

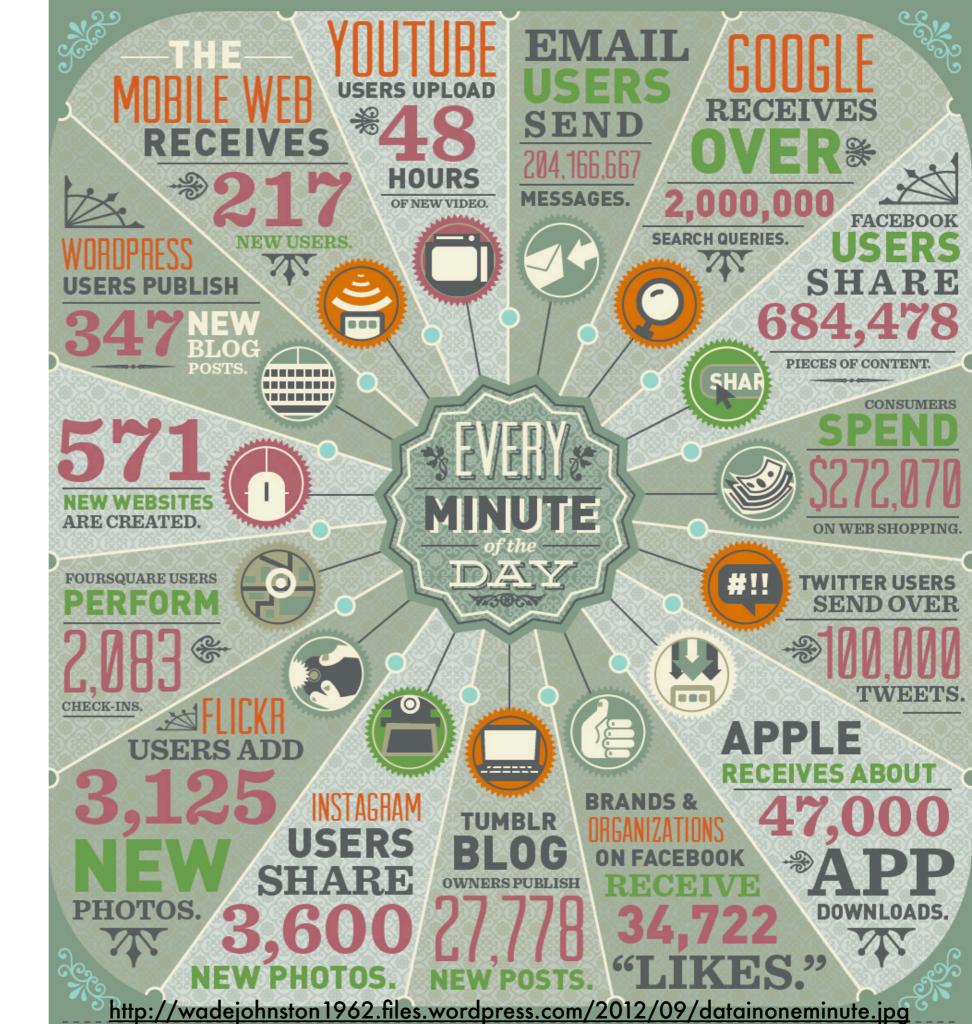
Introduction to Machine Learning

2. Basic Tools

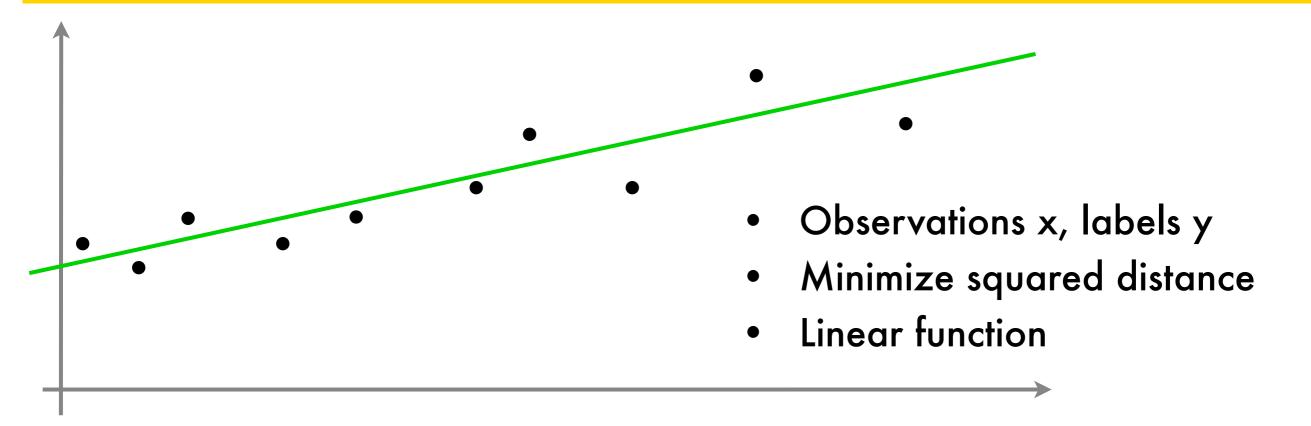
Alex Smola & Geoff Gordon Carnegie Mellon University

http://alex.smola.org/teaching/cmu2013-10-701x 10-701

This İS not a toy dataset



Linear Regression



$$f(x) = ax + b \qquad \qquad \partial_a \left[\dots \right] = 0 = \sum_{i=1}^m x_i (ax_i + b - y_i)$$

$$\underset{a,b}{\text{minimize}} \sum_{i=1}^m \frac{1}{2} (ax_i + b - y_i)^2 \qquad \partial_b \left[\dots \right] = 0 = \sum_{i=1}^m (ax_i + b - y_i)$$

$$\underset{a,b}{\text{Carnegie Mellon University}}$$

Linear Regression

Optimization Problem

$$f(x) = \langle a, x \rangle + b = \langle w, (x, 1) \rangle$$

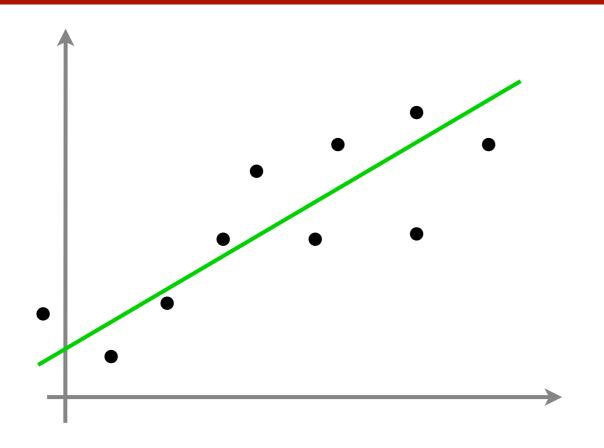
$$\text{minimize } \sum_{i=1}^{m} \frac{1}{2} (\langle w, \bar{x}_i \rangle - y_i)^2$$

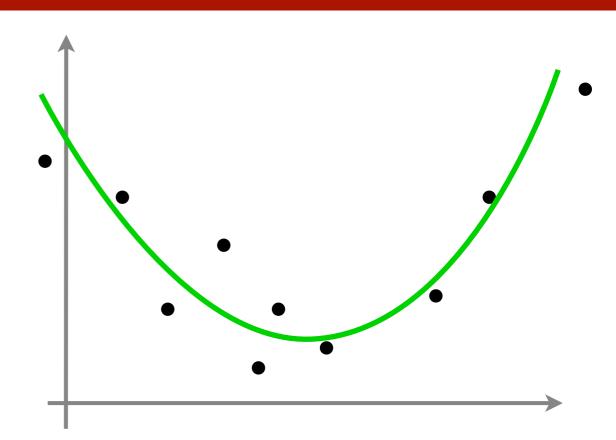
Solving it

$$0 = \sum_{i=1}^{m} \bar{x}_i (\langle w, \bar{x}_i \rangle - y_i) \iff \left[\sum_{i=1}^{m} \bar{x}_i \bar{x}_i^{\top} \right] w = \sum_{i=1}^{m} y_i \bar{x}_i$$

only requires a matrix inversion.

Nonlinear Regression





- Linear model
- Quadratic model
- Cubic model
- Nonlinear model

$$f(x) = \langle w, (1, x) \rangle$$

$$f(x) = \langle w, (1, x, x^2) \rangle$$

$$f(x) = \langle w, (1, x, x^2, x^3) \rangle$$

$$f(x) = \langle w, \phi(x) \rangle$$

Linear Regression

Optimization Problem

$$f(x) = \langle a, x \rangle + b = \langle w, (x, 1) \rangle$$

$$\text{minimize } \sum_{i=1}^{m} \frac{1}{2} (\langle w, \bar{x}_i \rangle - y_i)^2$$

Solving it

$$0 = \sum_{i=1}^{m} \bar{x}_i (\langle w, \bar{x}_i \rangle - y_i) \iff \left[\sum_{i=1}^{m} \bar{x}_i \bar{x}_i^{\top} \right] w = \sum_{i=1}^{m} y_i \bar{x}_i$$

only requires a matrix inversion.

Nonlinear Regression

Optimization Problem

$$f(x) = \langle w, \phi(x) \rangle$$

$$\min_{w} \sum_{i=1}^{m} \frac{1}{2} (\langle w, \phi(x_i) \rangle - y_i)^2$$

Solving it

$$\sum_{i=1}^{m} \phi(x_i)(\langle w, \phi(x_i) \rangle - y_i) \iff \left[\sum_{i=1}^{m} \phi(x_i) \phi(x_i)^{\top}\right] w = \sum_{i=1}^{m} y_i \phi(x_i)$$

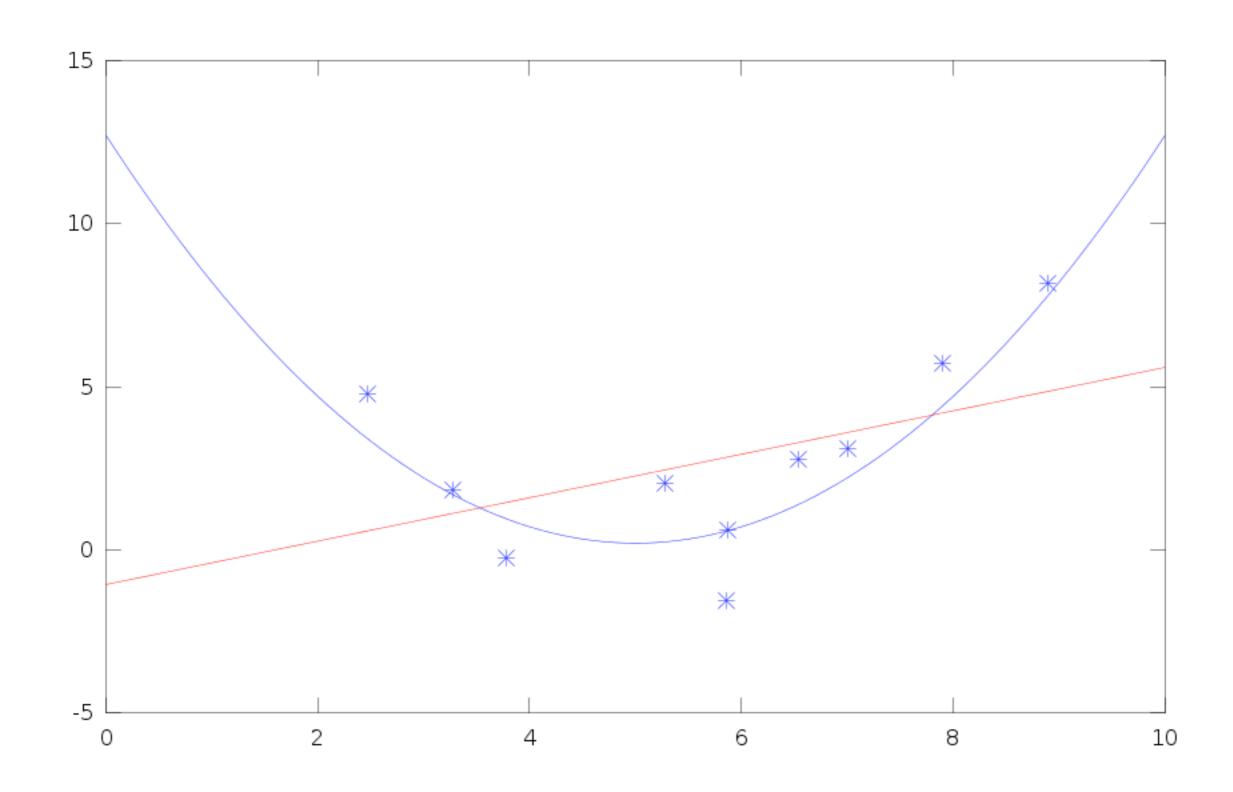
only requires a matrix inversion.

Pseudocode (degree 4)

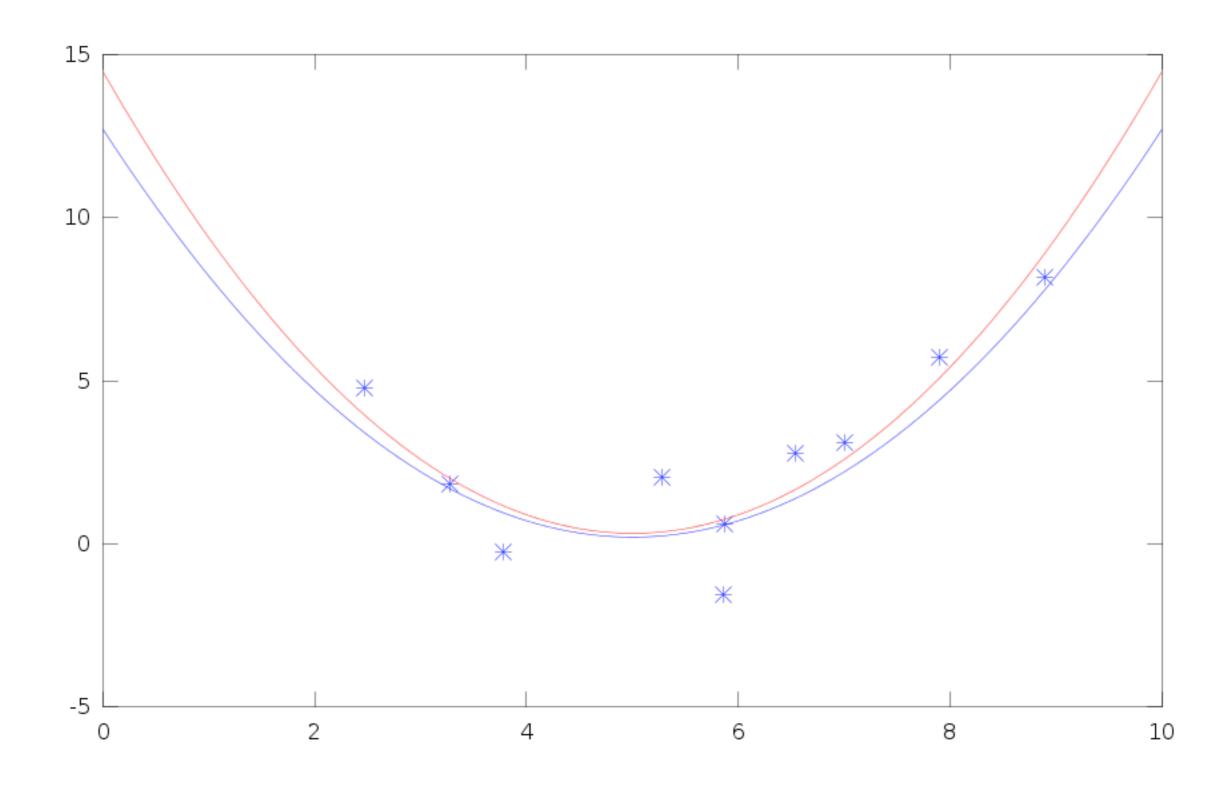
```
Training
phi_xx = [xx.^4, xx.^3, xx.^2, xx, 1.0 + 0.0 * xx];
w = (yy' * phi_xx) / (phi_xx' * phi_xx);

Testing
phi_x = [x.^4, x.^3, x.^2, x, 1.0 + 0.0 * x];
y = phi x * w';
```

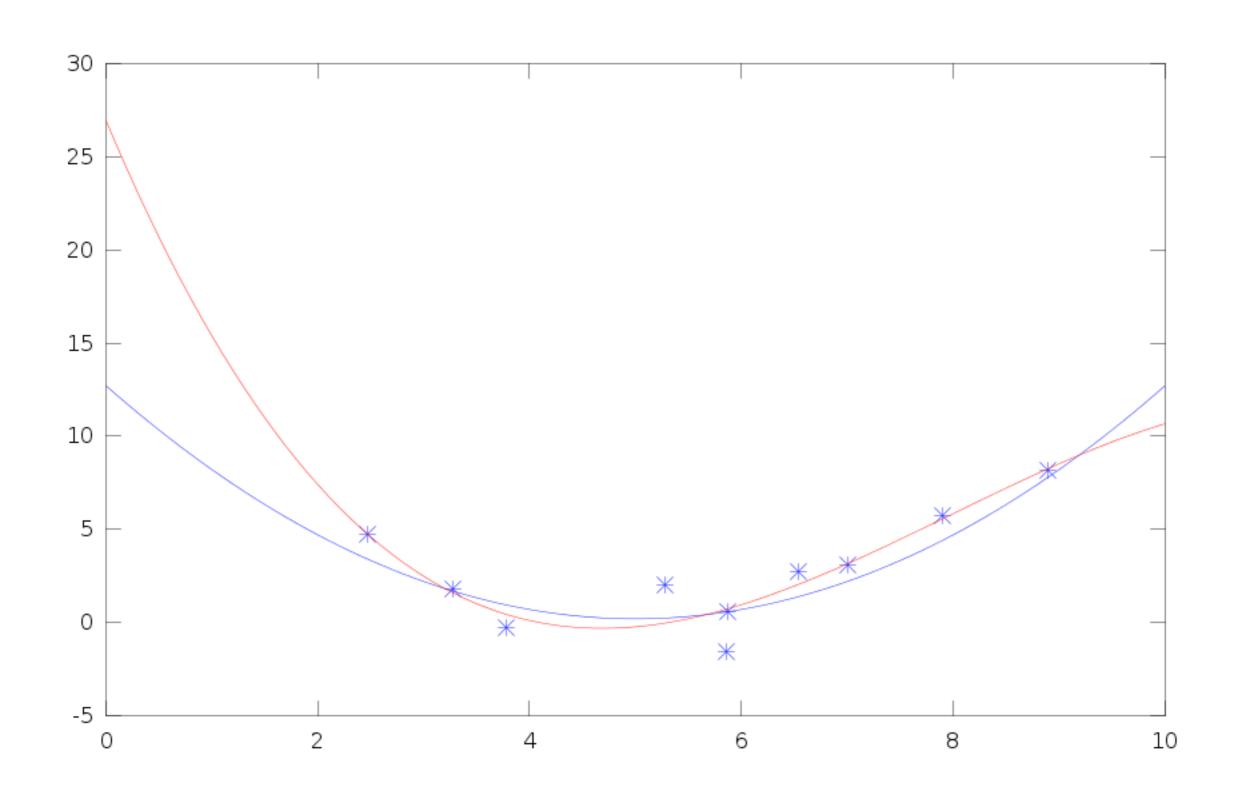
Regression (d=1)



