

Introduction to Machine Learning

7. Kernels Methods

Geoff Gordon and Alex Smola Carnegie Mellon University

http://alex.smola.org/teaching/cmu2013-10-701x 10-701

MAGIC Etch A Sketch SCREEN

Regression

"Under hypnosis you revealed that in your last eight lives you were ... er ... a cat."

fold to Alth Topolition of Tax

TAGIC SCREEN IS GLASS SET IN STURBY PLACTIC FRAME USE WITH CARE

Regression Estimation

• Find function f minimizing regression error

$$R[f] := \mathbf{E}_{x,y \sim p(x,y)} \left[l(y, f(x)) \right]$$

Compute empirical average

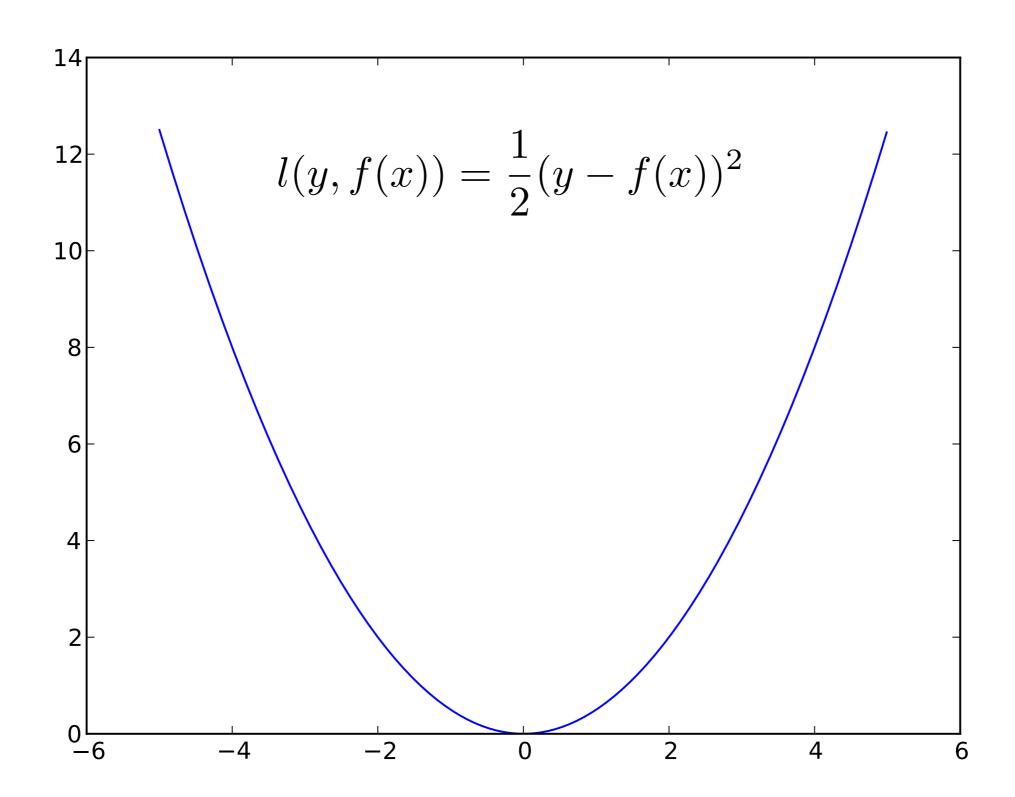
$$R_{\text{emp}}[f] := \frac{1}{m} \sum_{i=1}^{m} l(y_i, f(x_i))$$

