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INTRODUCTION

I Today’s recitation will be an introduction to Information
Theory

I Information theory studies the quantification of
Information

I Compression
I Transmission
I Error Correction
I Gambling

I Founded by Claude Shannon in 1948 by his classic paper
“A Mathematical Theory of Communication”

I It is an area of mathematics which I think is particularly
elegant
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MOTIVATION: CASINO

I You’re at a casino
I You can bet on coins, dice, or roulette

I Coins = 2 possible outcomes. Pays 2:1
I Dice = 6 possible outcomes. Pays 6:1
I roulette = 36 possible outcomes. Pays 36:1

I Suppose you can predict the outcome of a single coin
toss/dice roll/roulette spin.

I Which would you choose?

I Roulette. But why? these are all fair games
I Answer: Roulette provides us with the most Information
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MOTIVATION: COIN TOSS

I Consider two coins:
I Fair coin CF with P(H) = 0.5,P(T) = 0.5
I Bent coin CB with P(H) = 0.99,P(T) = 0.01

I Suppose we flip both coins, and they both land heads
I Intuitively we are more “surprised” or “Informed” by first

outcome.
I We know CB is almost certain to land heads, so the

knowledge that it lands heads provides us with very little
information.



Motivation Information Entropy Compressing Information

MOTIVATION: COMPRESSION

I Suppose we observe a sequence of events:
I Coin tosses
I Words in a language
I notes in a song
I etc.

I We want to record the sequence of events in the smallest
possible space.

I In other words we want the shortest representation which
preserves all information.

I Another way to think about this: How much information
does the sequence of events actually contain?
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MOTIVATION: COMPRESSION

To be concrete, consider the problem of recording coin tosses in
unary.

T,T,T,T,H

Approach 1:
H T
0 00

00, 00, 00, 00, 0

We used 9 characters
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MOTIVATION: COMPRESSION

To be concrete, consider the problem of recording coin tosses in
unary.

T,T,T,T,H

Approach 2:
H T
00 0

0, 0, 0, 0, 00

We used 6 characters
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MOTIVATION: COMPRESSION

I Frequently occuring events should have short encodings
I We see this in english with words such as “a”, “the”,

“and”, etc.
I We want to maximise the information-per-character
I seeing common events provides little information
I seeing uncommon events provides a lot of information
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INFORMATION

I Let X be a random variable with distribution p(X).
I We want to quantify the information provided by each

possible outcome.
I Specifically we want a function which maps the

probability of an event p(x) to the information I(x)
I Our metric I(x) should have the following properties:

I I(xi) ≥ 0 ∀i.
I I(x1) > I(x2) if p(x1) < p(x2)
I I(x1, x2) = I(x1) + I(x2)
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INFORMATION

I(x) = f (p(x))

I We want f () such that I(x1, x2) = I(x1) + I(x2)

I We know p(x1, x2) = p(x1)p(x2)

I The only function with this property is log():
log(ab) = log(a) + log(b)

I Hence we define:

I(X) = log(
1

p(x)
)
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INFORMATION: COIN

Fair Coin:
h t

0.5 0.5

I(h) = log(
1

0.5
) = log(2) = 1

I(t) = log(
1

0.5
) = log(2) = 1
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INFORMATION: COIN

Bent Coin:
h t

0.25 0.75

I(h) = log(
1

0.25
) = log(4) = 2

I(t) = log(
1

0.75
) = log(1.33) = 0.42
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INFORMATION: COIN

Really Bent Coin:
h t

0.01 0.99

I(h) = log(
1

0.01
) = log(100) = 6.65

I(t) = log(
1

0.99
) = log(1.01) = 0.01
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INFORMATION: TWO EVENTS

Question: How much information do we get from observing
two events?