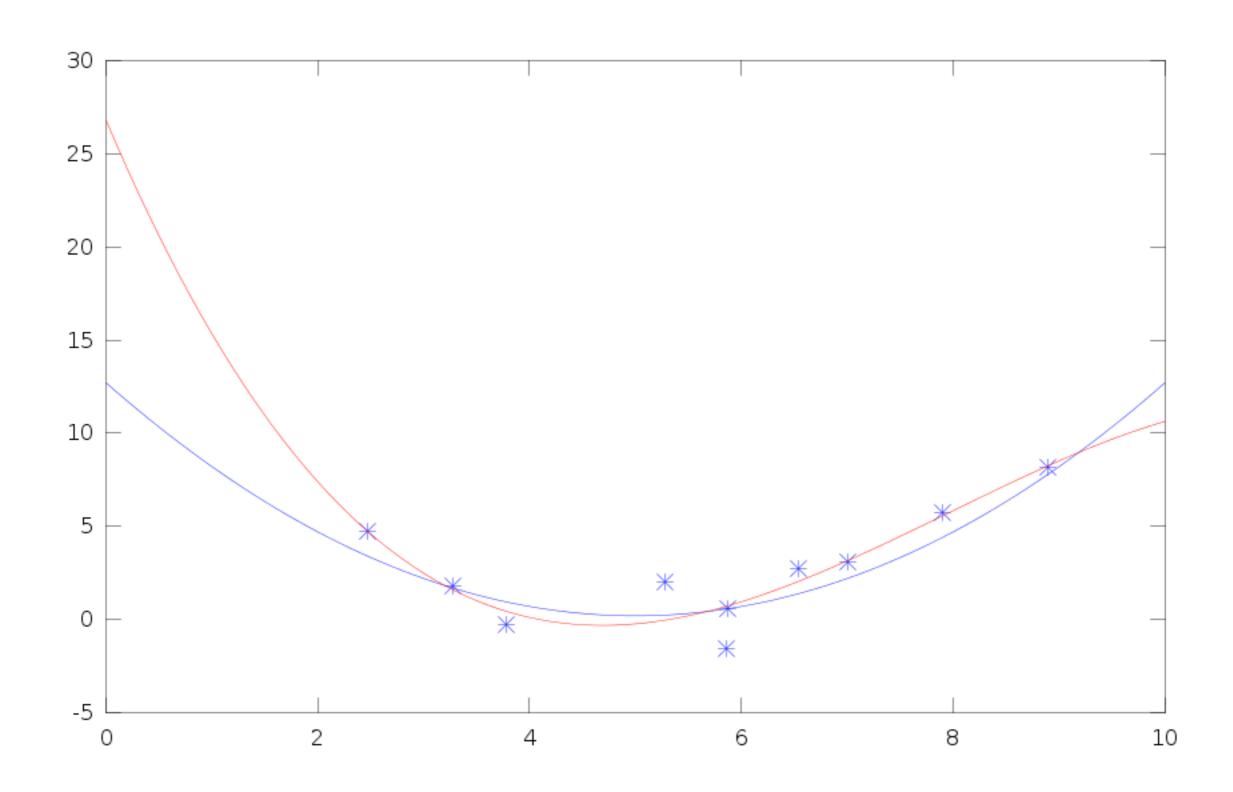
Regression (d=2)



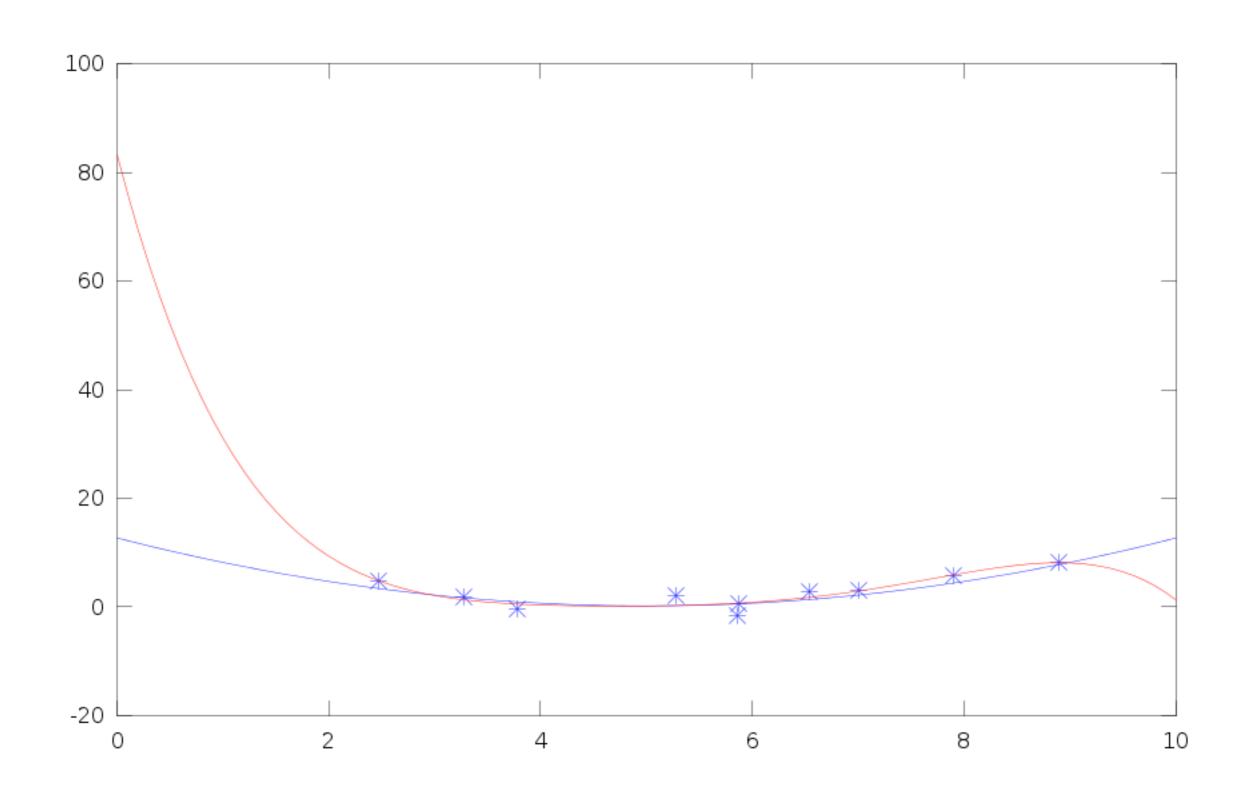
Regression (d=3)



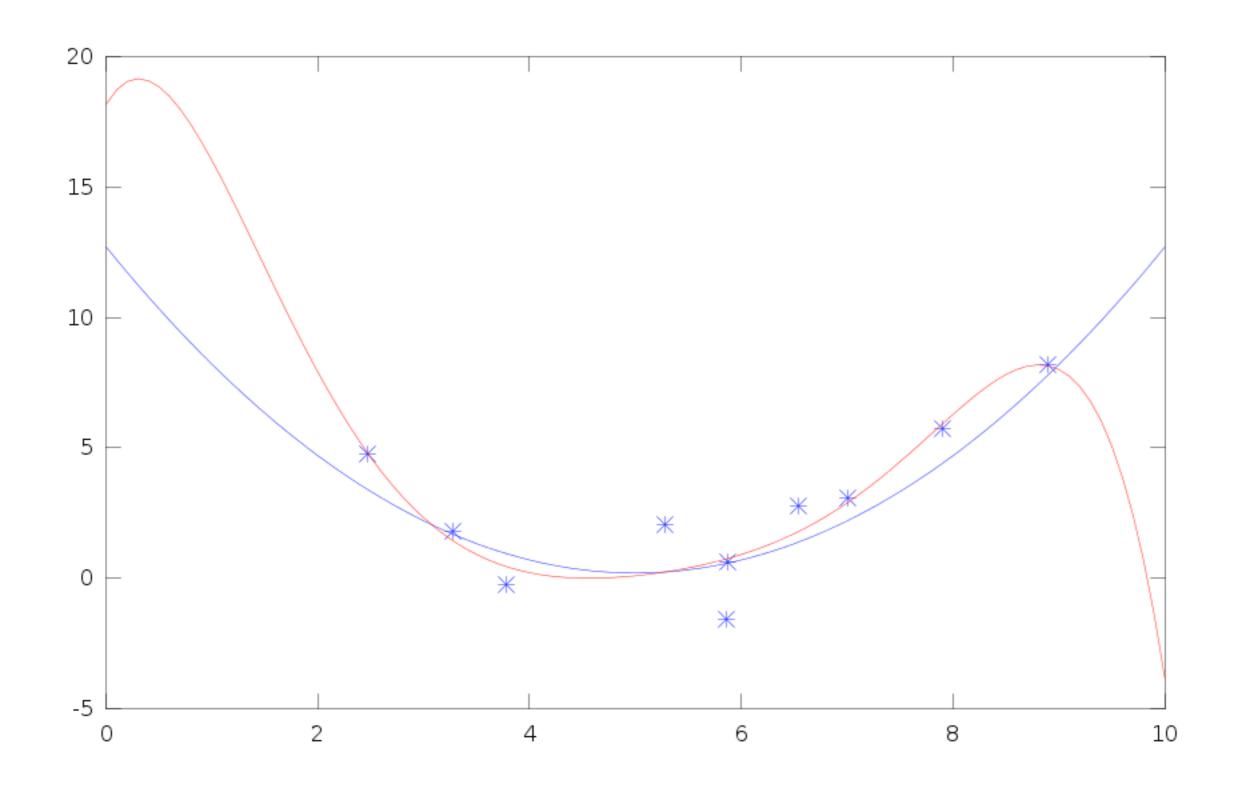
Regression (d=4)



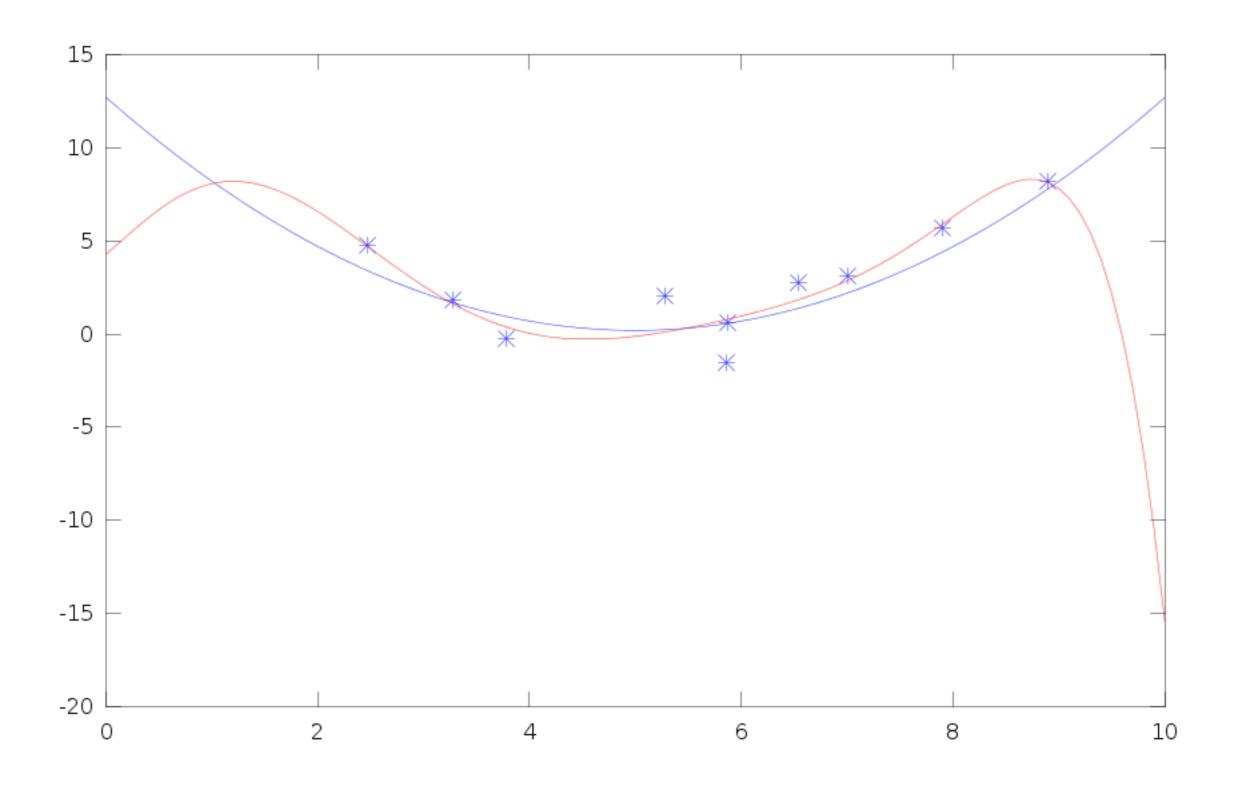
Regression (d=5)



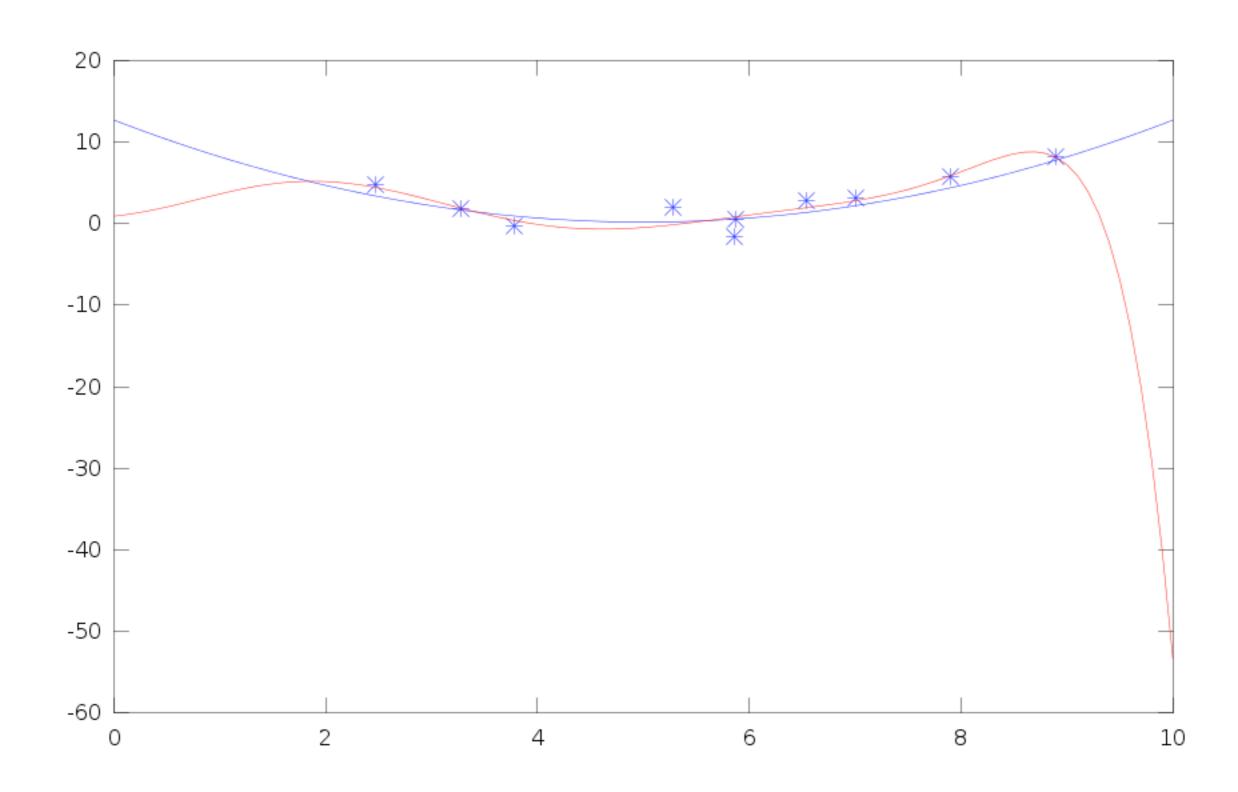
Regression (d=6)