Overfitting as we minimize empirical error

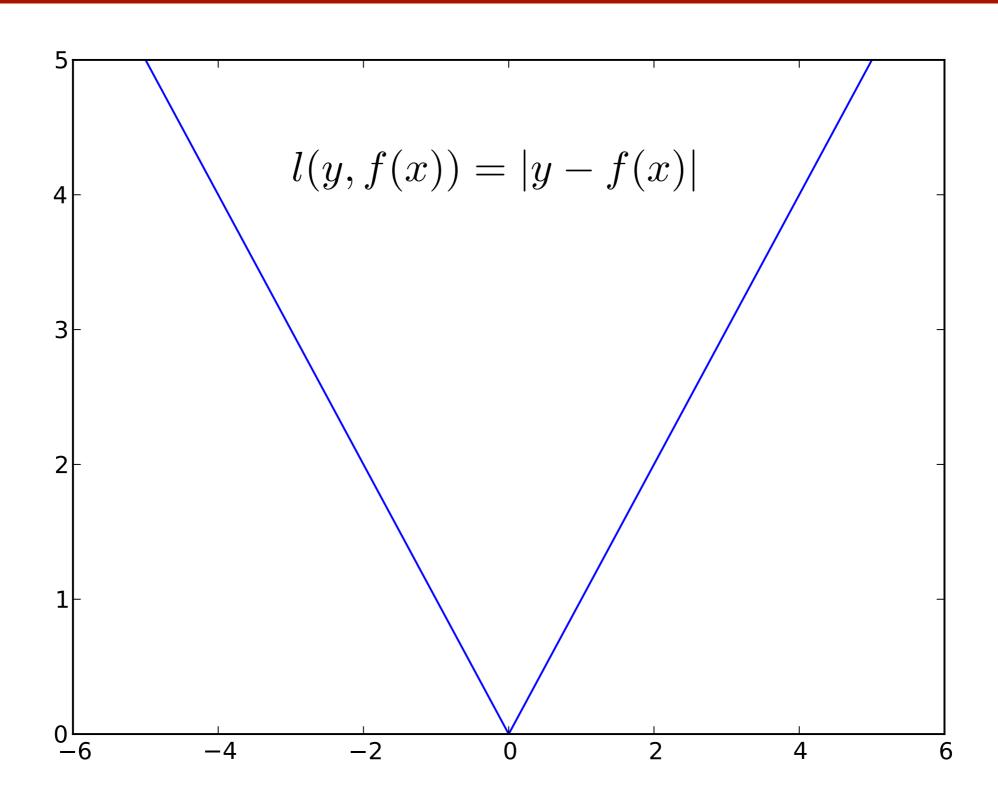
Add regularization for capacity control

$$R_{\text{reg}}[f] := \frac{1}{m} \sum_{i=1}^{m} l(y_i, f(x_i)) + \lambda \Omega[f]$$

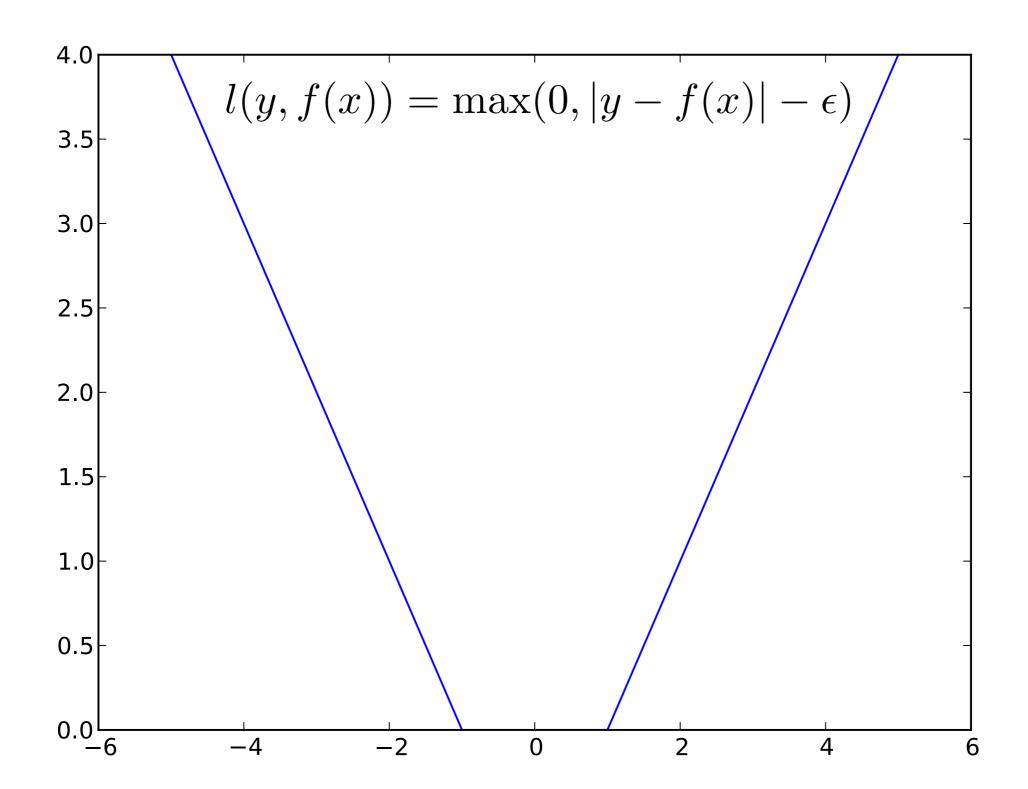
Squared loss



11 loss



E-insensitive Loss



Penalized least mean squares

Optimization problem

$$\underset{w}{\text{minimize}} \frac{1}{2m} \sum_{i=1}^{m} (y_i - \langle x_i, w \rangle)^2 + \frac{\lambda}{2} \|w\|^2$$