I(x1, x2) = log(
1

p(x1, x2)
)

= log(
1

p(x1)p(x2)
)

= log(
1

p(x1)

1
p(x2)

)

= log(
1

p(x1)
) + log(

1
p(x2)

)

= I(x1) + I(x2)

Answer: Information sums!
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INFORMATION IS ADDITIVE

I I(k fair coin tosses) = log 1
1/2k = k bits

I So:
I Random word from a 100,000 word vocabulary:

I(word) = log(100, 000) = 16.61 bits
I A 1000 word document from same source:

I(documents) = 16,610 bits
I A 480 pixel, 16-greyscale video picture:

I(picture) = 307, 200× log(16) = 1,228,800 bits

I A picture is worth (a lot more than) 1000 words!
I In reality this is a gross overestimate
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INFORMATION: TWO COINS

Bent Coin:
x h t

p(x) 0.25 0.75
I(x) 2 0.42

I(hh) = I(h) + I(h) = 4
I(ht) = I(h) + I(t) = 2.42
I(th) = I(t) + I(h) = 2.42
I(th) = I(t) + I(t) = 0.84
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INFORMATION: TWO COINS

Bent Coin Twice:
hh ht th tt

0.0625 0.1875 0.1875 0.5625

I(hh) = log(
1

0.0625
) = log(4) = 4

I(ht) = log(
1

0.1875
) = log(4) = 2.42

I(th) = log(
1

0.1875
) = log(4) = 2.42

I(tt) = log(
1

0.5625
) = log(4) = 0.84
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ENTROPY

I Suppose we have a sequence of observations of a random
variable X.

I A natural question to ask is what is the average amount of
information per observation.

I This quantitity is called the Entropy and denoted H(X)

H(X) = E[I(X)] = E[log(
1

p(X)
)]
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ENTROPY

I Information is associated with an event - heads, tails, etc.
I Entropy is associated with a distribution over events - p(x).
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ENTROPY: COIN

Fair Coin:
x h t

p(x) 0.5 0.5
I(x) 1 1

H(X) = E[I(X)]

=
∑

i

p(xi)I(X)

= p(h)I(h) + p(t)I(t)
= 0.5× 1 + 0.5× 1
= 1
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ENTROPY: COIN

Bent Coin:
x h t

p(x) 0.25 0.75
I(x) 2 0.42

H(X) = E[I(X)]

=
∑

i

p(xi)I(X)

= p(h)I(h) + p(t)I(t)
= 0.25× 2 + 0.75× 0.42
= 0.85
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ENTROPY: COIN

Very Bent Coin:
x h t

p(x) 0.01 0.99
I(x) 6.65 0.01

H(X) = E[I(X)]

=
∑

i

p(xi)I(X)

= p(h)I(h) + p(t)I(t)
= 0.01× 6.65 + 0.99× 0.01
= 0.08
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ENTROPY: ALL COINS

H(P) = p log
1
p
+ (1− p) log

1
1− p
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ENTROPY: ALL COINS

H(P) = p log
1
p
+ (1− p) log

1
1− p
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ALTERNATIVE EXPLANATIONS OF ENTROPY

H(S) =
∑

i

pi log
1
pi

I Average amount of information provided per event
I Average amount of surprise when observing a event
I Uncertainty an observer has before seeing the event
I Average number of bits needed to communicate each event
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THE ENTROPY OF ENGLISH

27 Characters (A-Z, space)
100,000 words (average 5.5 characters each)

I Assuming independence between successive characters:
I Uniform character distribution: log(27) = 4.75

bits/characters
I True character distribution: 4.03 bits/character

I Assuming independence between successive words:
I Uniform word distribution: log(100,000)

6.5 = 2.55 bits/character
I True word distribution: 9.45

6.5 = 1.45 bits/character

I True Entropy of English is much lower
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TYPES OF ENTROPY

I There are 3 Types of Entropy
I Marginal Entropy
I Joint Entropy
I Conditional Entropy

I We will now define these quantities, and study how they
are related.
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MARGINAL ENTROPY

I A single random variable X has a Marginal Distribution

p(X)

I This distribution has an associated Marginal Entropy

H(X) =
∑

i

p(xi) log
1

p(xi)

I Marginal entropy is the average information provided by
observing a variable X
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JOINT ENTROPY