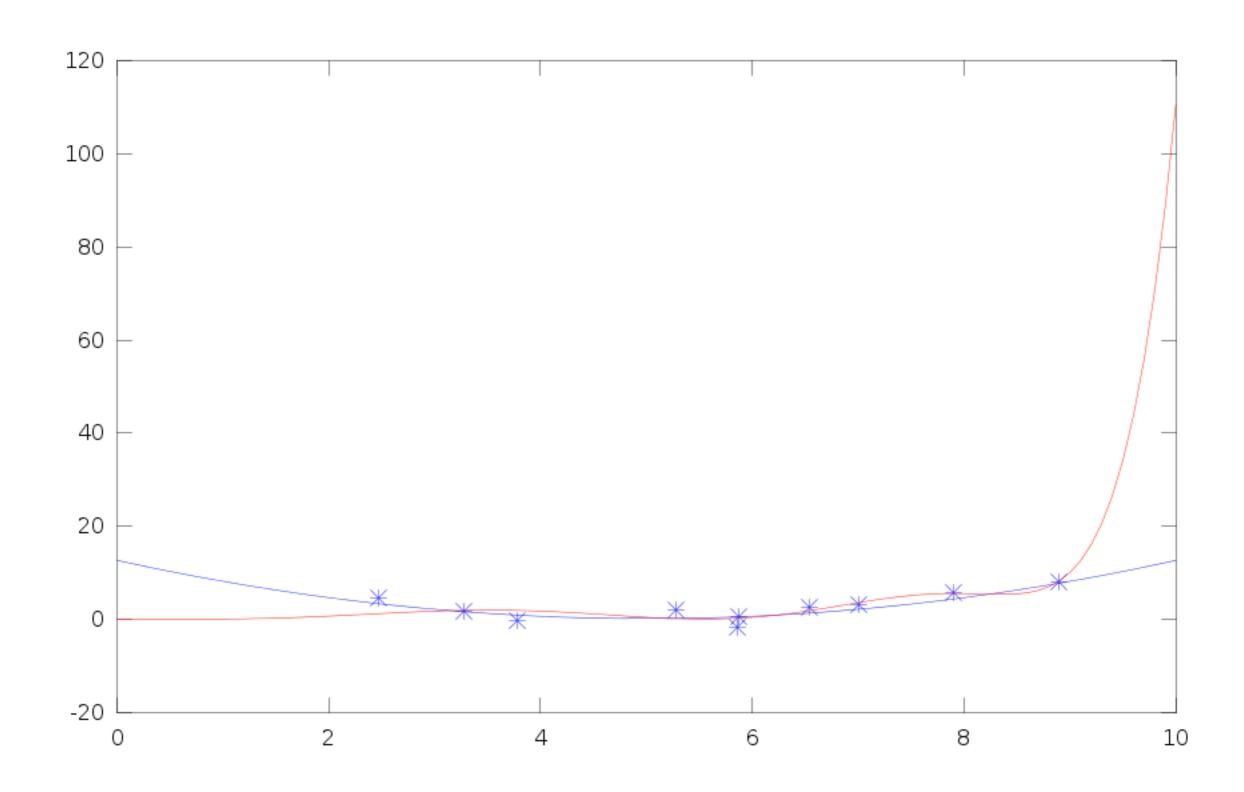
Regression (d=7)



Regression (d=8)



Regression (d=9)



Nonlinear Regression

```
warning: matrix singular to machine precision, rcond = 5.8676e-19
warning: attempting to find minimum norm solution
warning: matrix singular to machine precision, rcond = 5.86761e-19
warning: attempting to find minimum norm solution
warning: dgelsd: rank deficient 8x8 matrix, rank = 7
warning: matrix singular to machine precision, rcond = 1.10156e-21
warning: attempting to find minimum norm solution
warning: matrix singular to machine precision, rcond = 1.10145e-21
warning: attempting to find minimum norm solution
warning: dgelsd: rank deficient 9x9 matrix, rank = 6
warning: matrix singular to machine precision, rcond = 2.16217e-26
warning: attempting to find minimum norm solution
warning: matrix singular to machine precision, rcond = 1.66008e-26
warning: attempting to find minimum norm solution
warning: dgelsd: rank deficient 10x10 matrix, rank = 5
```

Nonlinear Regression

```
warning: matrix singular to machine precision, rcond = 5.8676e-19
warning: attempting to find minimum norm solution
warning: matrix singular to machine precision, rcond = 5.86761e-19
warning: attempting to find minimum norm solution
warning: dgelsd: rank deficient 8x8 matrix, rank = 7
warning: matrix singular to machine precision, rcond = 1.10156e-21
wa ning: attempting to sind minimum norm selution
varing: matrix singram to racine orecis of, resude . 0145 - 21 varning: attempting to intringuous rm sol tion
warning: dgeld: rank deficient 9x9 matrix, rank = 6
warning: matrix singular to machine precision, rcond = 2.16217e-26
warning: attempting to find minimum norm solution
warning: matrix singular to machine precision, rcond = 1.66008e-26
warning: attempting to find minimum norm solution
warning: dgelsd: rank deficient 10x10 matrix, rank = 5
```

Model Selection

- Underfitting (model is too simple to explain data)
- Overfitting (model is too complicated to learn from data)
 - E.g. too many parameters
 - Insufficient confidence to estimate parameter (failed matrix inverse)
 - Often training error decreases nonetheless
- Model selection
 Need to quantify model complexity vs. data
- This course algorithms, model selection, questions

Density Estimation

- Observe some data xi
- Want to estimate p(x)
 - Find unusual observations (e.g. security)
 - Find typical observations (e.g. prototypes)
 - Classifier via Bayes Rule

$$p(y|x) = \frac{p(x,y)}{p(x)} = \frac{p(x|y)p(y)}{\sum_{y'} p(x|y')p(y')}$$

Need tool for computing p(x) easily

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
- Bin counting (record # of occurrences)

25	English	Chinese	German	French	Spanish
male	5	2	3	1	0
female	6	3	2	2	1

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
- Bin counting (record # of occurrences)

25	English	Chinese	German	French	Spanish
male	0.2	0.08	0.12	0.04	0
female	0.24	0.12	0.08	0.08	0.04

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
- Bin counting (record # of occurrences)

25	English	Chinese	German	French	Spanish
male	0.2	0.08	0.12	0.04	0
female	0.24	0.12	0.08	0.08	0.04

- Discrete random variables, e.g.
 - English, Chinese, German, French,
 - Male, Female

not enough data

Bin counting (record # of occurrences)

25	English	Chinese	German	French	Spanish
male	0.2	0.08	0.12	0.04	0
female	0.24	0.12	0.08	0.08	0.04

Curse of dimensionality (lite)

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
 - ZIP code
 - Day of the week
 - Operating system

•

#bins grows exponentially

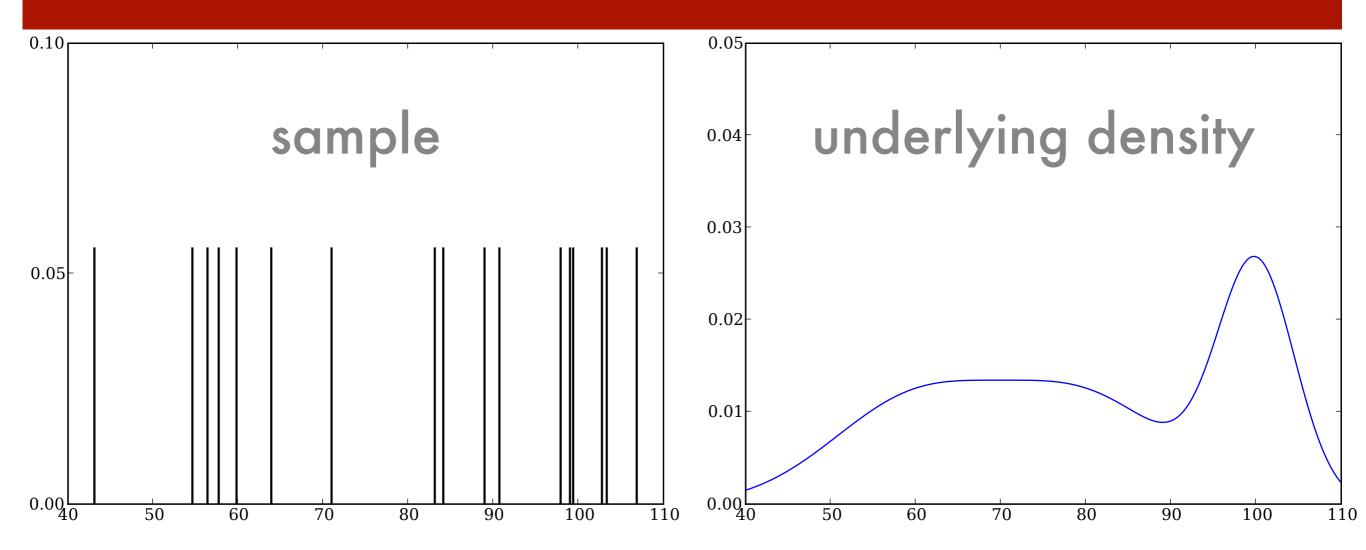
Curse of dimensionality (lite)

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
 - ZIP code
 - Day of the week
 - Operating system
 - •
- Continuous random variables
 - Income
 - Bandwidth
 - Time

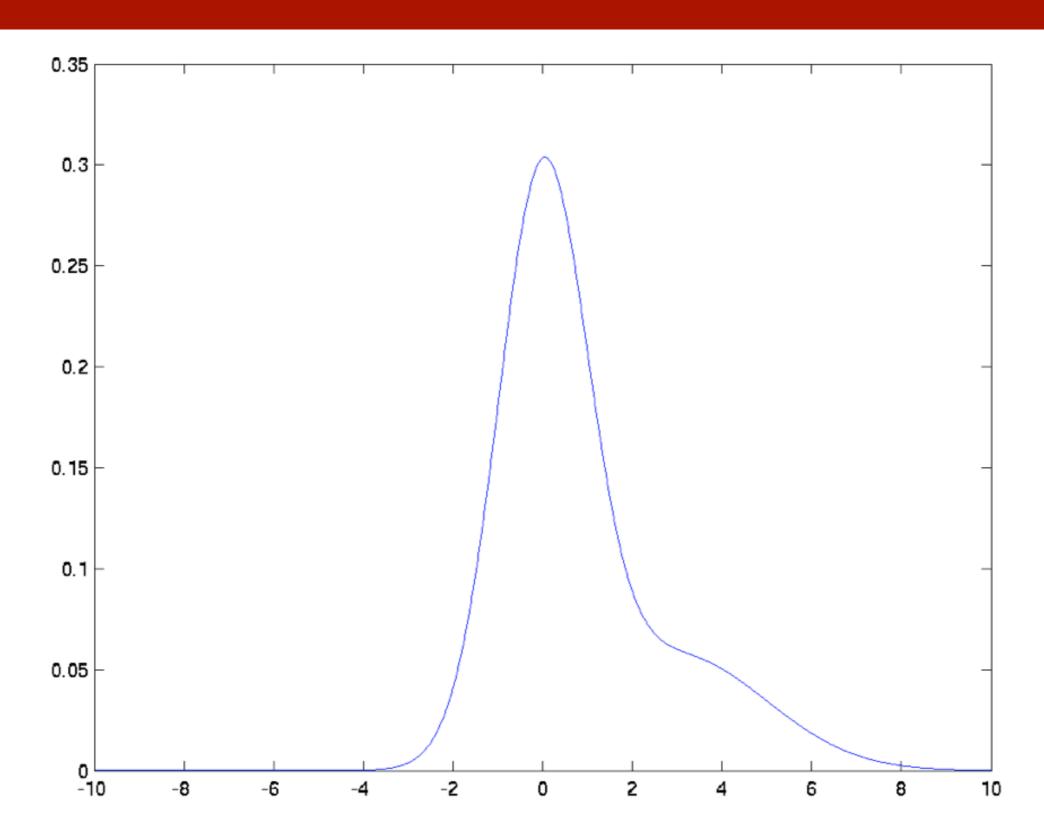
#bins grows exponentially

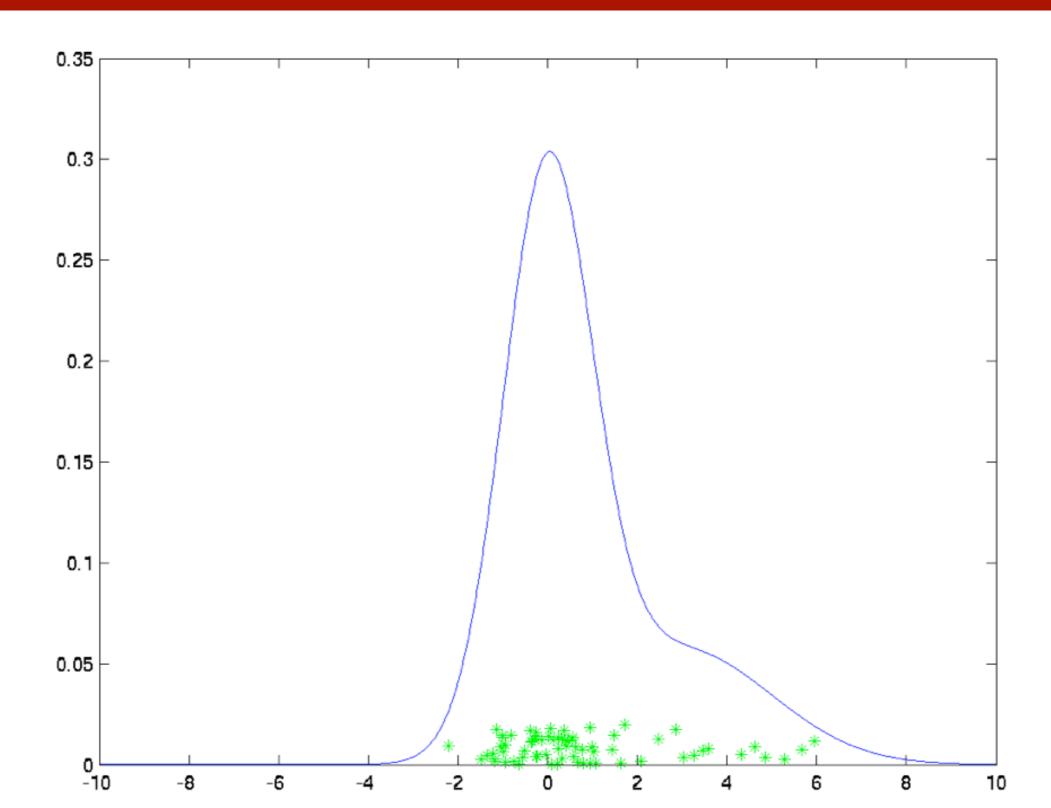
need many bins per dimension

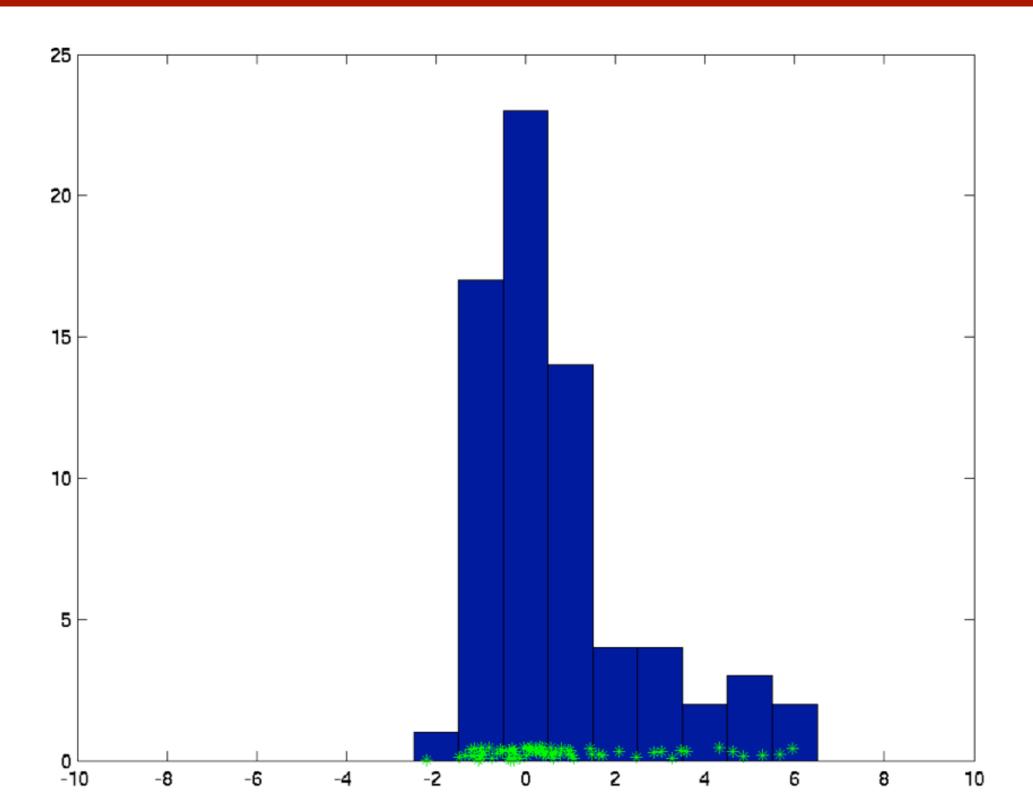
Density Estimation

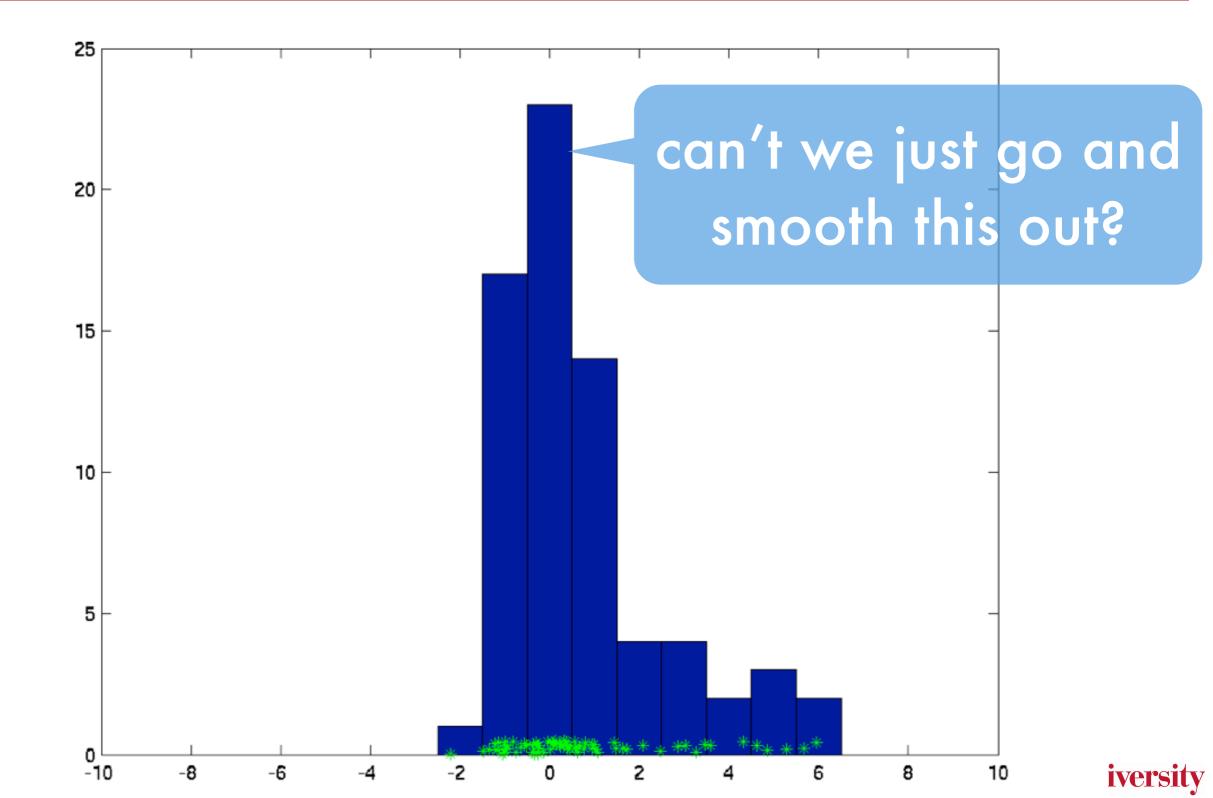


- Continuous domain = infinite number of bins
- Curse of dimensionality
 - 10 bins on [0, 1] is probably good
 - 10¹⁰ bins on [0, 1]¹⁰ requires high accuracy in estimate: probability mass per cell also decreases by 10¹⁰ Carnegie Mellon University









