \\
& =1
\end{aligned}
$$

Entropy: Coin

Bent Coin: | x | h | t |
| :---: | :---: | :---: |
| | $\mathrm{p}(\mathrm{x})$ | 0.25 |
| $\mathrm{I}(\mathrm{x})$ | 2.75 | |
| | 2.42 | |

$$
\begin{aligned}
H(X) & =E[I(X)] \\
& =\sum_{i} p\left(x_{i}\right) I(X) \\
& =p(h) I(h)+p(t) I(t) \\
& =0.25 \times 2+0.75 \times 0.42 \\
& =0.85
\end{aligned}
$$

Entropy: Coin

Very Bent Coin: | x | h | t |
| :---: | :---: | :---: |
| | $\mathrm{p}(\mathrm{x})$ | 0.01 |
| $\mathrm{I}(\mathrm{x})$ | 6.65 | 0.99 |
| | 0.01 | |

$$
\begin{aligned}
H(X) & =E[I(X)] \\
& =\sum_{i} p\left(x_{i}\right) I(X) \\
& =p(h) I(h)+p(t) I(t) \\
& =0.01 \times 6.65+0.99 \times 0.01 \\
& =0.08
\end{aligned}
$$

Entropy: All coins

Entropy: All coins

$$
H(P)=p \log \frac{1}{p}+(1-p) \log \frac{1}{1-p}
$$

Alternative Explanations of Entropy

$$
H(S)=\sum_{i} p_{i} \log \frac{1}{p_{i}}
$$

- Average amount of information provided per event
- Average amount of surprise when observing a event
- Uncertainty an observer has before seeing the event
- Average number of bits needed to communicate each event

The Entropy of English

27 Characters (A-Z, space)
100,000 words (average 5.5 characters each)

- Assuming independence between successive characters:
- Uniform character distribution: $\log (27)=4.75$ bits/characters
- True character distribution: 4.03 bits/character
- Assuming independence between successive words:
- Uniform word distribution: $\frac{\log (100,000)}{6.5}=2.55 \mathrm{bits} /$ character
- True word distribution: $\frac{9.45}{6.5}=1.45$ bits/character
- True Entropy of English is much lower

Types of Entropy

- There are 3 Types of Entropy
- Marginal Entropy
- Joint Entropy
- Conditional Entropy
- We will now define these quantities, and study how they are related.

MARGINAL ENTROPY

- A single random variable X has a Marginal Distribution

$$
p(X)
$$

- This distribution has an associated Marginal Entropy

$$
H(X)=\sum_{i} p\left(x_{i}\right) \log \frac{1}{p\left(x_{i}\right)}
$$

- Marginal entropy is the average information provided by observing a variable X

Joint Entropy

- Two or more random variables X, Y have a Joint Distribution

$$
p(X, Y)
$$

- This distribution has an associated Joint Entropy

$$
H(X, Y)=\sum_{i} \sum_{j} p\left(x_{i}, y_{j}\right) \log \frac{1}{p\left(x_{i}, y_{j}\right)}
$$

- Marginal entropy is the average total information provided by observing two variables X, Y

Conditional Entropy

- Two random variables X, Y also have two Conditional Distributions

$$
p(X \mid Y) \text { and } P(Y \mid X)
$$

- These distributions have associated Conditional Entropys

$$
\begin{aligned}
H(X \mid Y) & =\sum_{j} p\left(y_{j}\right) H\left(X \mid y_{j}\right) \\
& =\sum_{j} p\left(y_{j}\right) \sum_{i} p\left(x_{i} \mid y_{j}\right) \log \frac{1}{p\left(x_{i} \mid y_{j}\right)} \\
& =\sum_{i} \sum_{j} p\left(x_{i}, y_{j}\right) \log \frac{1}{p\left(x_{i} \mid y_{j}\right)}
\end{aligned}
$$

- Conditional entropy is the average additional information provided by observing X, given we already observed Y

Types of Entropy: Summary

- Entropy: Average information gained by observing a single variable
- Joint Entropy: Average total information gained by observing two or more variables
- Conditional Entropy: Average additional information gained by observing a new variable