Solution

$$\partial_w \left[\dots \right] = \frac{1}{m} \sum_{i=1}^m \left[x_i x_i^\top w - x_i y_i \right] + \lambda w$$

$$= \left[\frac{1}{m} X X^\top + \lambda \mathbf{1} \right] w - \frac{1}{m} X y = 0$$
hence $w = \left[X X^\top + \lambda m \mathbf{1} \right]^{-1} X y$

Outer product matrix in X

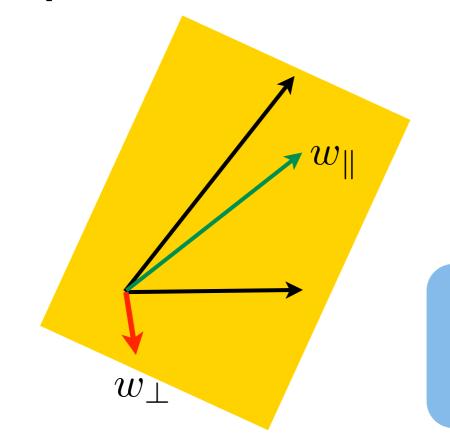
Conjugate Gradient
Sherman Morrison Woodbury

Penalized least mean squares ... now with kernels

Optimization problem

$$\underset{w}{\text{minimize}} \frac{1}{2m} \sum_{i=1}^{m} (y_i - \langle \phi(x_i), w \rangle)^2 + \frac{\lambda}{2} \|w\|^2$$

Representer Theorem (Kimeldorf & Wahba, 1971)



$$||w||^2 = ||w_{\parallel}||^2 + ||w_{\perp}||^2$$

empirical risk dependent

Penalized least mean squares ... now with kernels

Optimization problem

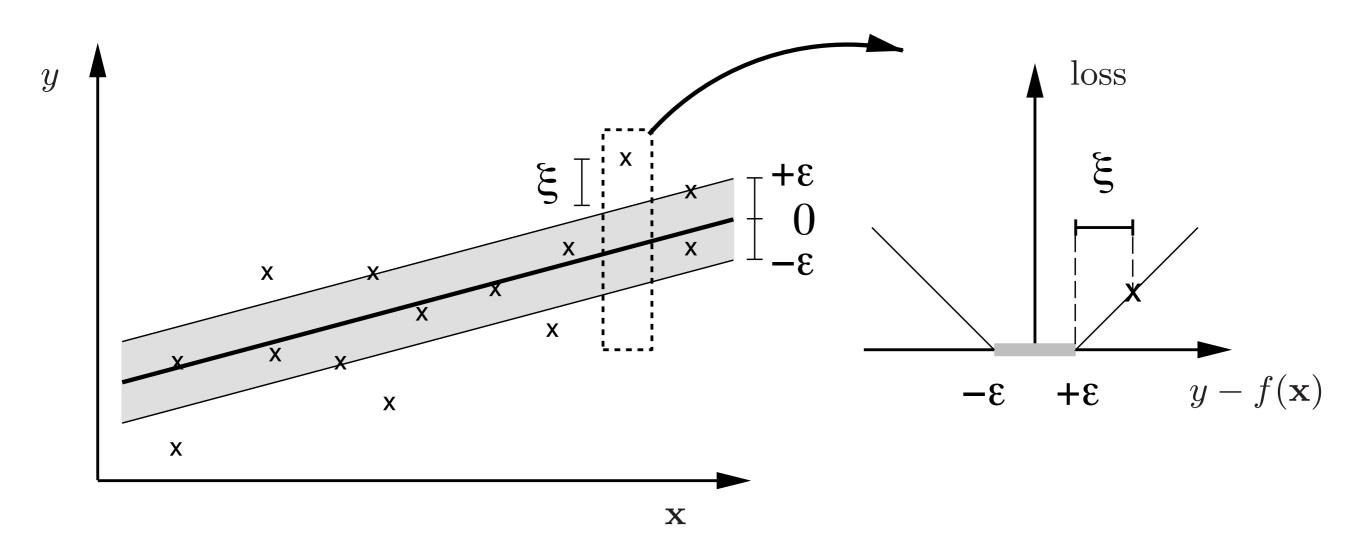
$$\underset{w}{\text{minimize}} \frac{1}{2m} \sum_{i=1}^{m} (y_i - \langle \phi(x_i), w \rangle)^2 + \frac{\lambda}{2} \|w\|^2$$