Parzen Windows

Naive approach
 Use empirical density (delta distributions)

$$p_{\rm emp}(x) = \frac{1}{m} \sum_{i=1}^{m} \delta_{x_i}(x)$$

- This breaks if we see slightly different instances
- Kernel density estimate
 Smear out empirical density with a nonnegative smoothing kernel k_x(x') satisfying

$$\int_{\mathcal{X}} k_x(x')dx' = 1 \text{ for all } x$$

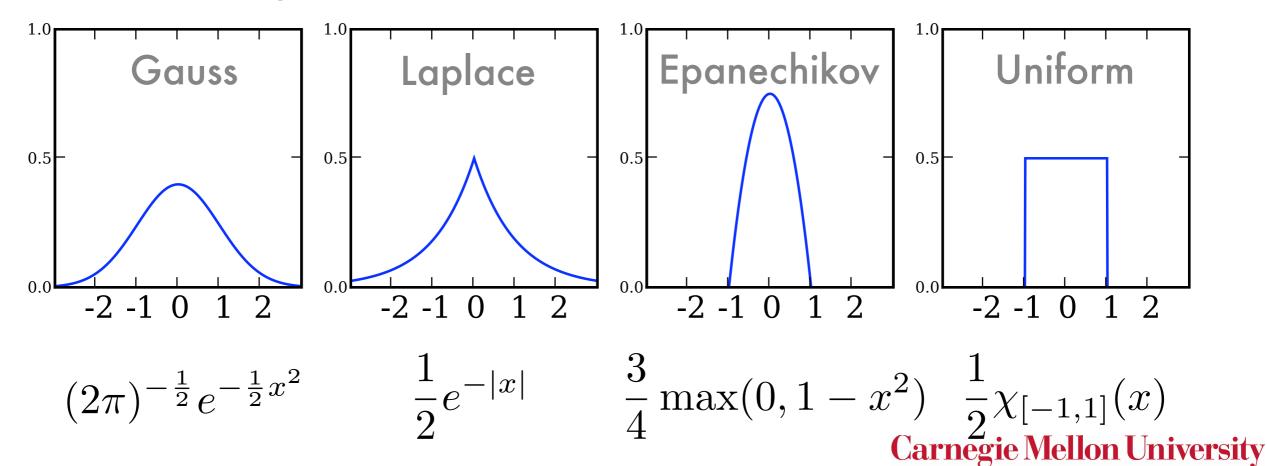
Parzen Windows

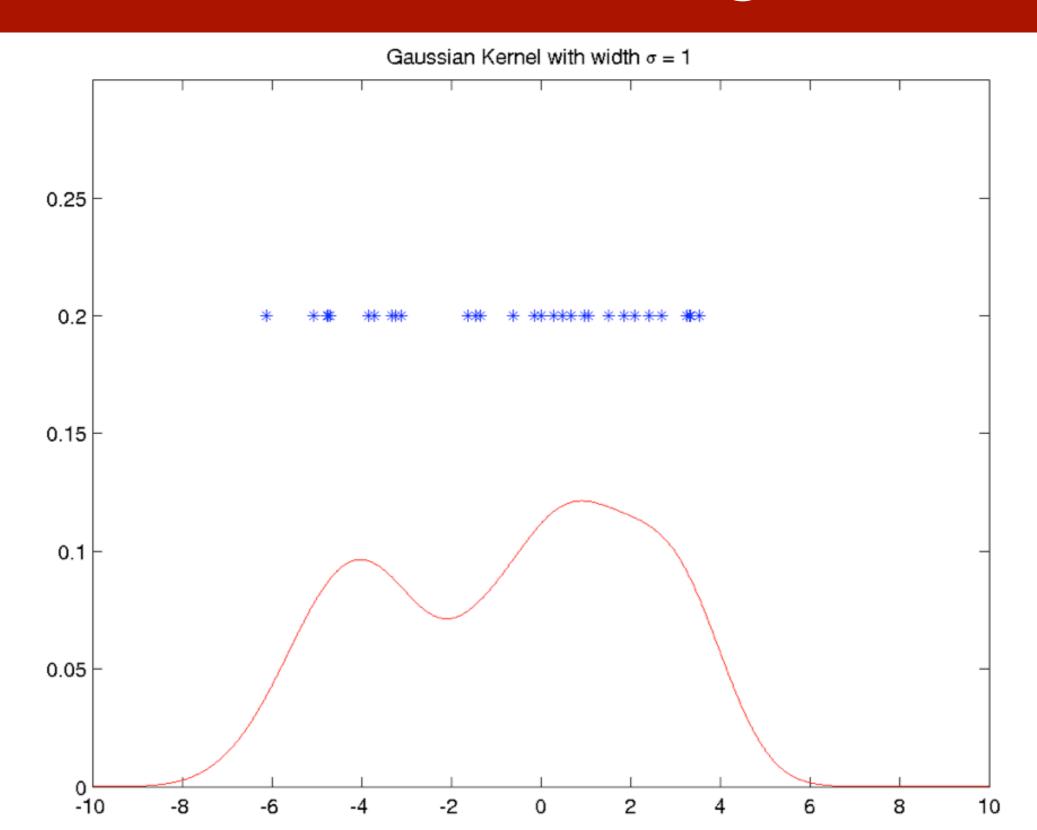
Density estimate

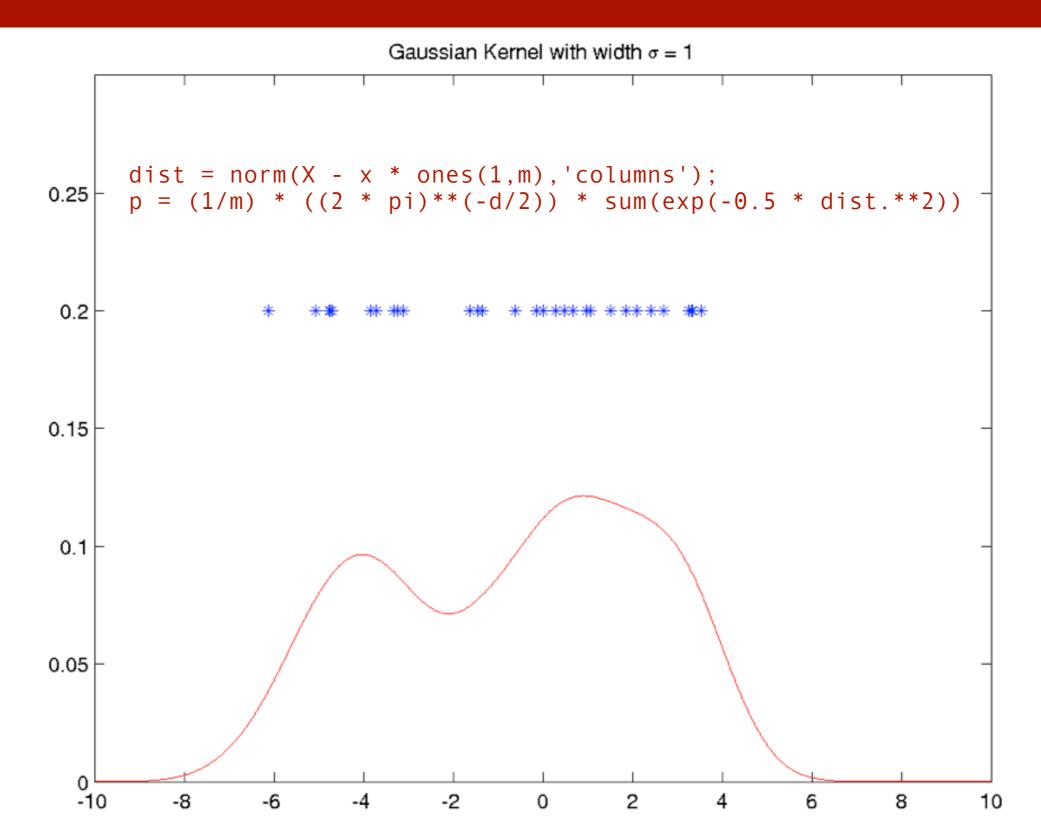
$$p_{\rm emp}(x) = \frac{1}{m} \sum_{i=1}^{m} \delta_{x_i}(x)$$

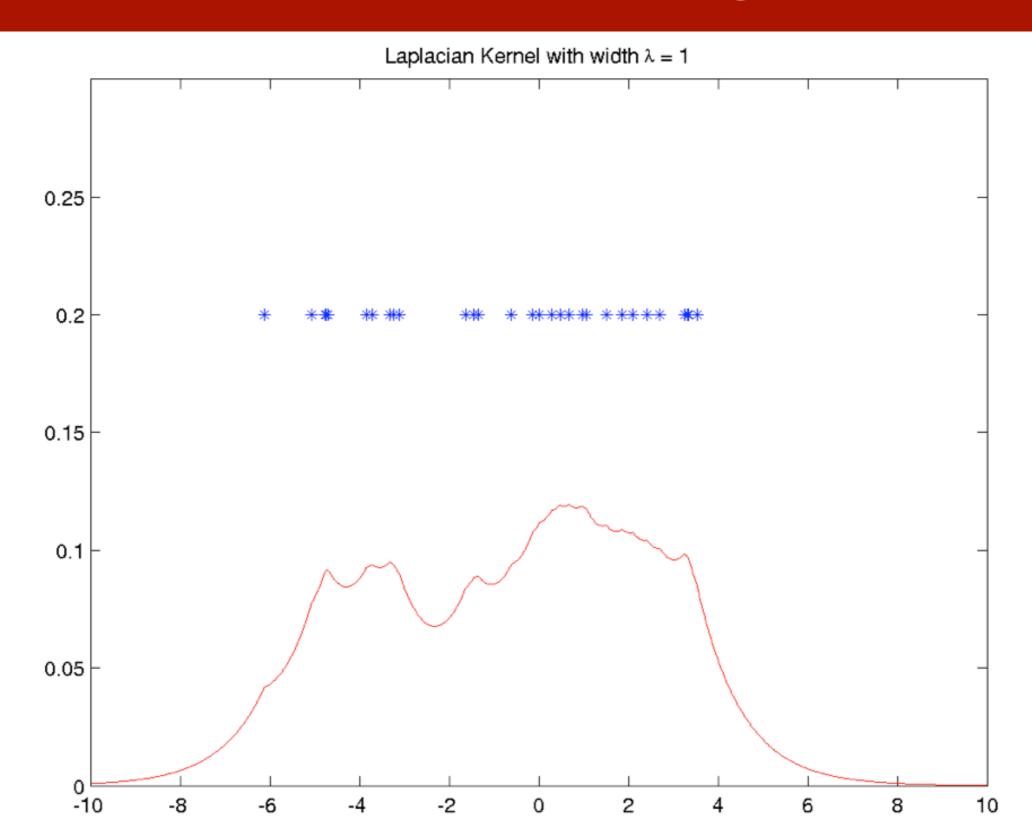
$$\hat{p}(x) = \frac{1}{m} \sum_{i=1}^{m} k_{x_i}(x)$$