Entropy Relationships

Relationshir: $H(X, Y)=H(X)+H(Y \mid X)$

$$
\begin{aligned}
H(X, Y) & =\sum_{i, j} p\left(x_{i}, y_{j}\right) \log \left(\frac{1}{p\left(x_{i}, y_{j}\right)}\right) \\
& =\sum_{i, j} p\left(x_{i}, y_{j}\right) \log \left(\frac{1}{p\left(y_{j} \mid x_{i}\right) p\left(x_{i}\right)}\right) \\
& =\sum_{i, j} p\left(x_{i}, y_{j}\right)\left[\log \left(\frac{1}{p\left(x_{i}\right)}\right)+\log \left(\frac{1}{p\left(y_{j} \mid x_{i}\right)}\right)\right] \\
& =\sum_{i} p\left(x_{i}\right) \log \left(\frac{1}{p\left(x_{i}\right)}\right)+\sum_{i} p\left(x_{i}, y_{j}\right) \log \left(\frac{1}{p\left(y_{j} \mid x_{i}\right)}\right) \\
& =H(X)+H(Y \mid X)
\end{aligned}
$$

Relationship: $H(X, Y) \leq H(X)+H(Y)$

- We know $H(X, Y)=H(X)+H(Y \mid X)$
- Therefore we need only show $H(Y \mid X) \leq H(Y)$
- This makes sense, knowing X can only decrease the addition information provided by Y.

Relationship: $H(X, Y) \leq H(X)+H(Y)$

- We know $H(X, Y)=H(X)+H(Y \mid X)$
- Therefore we need only show $H(Y \mid X) \leq H(Y)$
- This makes sense, knowing X can only decrease the addition information provided by Y.
- Proof? Possible homework =)

Entropy Relationships

Mutual Information

- The Mutual Information $I(X ; Y)$ is defined as:

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

- The mutual information is the amount of information shared by X and Y.
- It is a measure of how much X tells us about Y, and vice versa.
- If X and Y are independent then $I(X ; Y)=0$, because X tells us nothing about Y and vice versa.
- If $X=Y$ then $I(X ; Y)=H(X)=H(Y)$. X tells us everything about Y and vice versa.

EXAMPLE

Marginal Distribution:

X	sun	rain	Y	hot	cold
$P(X)$	0.6	0.4	$P(Y)$	0.6	0.4

Conditional Distribution:

Y	hot	cold
$P(Y \mid X=$ sun $)$	0.8	0.2
Y	hot	cold
$P(Y \mid X=$ rain $)$	0.3	0.7

Joint Distribution:

	hot	cold
sun	0.48	0.12
rain	0.12	0.28

Example: Marginal Entropy

Marginal Distribution: | X | sun | rain |
| :---: | :---: | :---: |
| $P(X)$ | 0.6 | 0.4 |

$$
\begin{aligned}
H(X) & =\sum_{i} p\left(x_{i}\right) \log \left(\frac{1}{p\left(x_{i}\right)}\right) \\
& =0.6 \log \left(\frac{1}{0.6}\right)+0.4 \log \left(\frac{1}{0.4}\right) \\
& =0.97
\end{aligned}
$$

Example: Joint Entropy

		hot	cold
Joint Distribution:	sun	0.48	0.12
rain	0.12	0.28	

$$
\begin{aligned}
H(X) & =\sum_{i, j} p\left(x_{i}, y_{i}\right) \log \left(\frac{1}{p\left(x_{i}, y_{i}\right)}\right) \\
& =0.48 \log \left(\frac{1}{0.48}\right)+2\left[0.12 \log \left(\frac{1}{0.12}\right)\right]+0.28 \log \left(\frac{1}{0.28}\right) \\
& =1.76
\end{aligned}
$$

EXAMPLE: CONDITIONAL ENTROPY

		hot	cold
Joint Distribution:	sun	0.48	0.12
	rain	0.12	0.28

Conditional Distribution: \begin{tabular}{c}

\mid	hot	cold
	$P(Y \mid X=$ sun $)$	0.8
0.2		
Y	hot	cold
$P(Y \mid X=$ rain $)$	0.3	0.7

\end{tabular}

$$
\begin{aligned}
H(Y \mid X) & =\sum_{i, j} p\left(x_{i}, x_{j}\right) \log \left(\frac{1}{p\left(y_{i} \mid x_{i}\right)}\right) \\
& =0.48 \log \left(\frac{1}{0.8}\right)+0.12 \log \left(\frac{1}{0.2}\right)+0.12 \log \left(\frac{1}{0.3}\right)+0.28 \log \left(\frac{1}{0.7}\right) \\
& =0.79
\end{aligned}
$$