- Representer Theorem (Kimeldorf & Wahba, 1971)
 - Optimal solution is in span of data $w = \sum \alpha_i \phi(x_i)$
 - Proof risk term only depends on data via $^i \phi(x_i)$
 - Regularization ensures that orthogonal part is 0
- Optimization problem in terms of w

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} \left(y_i - \sum_{j} K_{ij} \alpha_j \right)^2 + \frac{\lambda}{2} \sum_{i,j} \alpha_i \alpha_j K_{ij}$$

solve for $\alpha = (K + m\lambda \mathbf{1})^{-1}y$ as linear system

SVM Regression (E-insensitive loss)



don't care about deviations within the tube

SVM Regression (€-insensitive loss)

Optimization Problem (as constrained QP)

minimize
$$\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} [\xi_i + \xi_i^*]$$

subject to $\langle w, x_i \rangle + b \le y_i + \epsilon + \xi_i$ and $\xi_i \ge 0$
 $\langle w, x_i \rangle + b \ge y_i - \epsilon - \xi_i^*$ and $\xi_i^* \ge 0$

Lagrange Function

$$L = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} [\xi_i + \xi_i^*] - \sum_{i=1}^{m} [\eta_i \xi_i + \eta_i^* \xi_i^*] + \sum_{i=1}^{m} \alpha_i [\langle w, x_i \rangle + b - y_i - \epsilon - \xi_i] + \sum_{i=1}^{m} \alpha_i^* [y_i - \epsilon - \xi_i^* - \langle w, x_i \rangle - b]$$

SVM Regression (E-insensitive loss)

First order conditions

$$\partial_w L = 0 = w + \sum_i [\alpha_i - \alpha_i^*] x_i$$

$$\partial_b L = 0 = \sum_i [\alpha_i - \alpha_i^*]$$

$$\partial_{\xi_i} L = 0 = C - \eta_i - \alpha_i$$

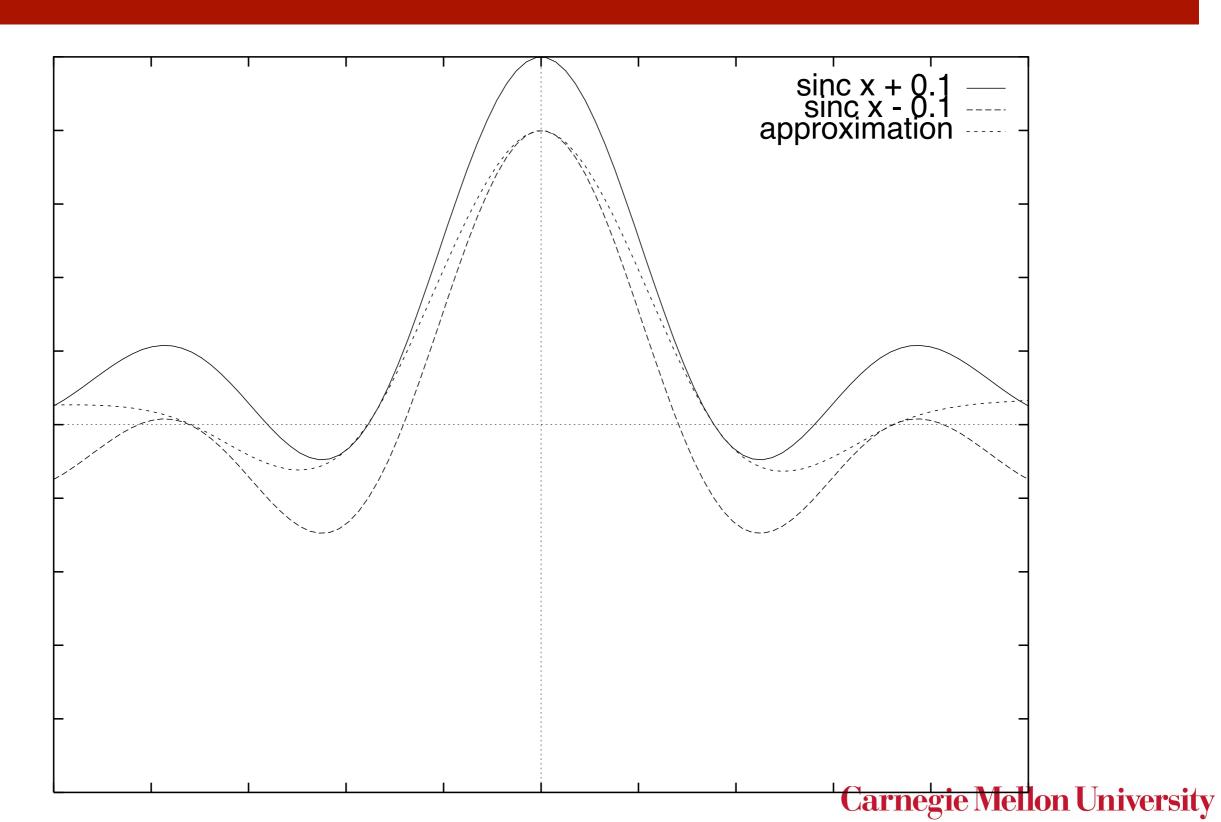
$$\partial_{\xi_i^*} L = 0 = C - \eta_i^* - \alpha_i^*$$