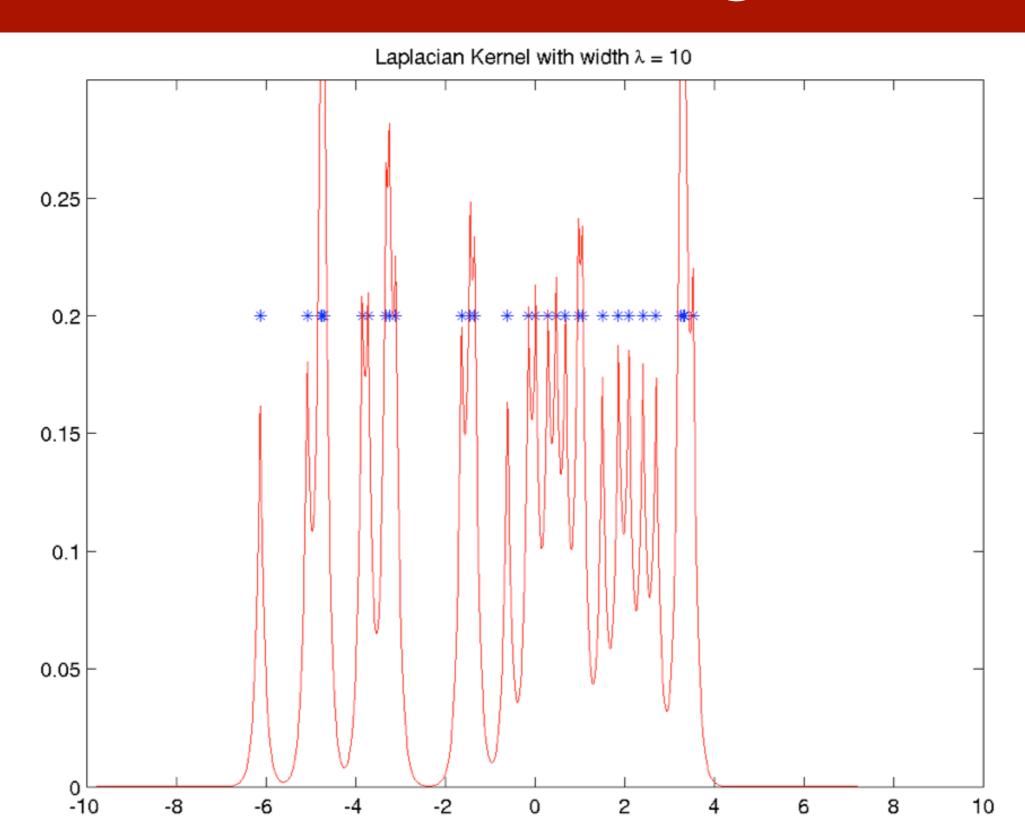
Smoothing kernels



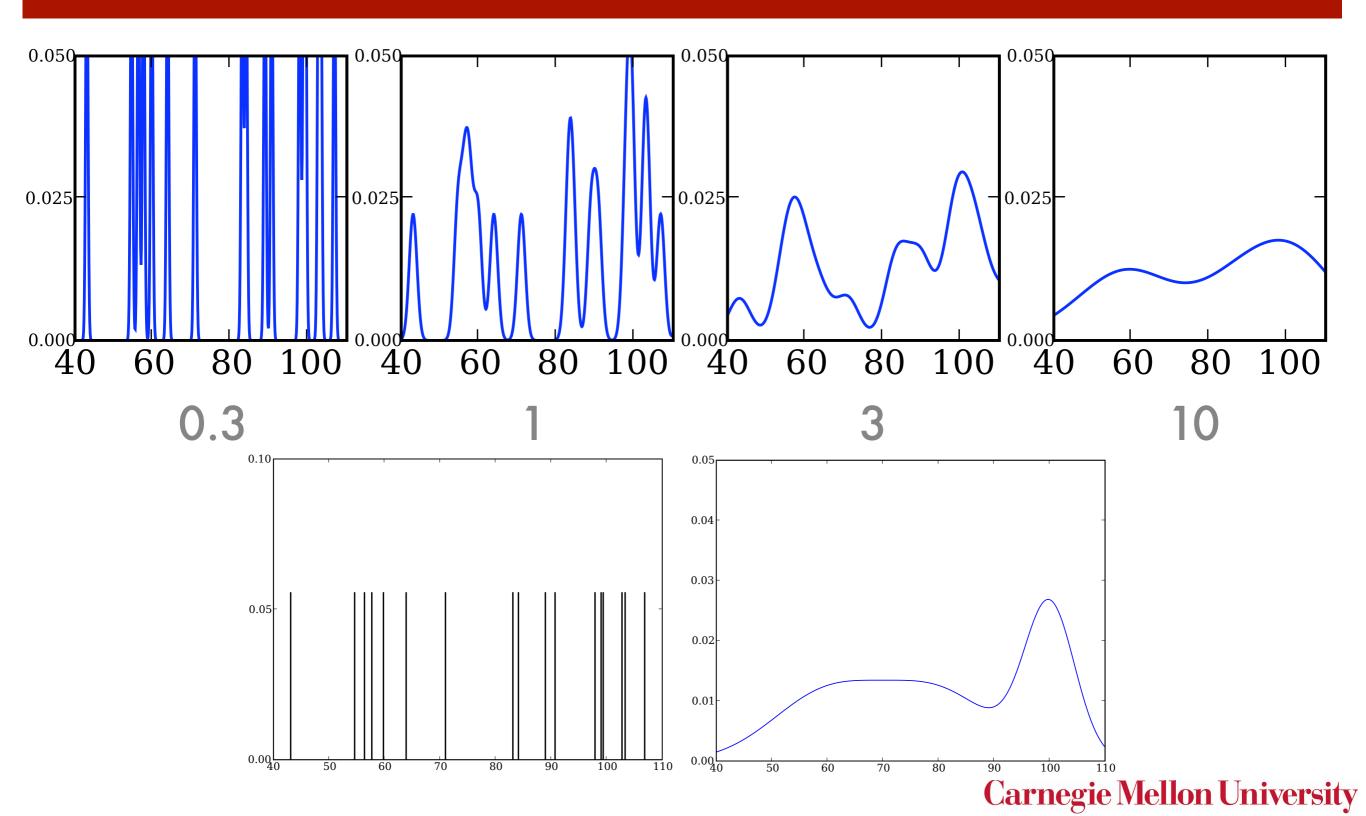




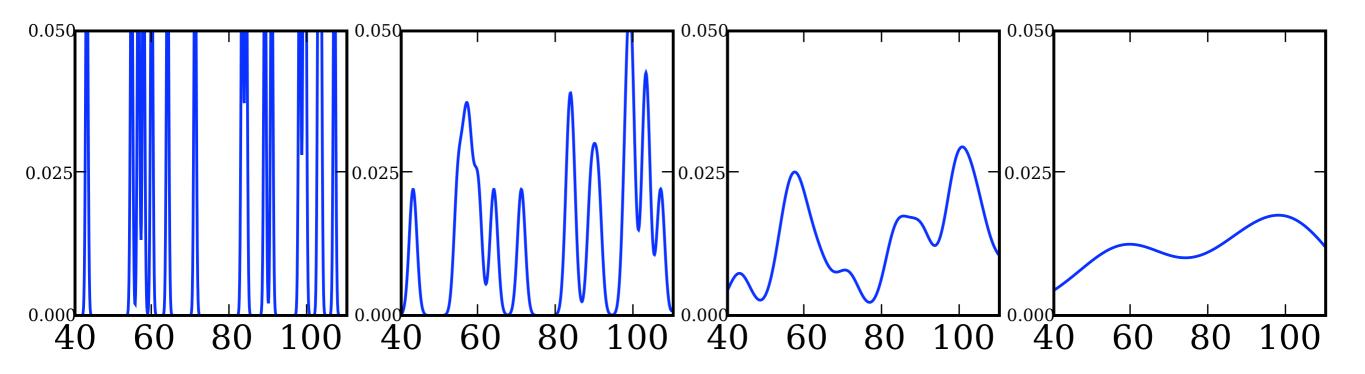




Size matters



Size matters Shape matters mostly in theory



Kernel width

$$k_{x_i}(x) = r^{-d}h\left(\frac{x - x_i}{r}\right)$$

- Too narrow overfits
- Too wide smoothes with constant distribution
- How to choose?

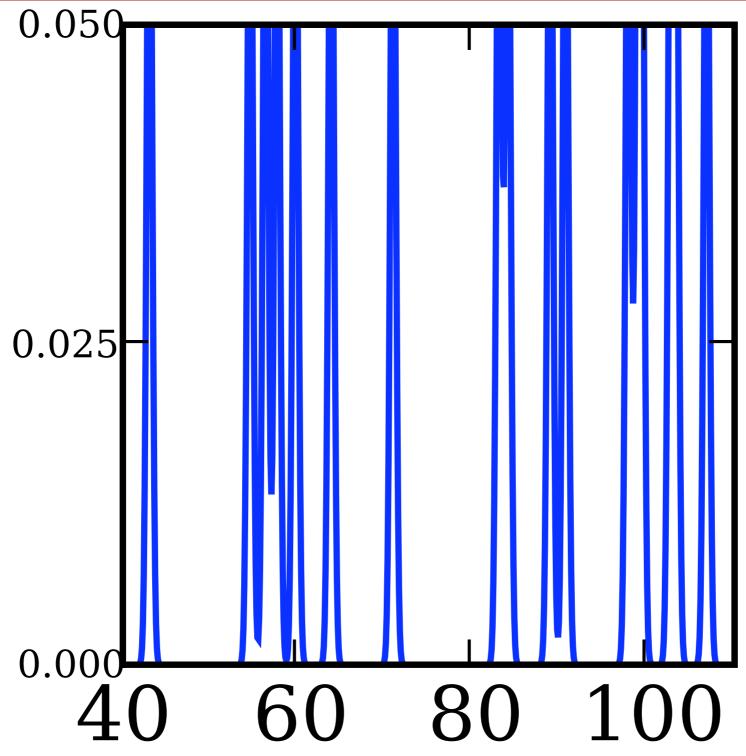
Maximum Likelihood

- Need to measure how well we do
- For density estimation we care about

$$\Pr\left\{X\right\} = \prod_{i=1}^{m} p(x_i)$$

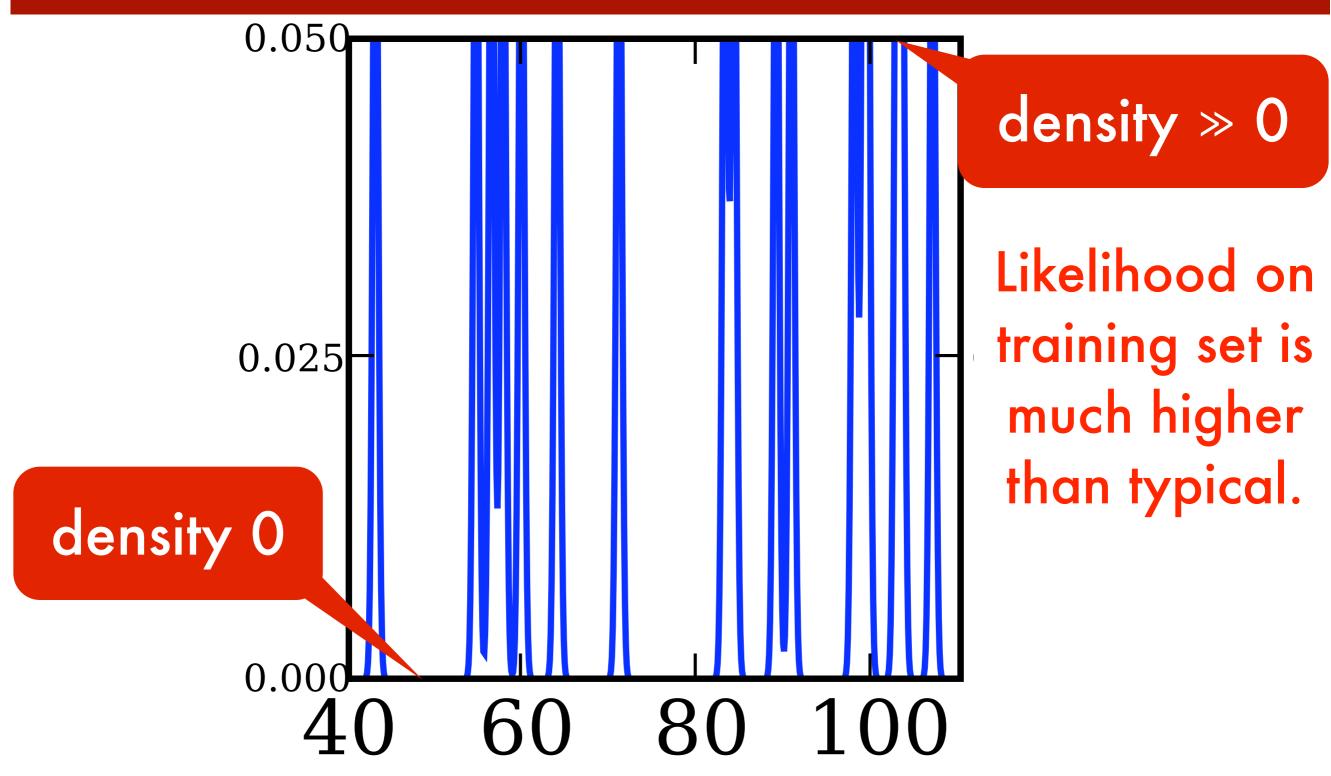
- Finding a that maximizes P(X) will peak at all data points since x_i explains x_i best ...
- Maxima are delta functions on data.
- Overfitting!

Overfitting

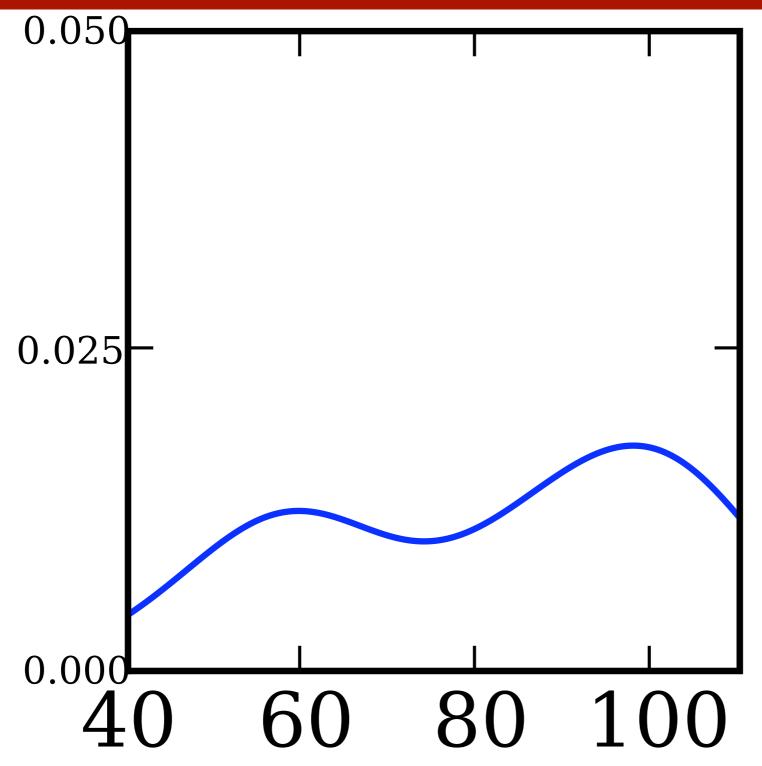


Likelihood on training set is much higher than typical.

Overfitting



Underfitting



Likelihood on training set is very similar to typical one.

Too simple.

- Validation
 - Use some of the data to estimate density.
 - Use other part to evaluate how well it works
 - Pick the parameter that works best

$$\mathcal{L}(X'|X) := \frac{1}{n'} \sum_{i=1}^{n'} \log \hat{p}(x_i')$$

- Learning Theory
 - Use data to build model
 - Measure complexity and use this to bound

$$\frac{1}{n} \sum_{i=1}^{n} \log \hat{p}(x_i) - \mathbf{E}_x \left[\log \hat{p}(x) \right]$$

- Validation
 - Use some of the data to estimate density.
 - Use other part to evaluate how well it works
 - Pick the parameter that works best

easy

$$\mathcal{L}(X'|X) := \frac{1}{n'} \sum_{i=1}^{n'} \log \hat{p}(x_i')$$

- Learning Theory
 - Use data to build model
 - Measure complexity and use this to bound

$$\frac{1}{n} \sum_{i=1}^{n} \log \hat{p}(x_i) - \mathbf{E}_x \left[\log \hat{p}(x) \right]$$

- Validation
 - Use some of the data to estimate density.
 - Use other part to evaluate how well it works
 - Pick the parameter that works best

easy

$$\mathcal{L}(X'|X) := \frac{1}{n'} \sum_{i=1}^{n'} \log \hat{p}(x'_i)$$

- Learning Theory
 - Use data to build model
 - Measure complexity and use this to bound

$$\frac{1}{n} \sum_{i=1}^{n} \log \hat{p}(x_i) - \mathbf{E}_x \left[\log \hat{p}(x) \right]$$

wasteful

- Validation
 - Use some of the data to estimate density.
 - Use other part to evaluate how well it works
 - Pick the parameter that works best

easy

$$\mathcal{L}(X'|X) := \frac{1}{n'} \sum_{i=1}^{n'} \log \hat{p}(x_i')$$

- Learning Theory
 - Use data to build model
 - Measure complexity and use this to bound

difficult
$$-\frac{1}{n} \sum_{i=1}^{n} \log \hat{p}(x_i) - \mathbf{E}_x \left[\log \hat{p}(x) \right]$$

wasteful

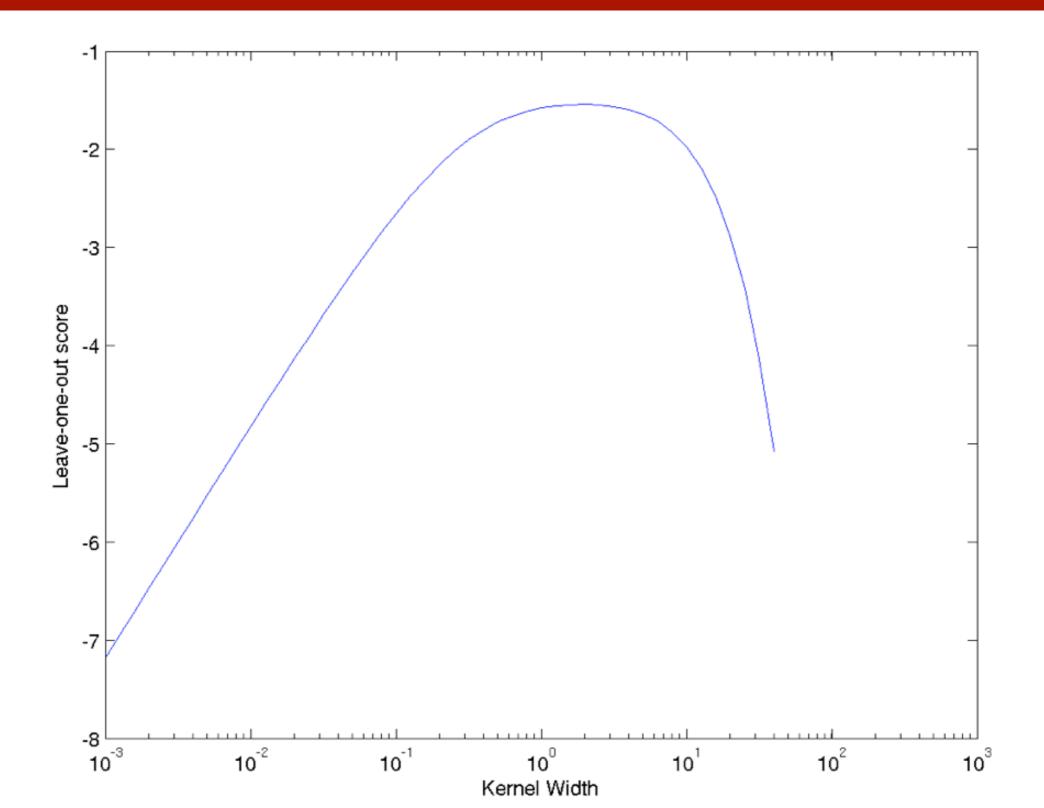
- Leave-one-out Crossvalidation
 - Use almost all data to estimate density.
 - Use single instance to estimate how well it works

$$\log p(x_i|X\setminus\{x_i\}) = \log \frac{1}{n-1} \sum_{i\neq i} k(x_i, x_j)$$

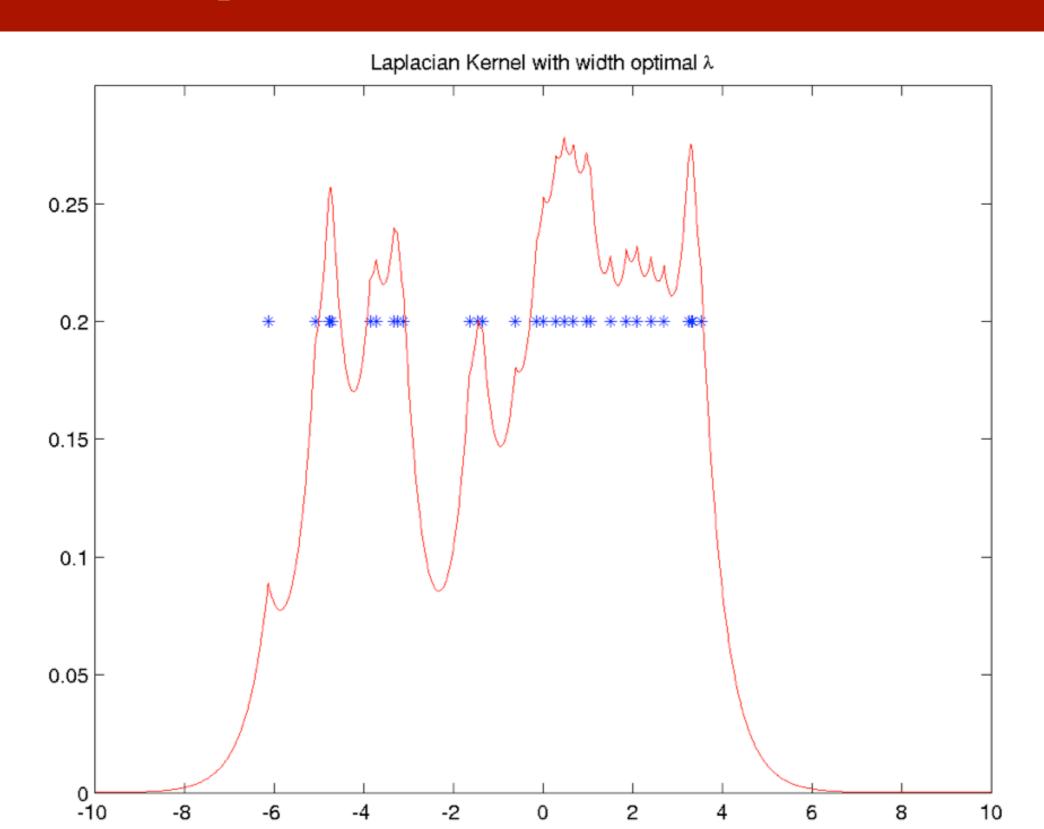
- This has huge variance
- Average over estimates for all training data
- Pick the parameter that works best
- Simple implementation

$$\frac{1}{n} \sum_{i=1}^{n} \log \left[\frac{n}{n-1} p(x_i) - \frac{1}{n-1} k(x_i, x_i) \right] \text{ where } p(x) = \frac{1}{n} \sum_{i=1}^{n} k(x_i, x_i)$$

Leave-one out estimate



Optimal estimate



- k-fold Crossvalidation
 - Partition data into k blocks (typically 10)
 - Use all but one block to compute estimate
 - Use remaining block as validation set
 - Average over all validation estimates

$$\frac{1}{k} \sum_{i=1}^{k} l(p(X_i|X\backslash X_i))$$

- Almost unbiased (e.g. via Luntz and Brailovski, 1969)
 (error is for (k-1)/k sized set)
- Pick best parameter (why must we not check too many?)