EXAmple: Summary

- Results:
- $H(X)=H(Y)=0.97$
- $H(X, Y)=1.76$
- $H(Y \mid X)=0.79$
- $I(X ; Y)=H(Y)-H(Y \mid X)=0.18$
- Note that $H(X, Y)=H(X)+H(Y \mid X)$ as required.
- Interpreting the Results:
- $I(X ; Y)>0$, therefore X tells us something about Y and vice versa
- $H(Y \mid X)>0$, therefore X doesn't tell us everything about Y

Motivation Recap

- Gambling: Coins vs. Dice vs. Roulette
- Prediction: Bent Coin vs. Fair Coin
- Compression: How to best record a sequence of events

Outline

Motivation

Information
Entropy
Marginal Entropy
Joint Entropy
Conditional Entropy
Mutual Information

Compressing Information

Prefix Codes
KL Divergence

Prefix Codes

- Compression maps events to code words
- We already saw an example when we mapped coin tosses to unary numbers
- We want mapping which generates short encodings
- One good way of doing this is prefix codes

Prefix Codes

- Encoding where no code word is a prefix of any other code word.
- Example: | Event | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| | Code Word | 0 | 10 | 110 |
| | 111 | | | |
- Previously we reserved 0 as a separator
- If we use a prefix code we do not need a separator symbol

$$
101000110111110111=\text { bbaacdcd }
$$

Distribution as Prefix Codes

- Every probability distribution can be thought of as specifying an encoding via the Information $I(X)$
- Map each event x_{i} to a word of length $I\left(x_{i}\right)$

Table: Fair Coin

X	h	t
$P(X)$	0.5	0.5
$I(X)$	1	1
$\operatorname{code}(X)$	1	0

Distribution as Prefix Codes

- Every probability distribution can be thought of as specifying an encoding via the Information $I(X)$
- Map each event x_{i} to a word of length $I\left(x_{i}\right)$

Table: Fair 4-Sided Dice

X	1	2	3	4
$P(X)$	0.25	0.25	0.25	0.25
$I(X)$	2	2	2	2
$\operatorname{code}(X)$	11	10	01	00

Distribution as Prefix Codes

- Every probability distribution can be thought of as specifying an encoding via the Information $I(X)$
- Map each event x_{i} to a word of length $I\left(x_{i}\right)$

Table: Bent 4-Sided Dice

X	1	2	3	4
$P(X)$	0.5	0.25	0.125	0.125
$I(X)$	1	2	3	3
$\operatorname{code}(X)$	0	10	110	111

Distribution as Prefix Codes

- Prefix codes built from the distribution are optimal
- Information is contained in the smallest possible number of characters
- Entropy is maximized
- Encoding is not always this obvious. e.g. How to encode a bent coin
- Question: If use a different (suboptimal) encoding, how many extra characters do I need

KL Divergence

KL Divergence

- The expected number of additional bits required to encode p using q, rather than p using p.

$$
\begin{aligned}
D_{K L}(p \| q) & =\sum_{i} p\left(x_{i}\right)\left|\operatorname{code}_{q}\left(x_{i}\right)\right|-\sum_{i} p\left(x_{i}\right)\left|\operatorname{code} p\left(x_{i}\right)\right| \\
& =\sum_{i} p\left(x_{i}\right) I_{q}\left(x_{i}\right)-\sum_{i} p\left(x_{i}\right) I_{p}\left(x_{i}\right) \\
& =\sum_{i} p\left(x_{i}\right) \log \left(\frac{1}{q\left(x_{i}\right)}\right)-\sum_{i} p\left(x_{i}\right) \log \left(\frac{1}{p\left(x_{i}\right)}\right)
\end{aligned}
$$

KL Divergence

- The KL Divergence is a measure of the 'Dissimilarity' of two distributions
- If p and q are similar, then $K L(p \| q)$ will be small.
- Common events in p will be common events in q
- This means they will still have short code words
- If p and q are dissimilar, then $K L(p \| q)$ will be large.
- Common events in p may be uncommon events in q
- This means commonly occuring events might be given long codewords

Summary

Motivation

Information

Entropy
Marginal Entropy
Joint Entropy
Conditional Entropy
Mutual Information

Compressing Information
Prefix Codes
KL Divergence