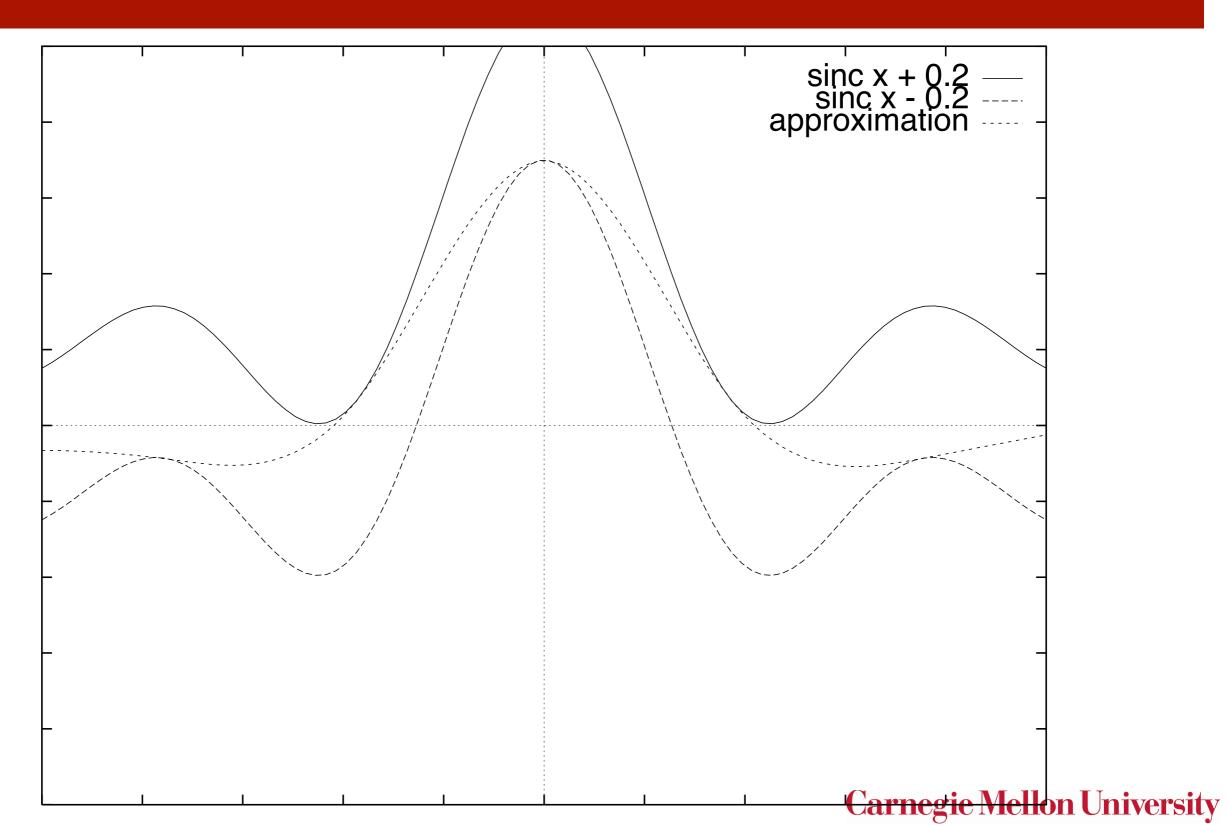
Dual problem

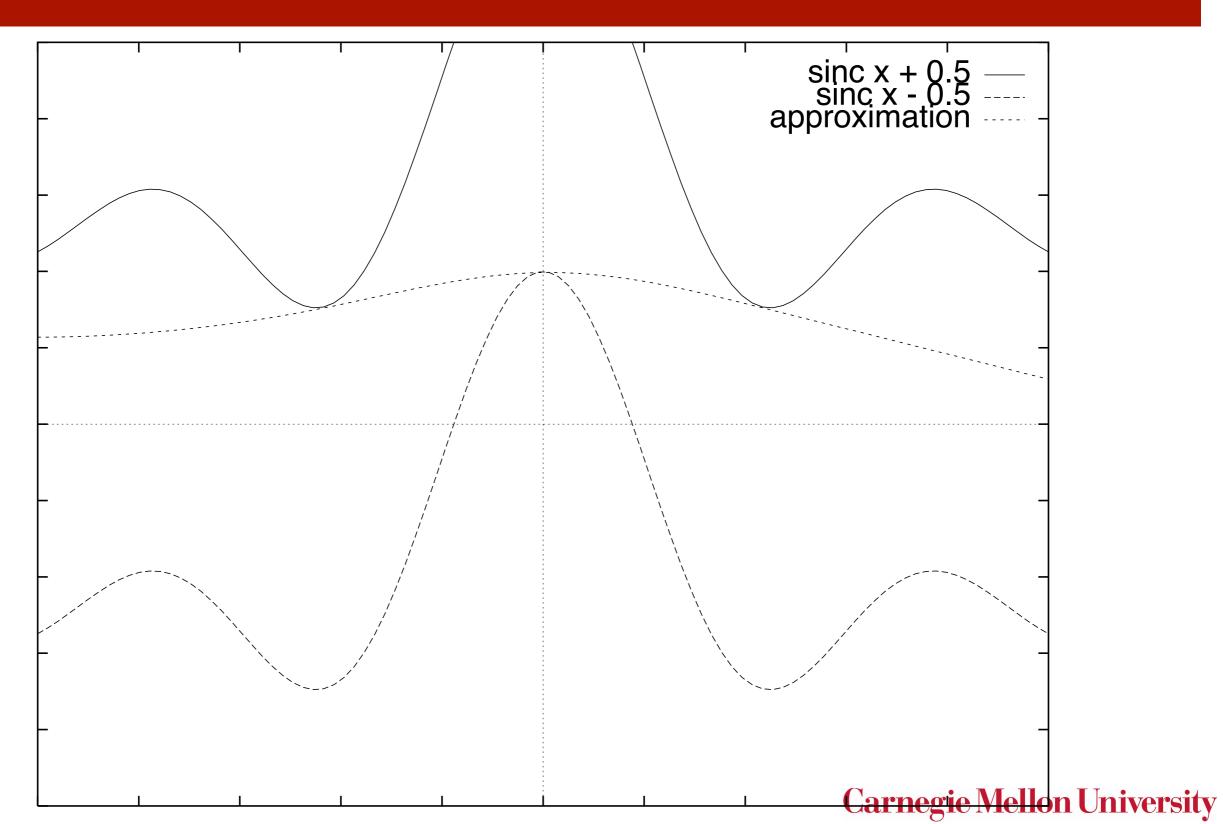
minimize
$$\frac{1}{2}(\alpha - \alpha^*)^{\top} K(\alpha - \alpha^*) + \epsilon \mathbf{1}^{\top} (\alpha + \alpha^*) + y^{\top} (\alpha - \alpha^*)$$
subject to $\mathbf{1}^{\top} (\alpha - \alpha^*) = 0$ and $\alpha_i, \alpha_i^* \in [0, C]$