MAGIC Etch A Sketch SCREEN

Watson Nadaraya Estimator

Geoff Watson

bid fold of the total

MAGIC SCREEN IS GLASS SET IN STURBY PLACTIC PRAME USE WITH CARE

From density estimation to classification

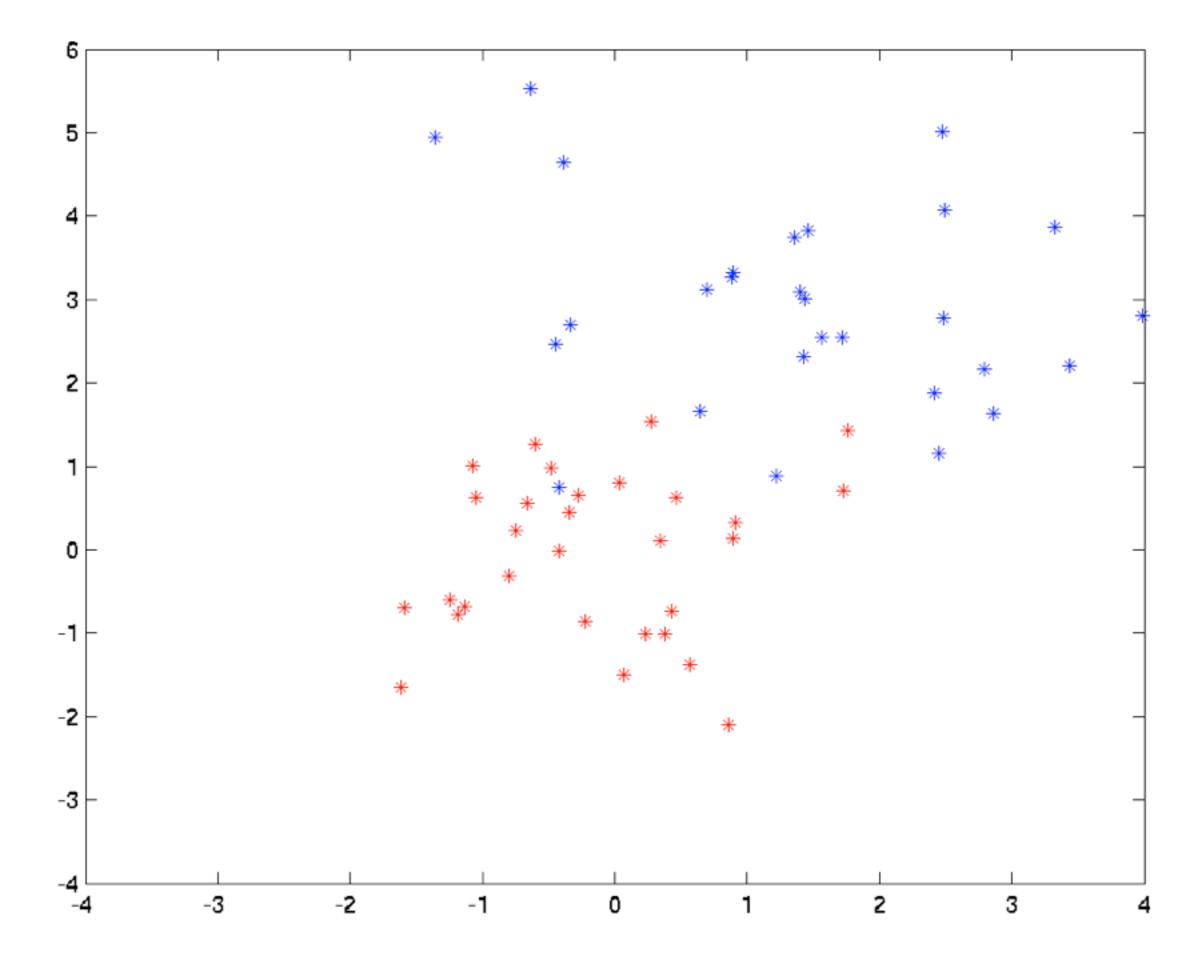
- Binary classification
 - Estimate p(x|y=1) and p(x|y=-1)
 - Use Bayes rule

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} = \frac{\frac{1}{m_y} \sum_{y_i=y} k(x_i, x) \cdot \frac{m_y}{m}}{\frac{1}{m_y} \sum_{i=1}^{m_y} k(x_i, x)}$$

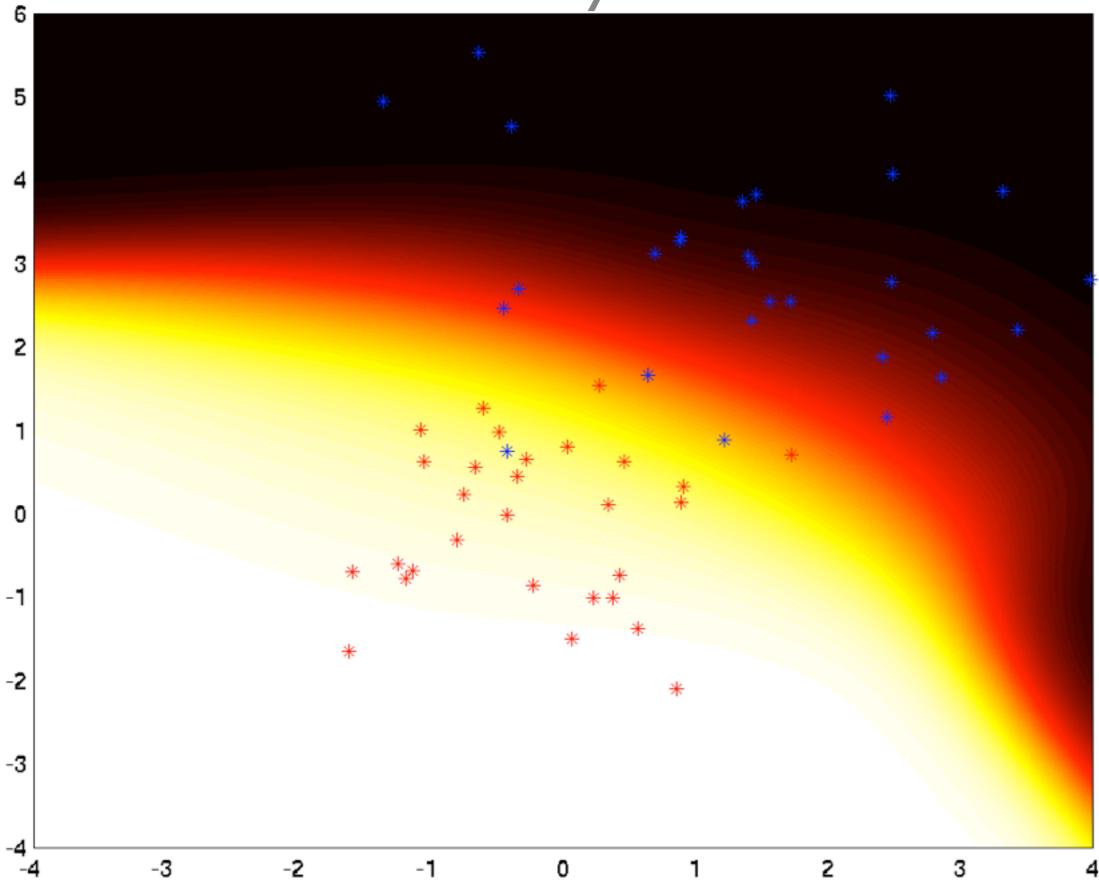
Decision boundary

$$p(y = 1|x) - p(y = -1|x) = \frac{\sum_{j} y_{j} k(x_{j}, x)}{\sum_{i} k(x_{i}, x)} = \sum_{j} y_{j} \frac{k(x_{j}, x)}{\sum_{i} k(x_{i}, x)}$$

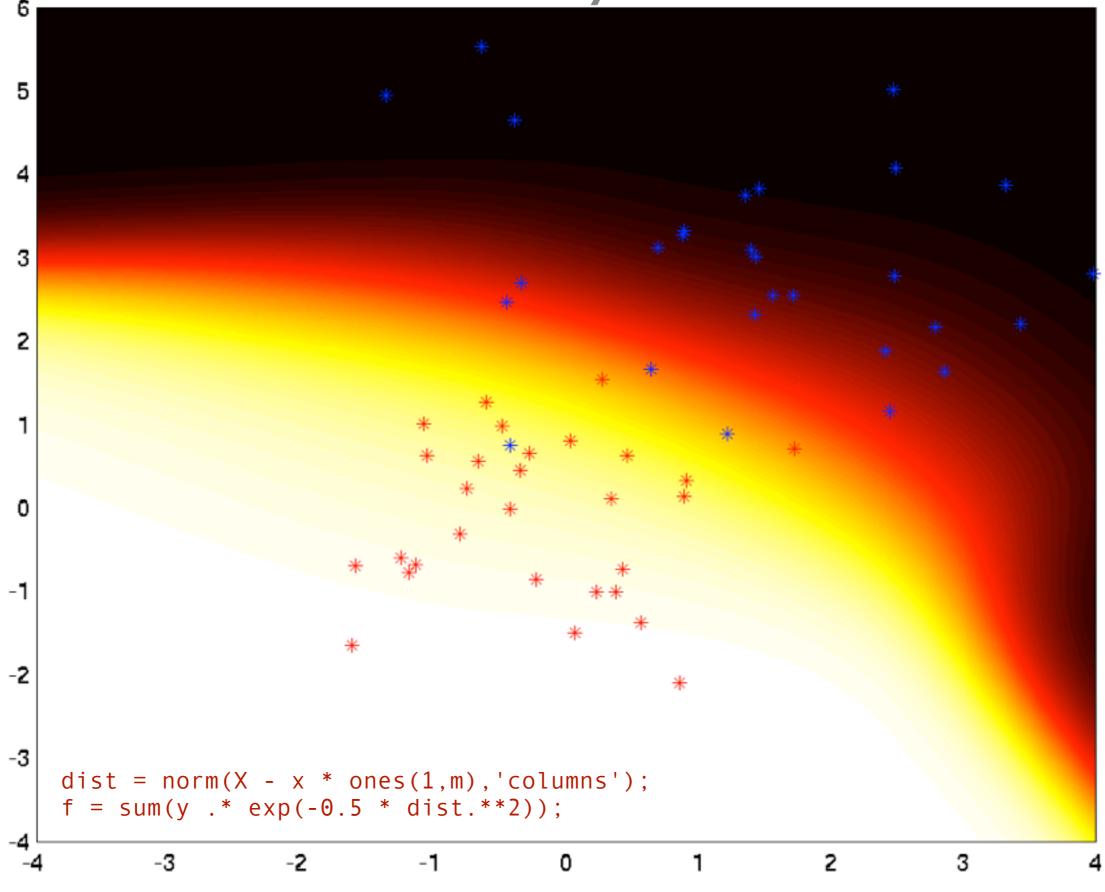
local weights



Watson-Nadaraya Classifier



Watson-Nadaraya Classifier



Watson Nadaraya Regression

Binary classification

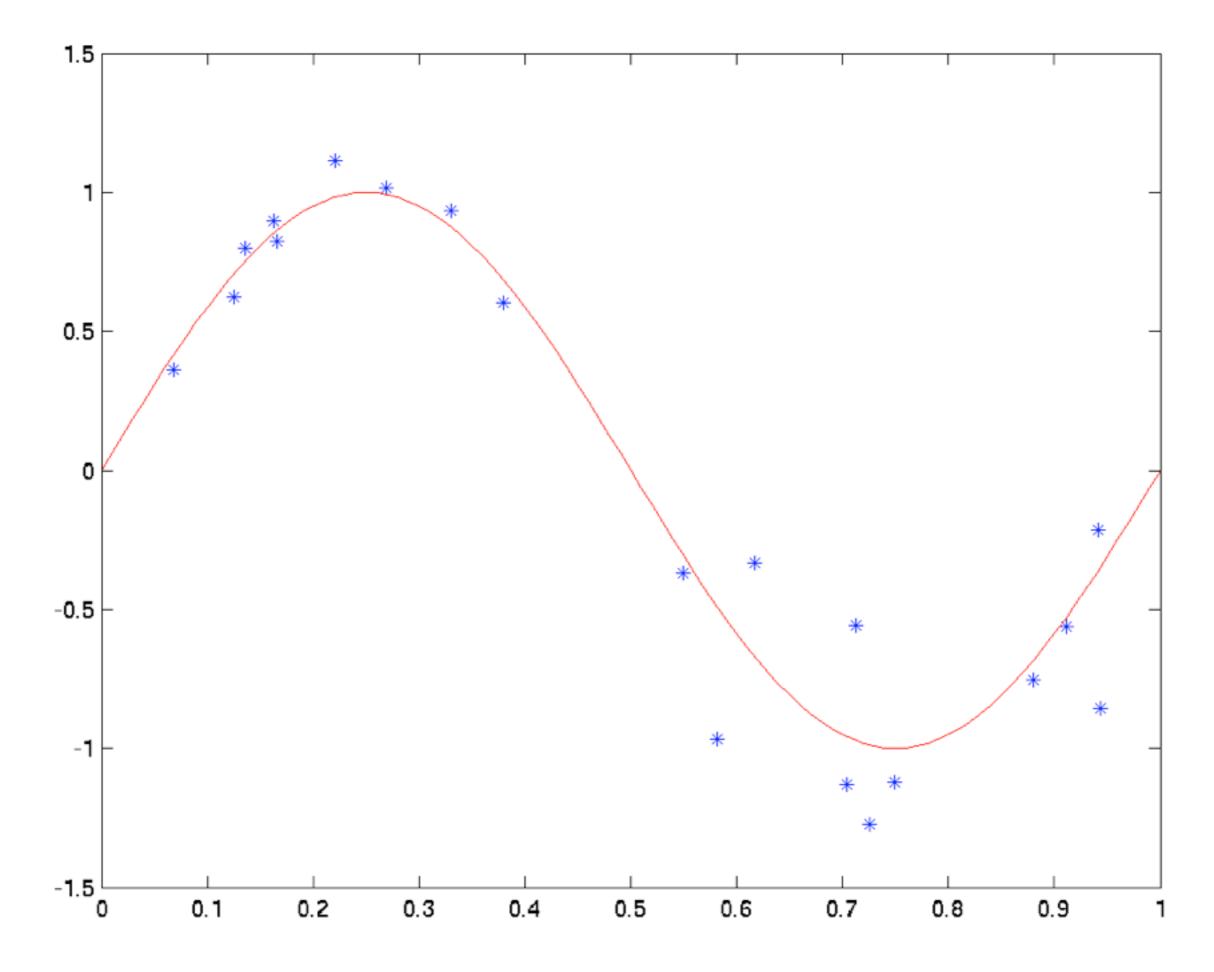
$$p(y = 1|x) - p(y = -1|x) = \frac{\sum_{j} y_{j} k(x_{j}, x)}{\sum_{i} k(x_{i}, x)} = \sum_{j} y_{j} \frac{k(x_{j}, x)}{\sum_{i} k(x_{i}, x)}$$