I Two or more random variables X,Y have a Joint
Distribution

p(X,Y)

I This distribution has an associated Joint Entropy

H(X,Y) =
∑

i

∑
j

p(xi, yj) log
1

p(xi, yj)

I Marginal entropy is the average total information provided
by observing two variables X,Y
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CONDITIONAL ENTROPY

I Two random variables X,Y also have two Conditional
Distributions

p(X|Y) and P(Y|X)

I These distributions have associated Conditional Entropys

H(X|Y) =
∑

j

p(yj)H(X|yj)

=
∑

j

p(yj)
∑

i

p(xi|yj) log
1

p(xi|yj)

=
∑

i

∑
j

p(xi, yj) log
1

p(xi|yj)

I Conditional entropy is the average additional information
provided by observing X, given we already observed Y
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TYPES OF ENTROPY: SUMMARY

I Entropy: Average information gained by observing a
single variable

I Joint Entropy: Average total information gained by
observing two or more variables

I Conditional Entropy: Average additional information
gained by observing a new variable
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RELATIONSHIP: H(X,Y) = H(X) + H(Y|X)

H(X,Y) =
∑

i,j

p(xi, yj) log(
1

p(xi, yj)
)

=
∑

i,j

p(xi, yj) log(
1

p(yj|xi)p(xi)
)

=
∑

i,j

p(xi, yj)

[
log(

1
p(xi)

) + log(
1

p(yj|xi)
)

]

=
∑

i

p(xi) log(
1

p(xi)
) +

∑
i

p(xi, yj) log(
1

p(yj|xi)
)

= H(X) + H(Y|X)
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RELATIONSHIP: H(X,Y) ≤ H(X) + H(Y)

I We know H(X,Y) = H(X) + H(Y|X)

I Therefore we need only show H(Y|X) ≤ H(Y)
I This makes sense, knowing X can only decrease the

addition information provided by Y.

I Proof? Possible homework =)
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ENTROPY RELATIONSHIPS



Motivation Information Entropy Compressing Information

MUTUAL INFORMATION

I The Mutual Information I(X;Y) is defined as:

I(X;Y) = H(X)−H(X|Y)

I The mutual information is the amount of information
shared by X and Y.

I It is a measure of how much X tells us about Y, and vice
versa.

I If X and Y are independent then I(X;Y) = 0, because X
tells us nothing about Y and vice versa.

I If X = Y then I(X;Y) = H(X) = H(Y). X tells us everything
about Y and vice versa.
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EXAMPLE

Marginal Distribution:
X sun rain

P(X) 0.6 0.4
Y hot cold

P(Y) 0.6 0.4

Conditional Distribution:
Y hot cold

P(Y|X = sun) 0.8 0.2
Y hot cold

P(Y|X = rain) 0.3 0.7

Joint Distribution:
hot cold

sun 0.48 0.12
rain 0.12 0.28
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EXAMPLE: MARGINAL ENTROPY

Marginal Distribution:
X sun rain

P(X) 0.6 0.4

H(X) =
∑

i

p(xi) log(
1

p(xi)
)

= 0.6 log(
1

0.6
) + 0.4 log(

1
0.4

)

= 0.97
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EXAMPLE: JOINT ENTROPY

Joint Distribution:
hot cold

sun 0.48 0.12
rain 0.12 0.28

H(X) =
∑

i,j

p(xi, yi) log(
1

p(xi, yi)
)

= 0.48 log(
1

0.48
) + 2

[
0.12 log(

1
0.12

)

]
+ 0.28 log(

1
0.28

)

= 1.76
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EXAMPLE: CONDITIONAL ENTROPY

Joint Distribution:
hot cold

sun 0.48 0.12
rain 0.12 0.28

Conditional Distribution:
Y hot cold

P(Y|X = sun) 0.8 0.2
Y hot cold

P(Y|X = rain) 0.3 0.7

H(Y|X) =
∑

i,j

p(xi, xj) log(
1

p(yi|xi)
)