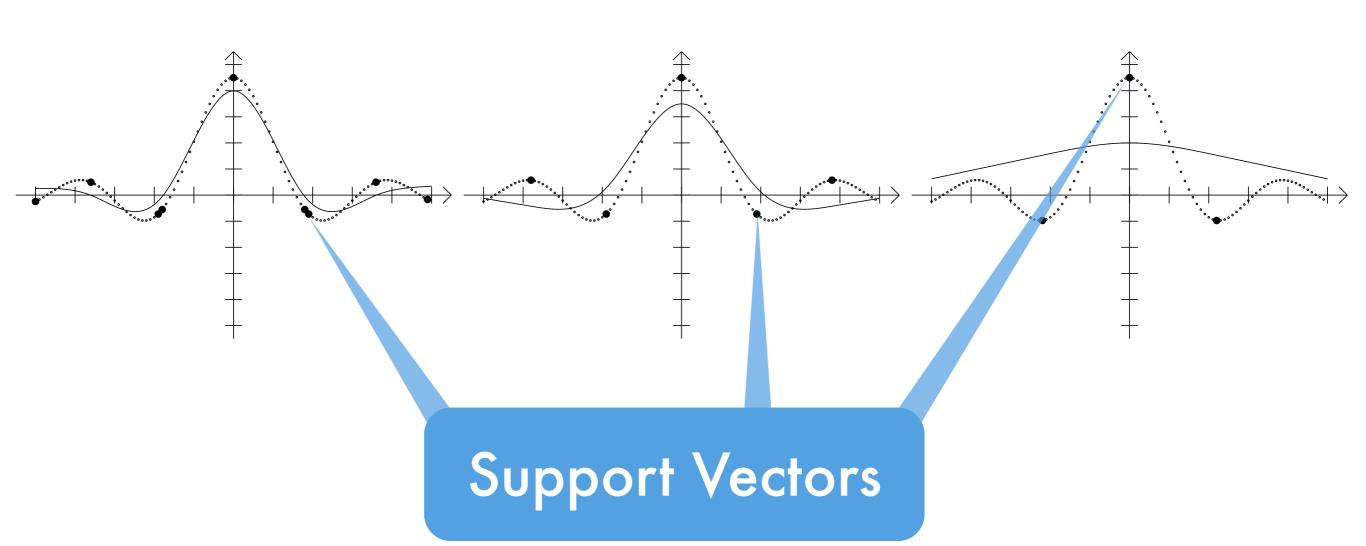
Properties

- Ignores 'typical' instances with small error
- Only upper or lower bound active at any time
- QP in 2n variables as cheap as SVM problem
- Robustness with respect to outliers
 - 11 loss yields same problem without epsilon
 - Huber's robust loss yields similar problem but with added quadratic penalty on coefficients