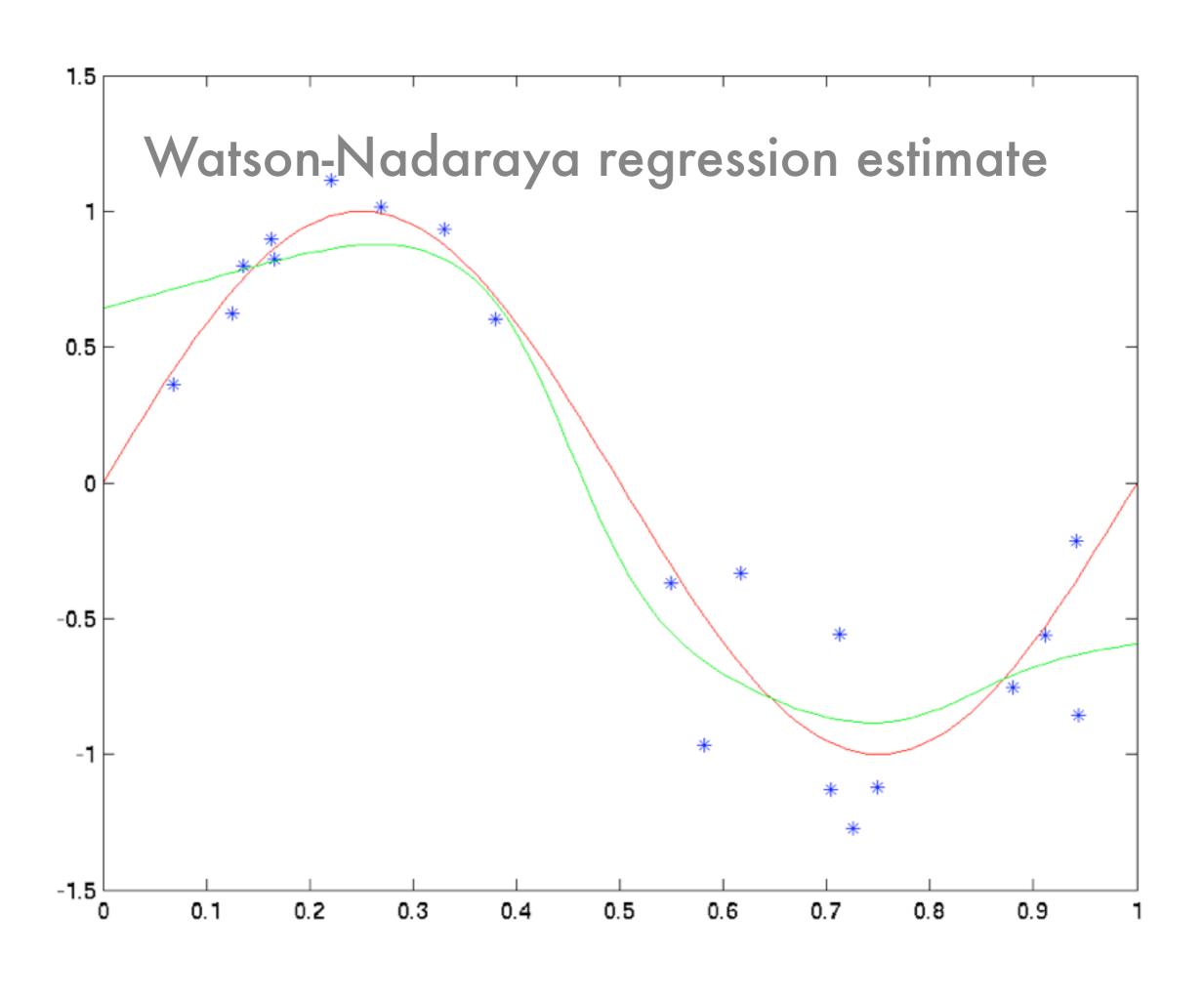
Regression - use same weighted expansion

$$\hat{y}(x) = \sum_{j} y_j \frac{k(x_j, x)}{\sum_{i} k(x_i, x)}$$

labels

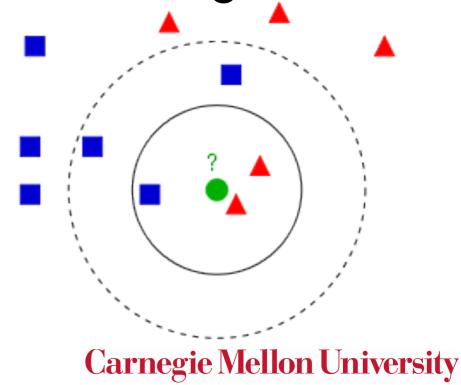
local weights





Nearest Neighbors

- Table lookup
 For previously seen instance remember label
- Nearest neighbor
 - Pick label of most similar neighbor
 - Slight improvement use k-nearest neighbors
 - For regression average
 - Really useful baseline!
 - Easy to implement for small amounts of data.



Relation to Watson Nadaraya

Watson Nadaraya estimator

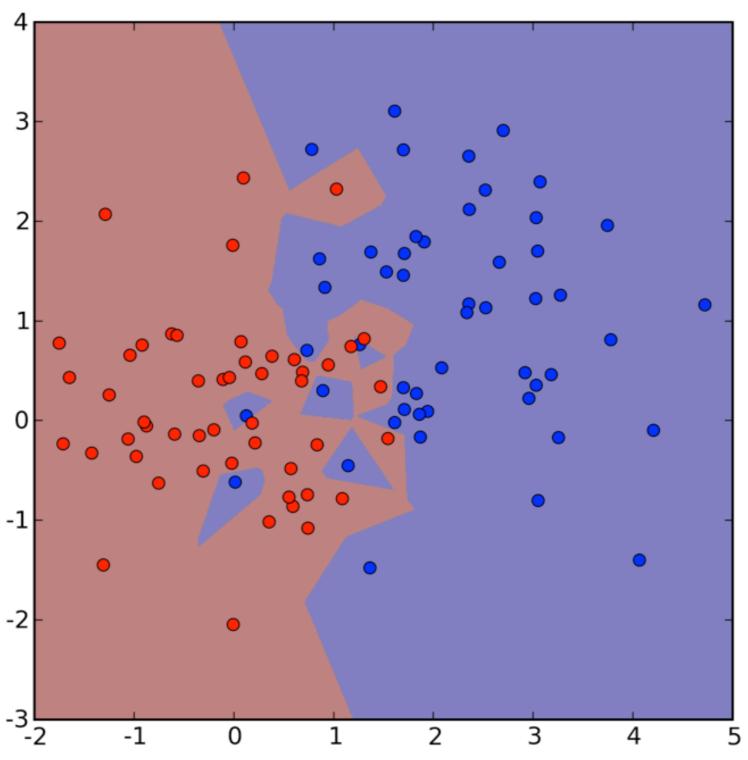
$$\hat{y}(x) = \sum_{j} y_{j} \frac{k(x_{j}, x)}{\sum_{i} k(x_{i}, x)} = \sum_{j} y_{j} w_{j}(x)$$

Nearest neighbor estimator

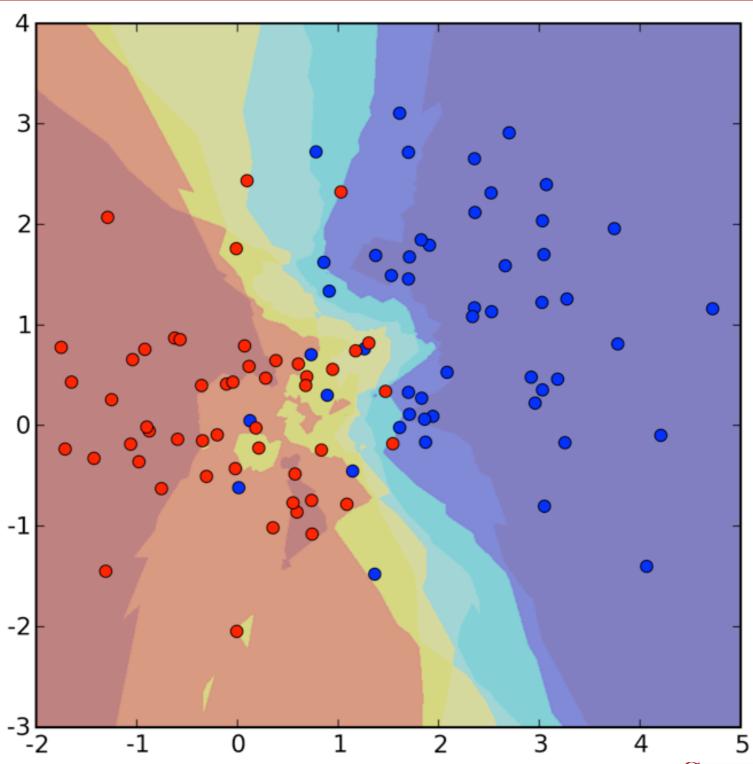
$$\hat{y}(x) = \sum_{j} y_{j} \frac{k(x_{j}, x)}{\sum_{i} k(x_{i}, x)} = \sum_{j} y_{j} w_{j}(x)$$

Neighborhood function is hard threshold.

1-Nearest Neighbor

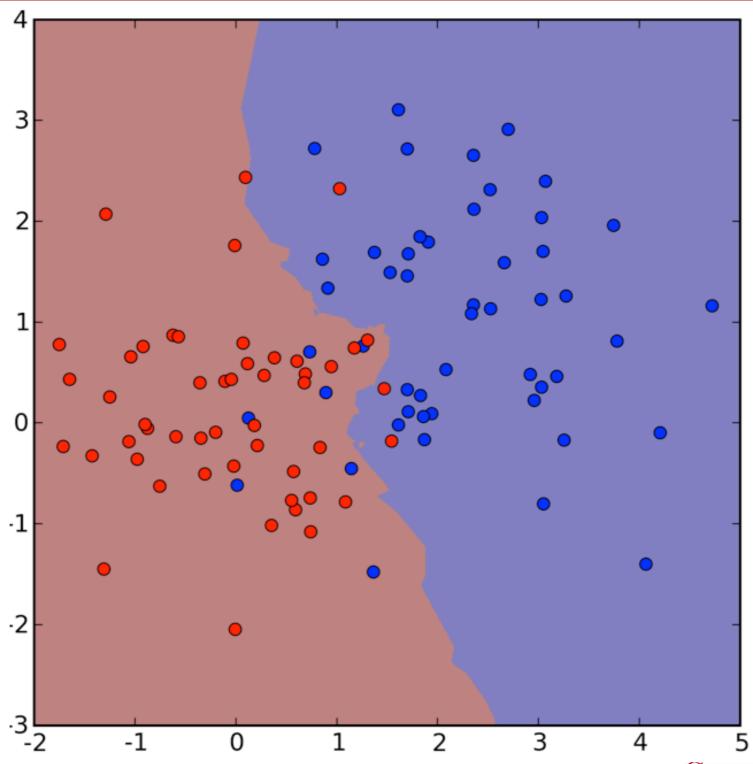


4-Nearest Neighbors



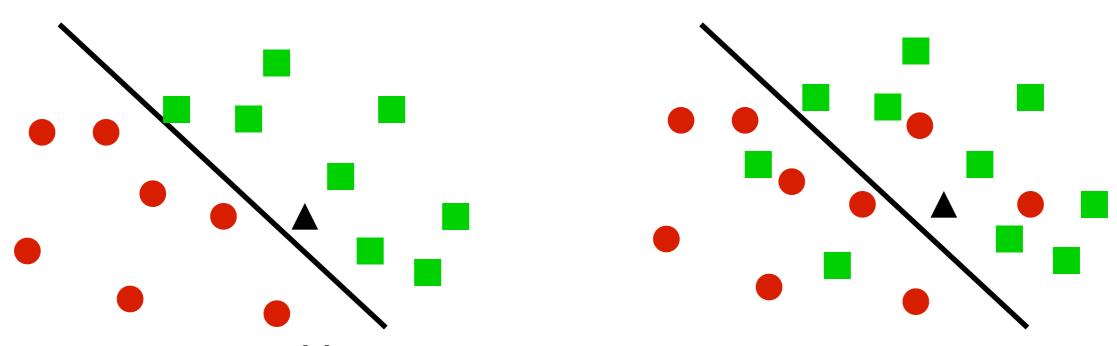
Carnegie Mellon University

4-Nearest Neighbors Sign



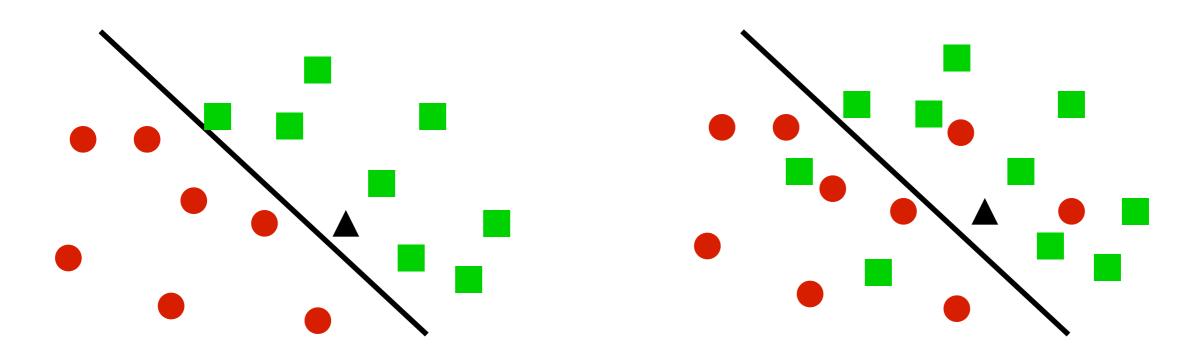
Carnegie Mellon University

If we get more data



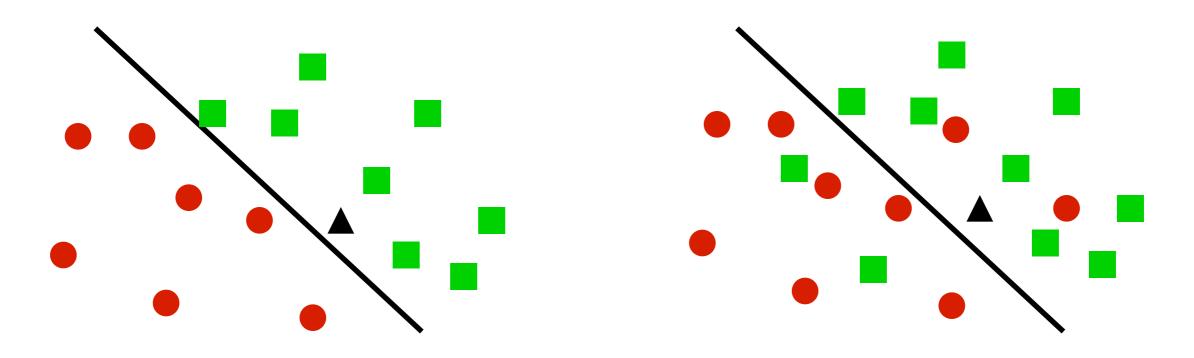
- 1 Nearest Neighbor
 - Converges to perfect solution if separation
 - Twice the minimal error rate 2p(1-p) for noisy problems
- k-Nearest Neighbor
 - Converges to perfect solution if separation (but needs more data)
 - Converges to minimal error min(p,1-p) for noisy problems
 (use increasing k)
 Carnegie Mellon University

1 Nearest Neighbor



- For given point x take ∈ neighborhood N with probability mass > d/n
- Probability that at least one point of n is in this neighborhood is 1-e^{-d} so we can make this small
- Assume that probability mass doesn't change much in neighborhood
- Probability that labels of query and point do not match is 2p(1-p) (up to some approximation error in neighborhood)

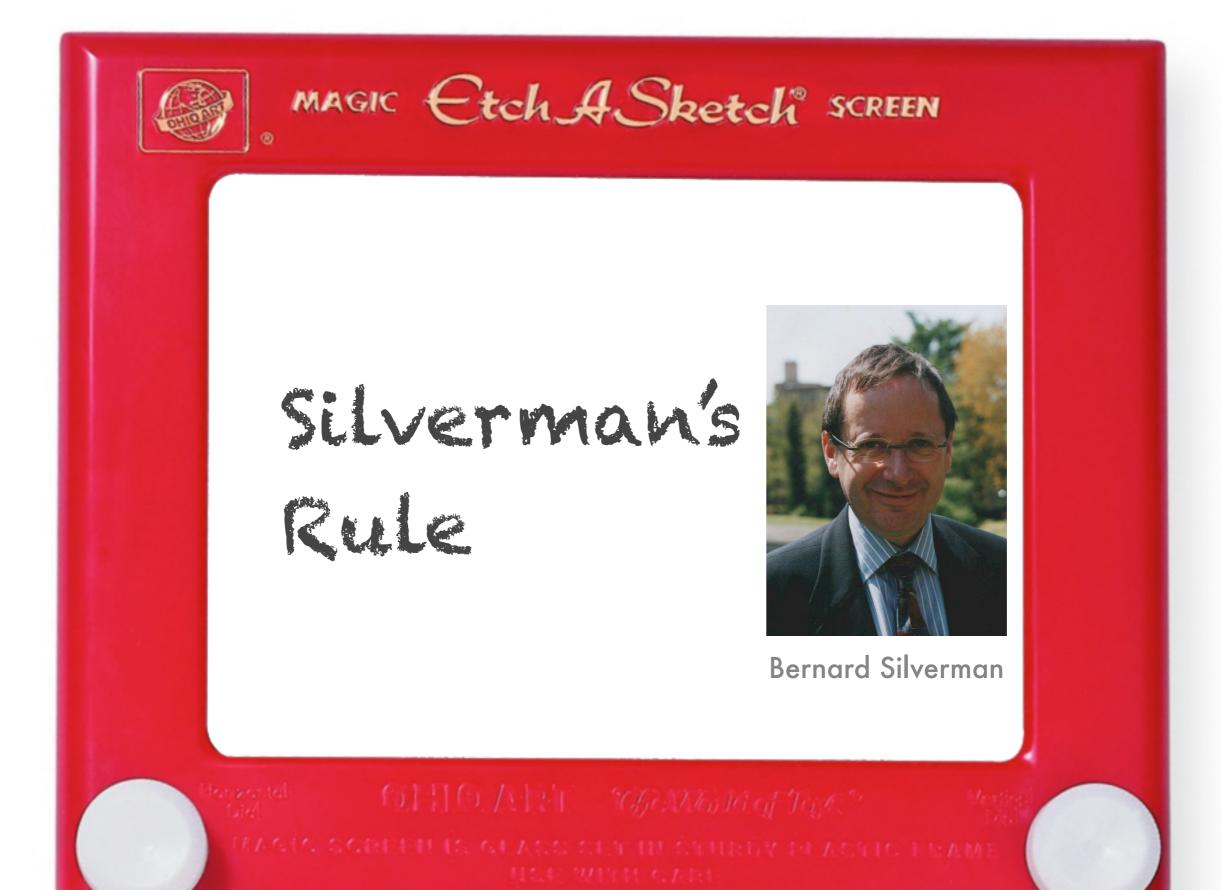
k Nearest Neighbor



- For given point x take ∈ neighborhood N with probability mass > dk/n
- Small probability that we don't have at least k points in neighborhood.
- Assume that probability mass doesn't change much in neighborhood
- Bound probability that majority of points doesn't match majority for p
 (e.g. via Hoeffding's theorem for tail). Show that it vanishes
- Error is therefore min(p, 1-p), i.e. Bayes optimal error.