= 0.48 log(
1

0.8
) + 0.12 log(

1
0.2

) + 0.12 log(
1

0.3
) + 0.28 log(

1
0.7

)

= 0.79
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EXAMPLE: SUMMARY

I Results:
I H(X) = H(Y) = 0.97
I H(X,Y) = 1.76
I H(Y|X) = 0.79
I I(X;Y) = H(Y)−H(Y|X) = 0.18

I Note that H(X,Y) = H(X) + H(Y|X) as required.
I Interpreting the Results:

I I(X;Y) > 0, therefore X tells us something about Y and vice
versa

I H(Y|X) > 0, therefore X doesn’t tell us everything about Y
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MOTIVATION RECAP

I Gambling: Coins vs. Dice vs. Roulette
I Prediction: Bent Coin vs. Fair Coin
I Compression: How to best record a sequence of events
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PREFIX CODES

I Compression maps events to code words
I We already saw an example when we mapped coin tosses

to unary numbers
I We want mapping which generates short encodings
I One good way of doing this is prefix codes
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PREFIX CODES

I Encoding where no code word is a prefix of any other code
word.

I Example:
Event a b c d

Code Word 0 10 110 111
I Previously we reserved 0 as a separator
I If we use a prefix code we do not need a separator symbol

101000110111110111 = bbaacdcd
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DISTRIBUTION AS PREFIX CODES

I Every probability distribution can be thought of as
specifying an encoding via the Information I(X)

I Map each event xi to a word of length I(xi)

Table: Fair Coin

X h t
P(X) 0.5 0.5
I(X) 1 1

code(X) 1 0
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DISTRIBUTION AS PREFIX CODES

I Every probability distribution can be thought of as
specifying an encoding via the Information I(X)

I Map each event xi to a word of length I(xi)

Table: Fair 4-Sided Dice

X 1 2 3 4
P(X) 0.25 0.25 0.25 0.25
I(X) 2 2 2 2

code(X) 11 10 01 00
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DISTRIBUTION AS PREFIX CODES

I Every probability distribution can be thought of as
specifying an encoding via the Information I(X)

I Map each event xi to a word of length I(xi)

Table: Bent 4-Sided Dice

X 1 2 3 4
P(X) 0.5 0.25 0.125 0.125
I(X) 1 2 3 3

code(X) 0 10 110 111
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DISTRIBUTION AS PREFIX CODES

I Prefix codes built from the distribution are optimal
I Information is contained in the smallest possible number of

characters
I Entropy is maximized

I Encoding is not always this obvious. e.g. How to encode a
bent coin

I Question: If use a different (suboptimal) encoding, how
many extra characters do I need
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KL DIVERGENCE

I The expected number of additional bits required to encode
p using q, rather than p using p.

DKL(p||q) =
∑

i

p(xi)
∣∣codeq(xi)

∣∣−∑
i

p(xi)
∣∣codep(xi)

∣∣
=
∑

i

p(xi)Iq(xi)−
∑

i

p(xi)Ip(xi)

=
∑

i

p(xi) log(
1

q(xi)
)−

∑
i

p(xi) log(
1

p(xi)
)



Motivation Information Entropy Compressing Information

KL DIVERGENCE

I The expected number of additional bits required to encode
p using q, rather than p using p.

DKL(p||q) =
∑

i

p(xi)
∣∣codeq(xi)

∣∣−∑
i

p(xi)
∣∣codep(xi)

∣∣
=
∑

i

p(xi)Iq(xi)−
∑

i

p(xi)Ip(xi)

=
∑

i

p(xi) log(
1

q(xi)
)−

∑
i

p(xi) log(
1

p(xi)
)
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KL DIVERGENCE

I The KL Divergence is a measure of the ’Dissimilarity’ of
two distributions

I If p and q are similar, then KL(p||q) will be small.
I Common events in p will be common events in q
I This means they will still have short code words

I If p and q are dissimilar, then KL(p||q) will be large.
I Common events in p may be uncommon events in q
I This means commonly occuring events might be given long

codewords
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