Fast lookup

- KD trees (Moore et al.)
 - Partition space (one dimension at a time)
 - Only search for subset that contains point
- Cover trees (Beygelzimer et al.)
 - Hierarchically partition space with distance guarantees
 - No need for nonoverlapping sets
 - Bounded number of paths to follow (logarithmic time lookup)

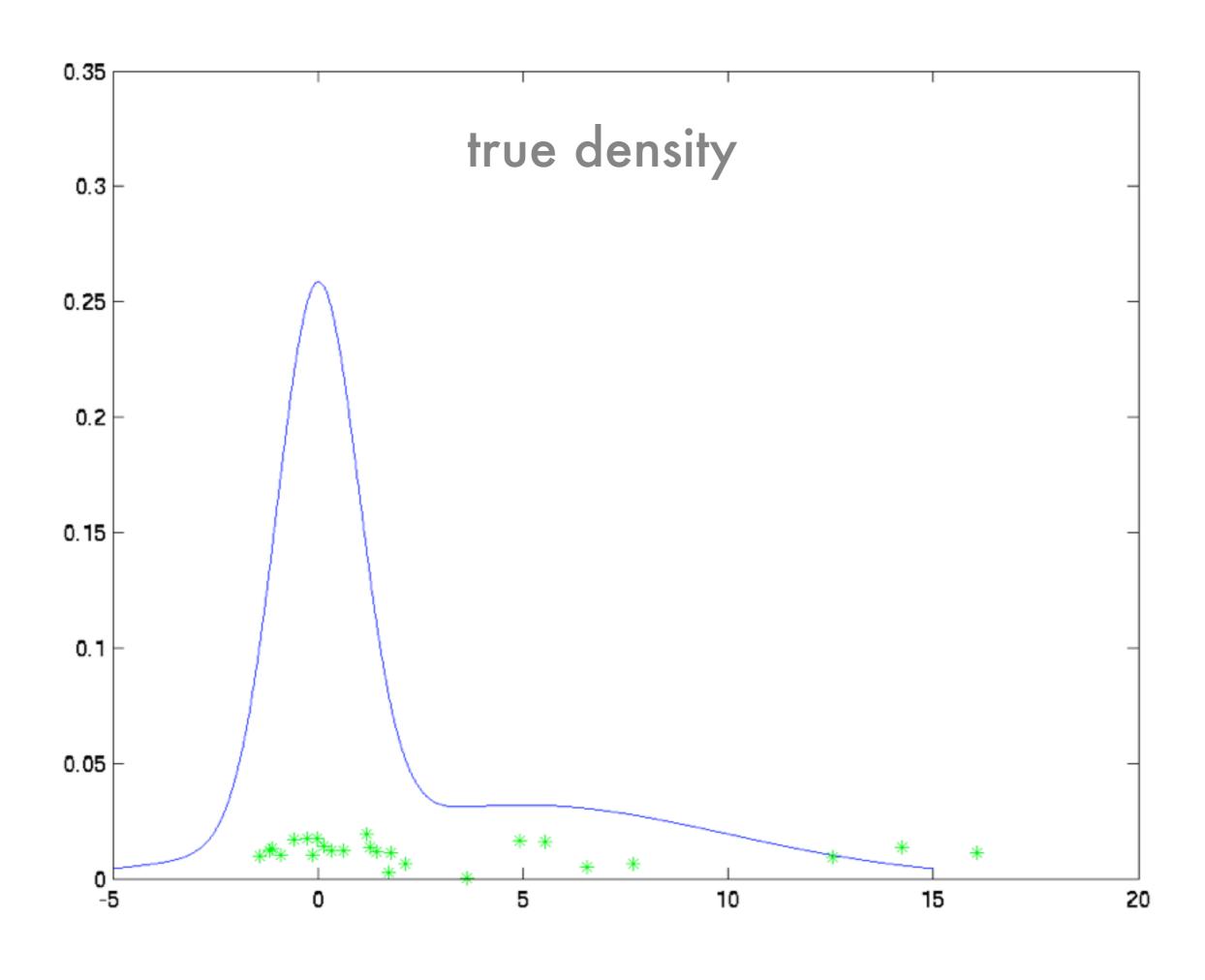


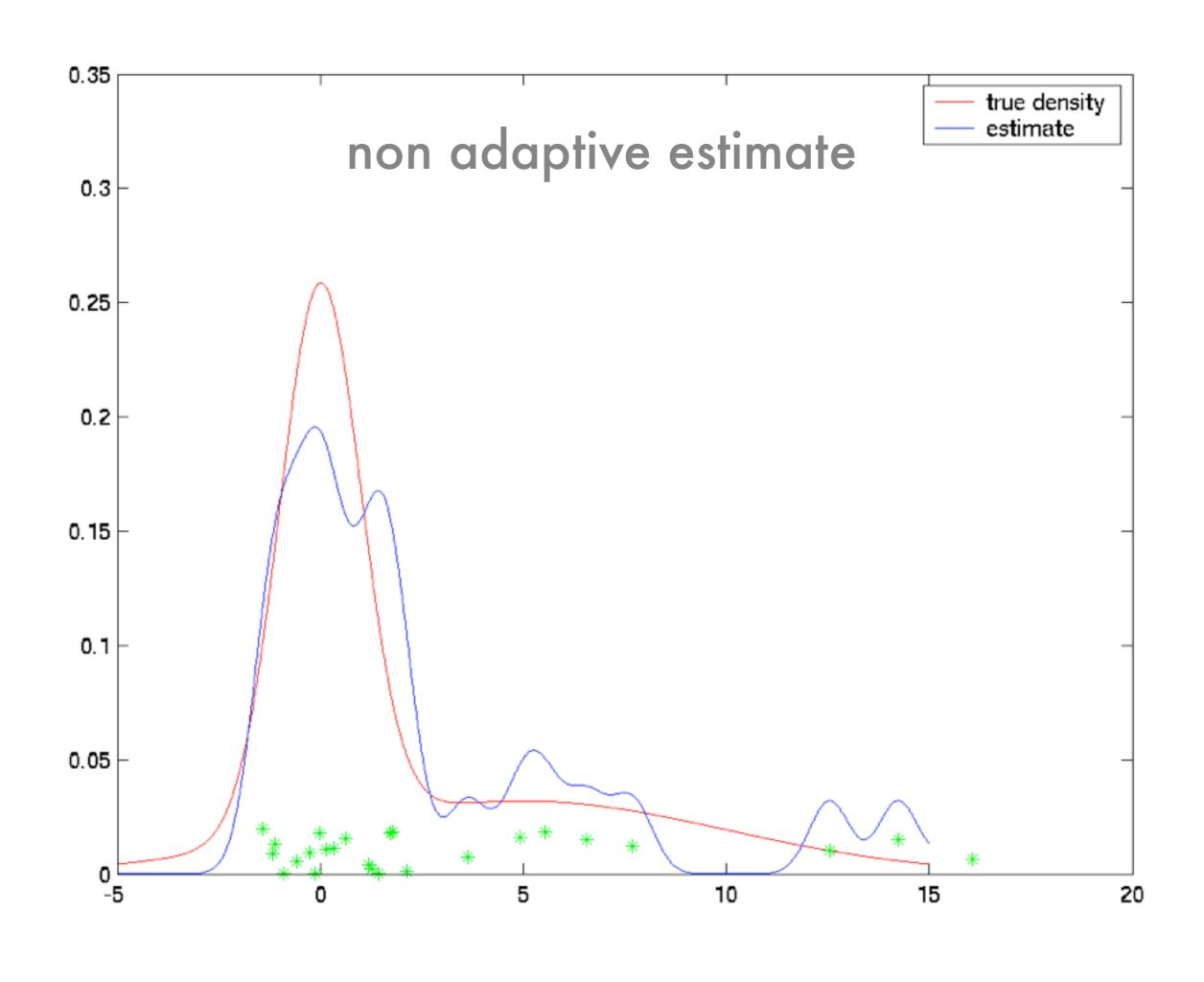
Silverman's rule

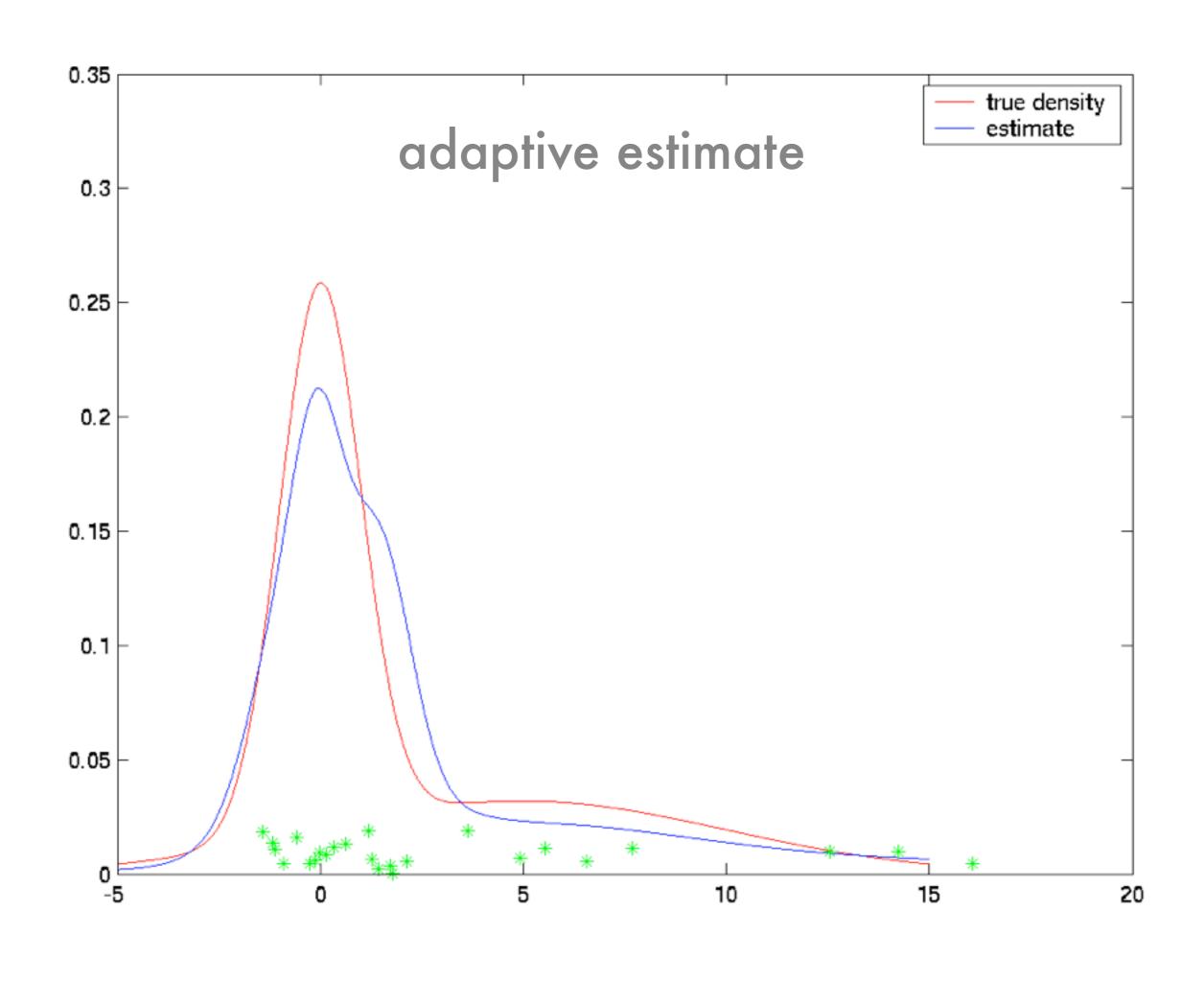
- Chicken and egg problem
 - Want wide kernel for low density region
 - Want narrow kernel where we have much data
 - Need density estimate to estimate density
- Simple hack
 Use average distance from k nearest neighbors

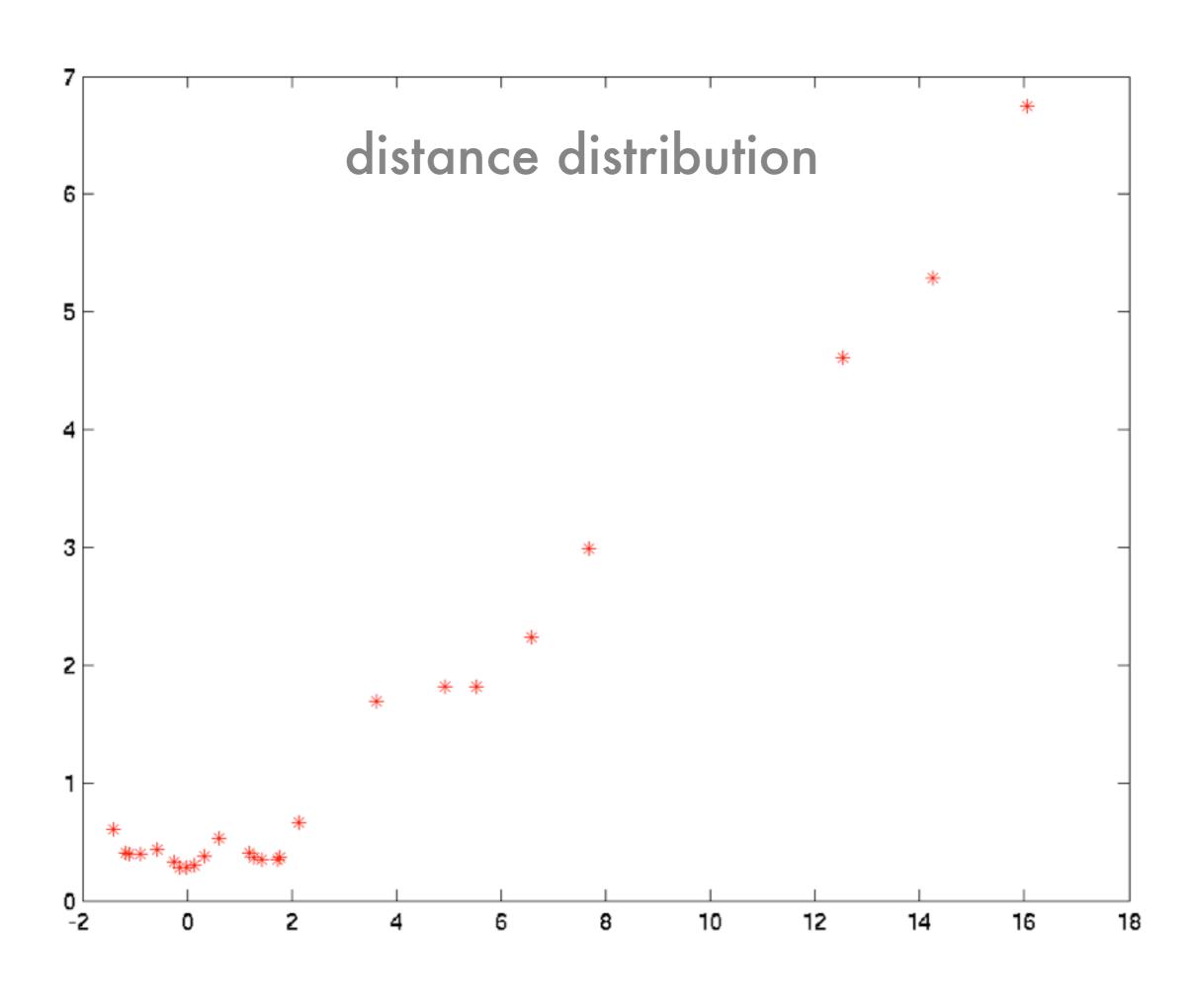
$$r_i = \frac{r}{k} \sum_{x \in \text{NN}(x_i, k)} ||x_i - x||$$

Nonuniform bandwidth for smoother.









Summary

- Parzen Windows Kernels, algorithm
- Model selection
 Crossvalidation, leave one out, bias variance
- Watson-Nadaraya estimator
 Classification, regression, novelty detection

Further Reading

- Cover tree homepage (paper & code)
 http://hunch.net/~il/projects/cover-tree/cover-tree.html
- http://doi.acm.org/10.1145/361002.361007 (kd trees, original paper)
- http://www.autonlab.org/autonweb/14665/version/2/part/5/data/moore-tutorial.pdf (Andrew Moore's tutorial from his PhD thesis)
- Nadaraya's regression estimator (1964)
 http://dx.doi.org/10.1137/1109020
- Watson's regression estimator (1964)
 http://www.jstor.org/stable/25049340
- Watson-Nadaraya regression package in R
 http://cran.r-project.org/web/packages/np/index.html
- Stone's k-NN regression consistency proof http://projecteuclid.org/euclid.aos/1176343886
- Cover and Hart's k-NN classification consistency proof http://www-isl.stanford.edu/people/cover/papers/transIT/0021cove.pdf
- Tom Cover's rate analysis for k-NN
 Rates of Convergence for Nearest Neighbor Procedures.
- Sanjoy Dasgupta's analysis for k-NN estimation with selective sampling http://cseweb.ucsd.edu/~dasgupta/papers/nnactive.pdf
- Multiedit & Condense (Dasarathy, Sanchez, Townsend)
 http://cgm.cs.mcgill.ca/~godfried/teaching/pr-notes/dasarathy.pdf
- Geometric approximation via core sets
 http://valis.cs.uiuc.edu/~sariel/papers/04/survey/survey.pdf