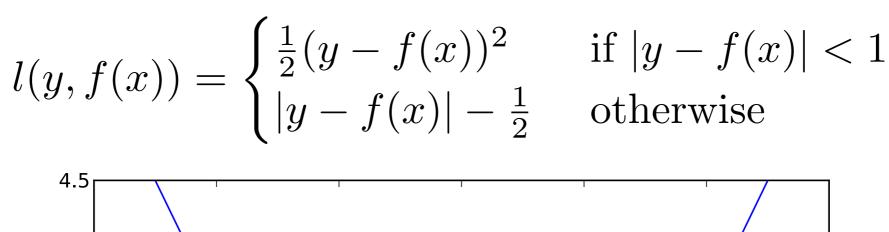


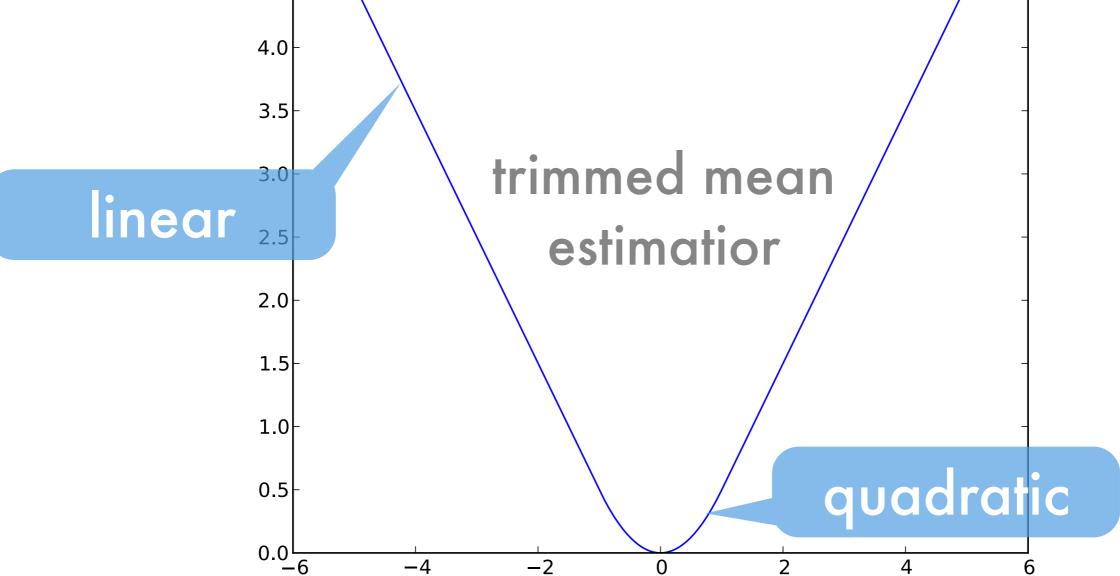




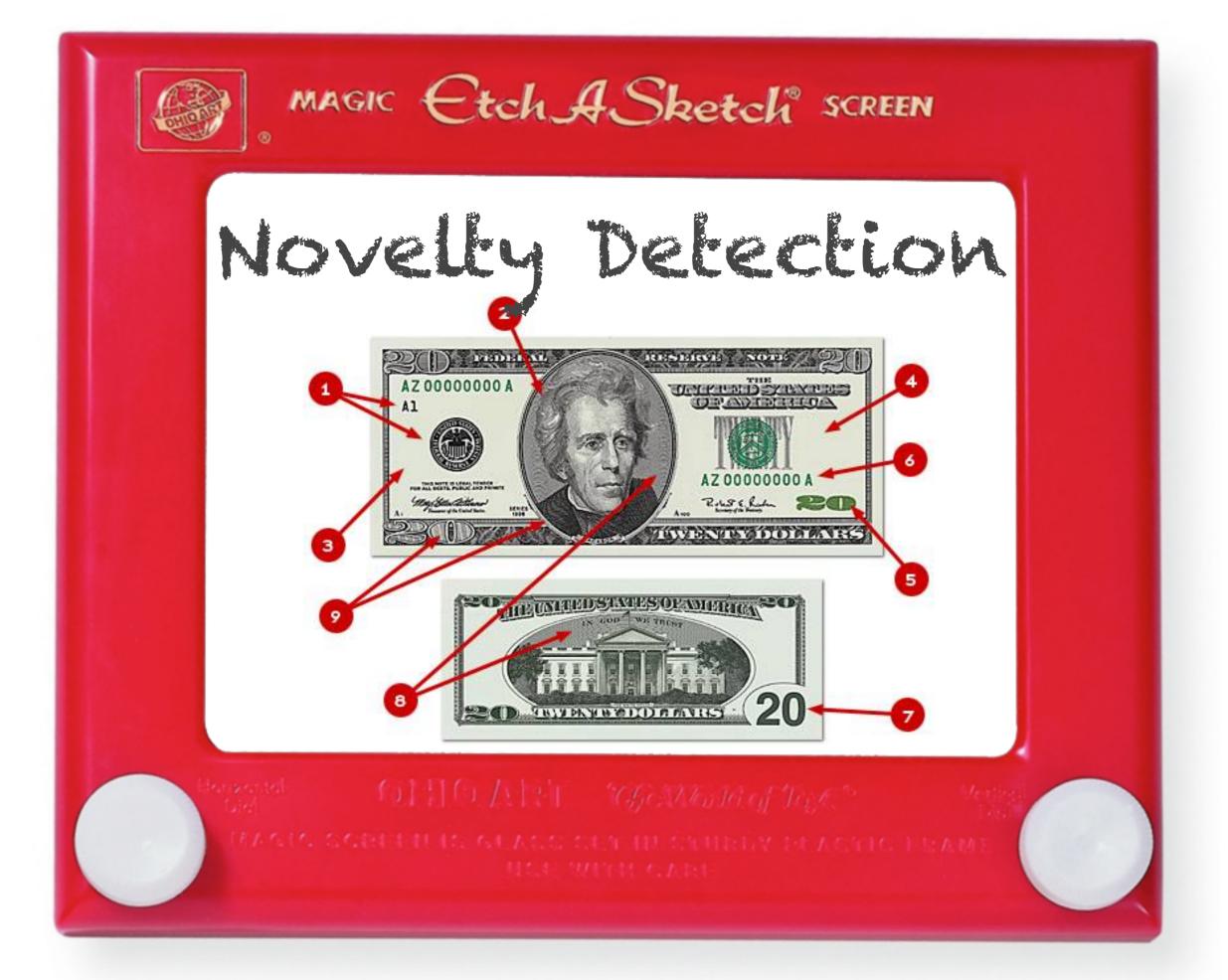


Huber's robust loss





Hon University



Basic Idea

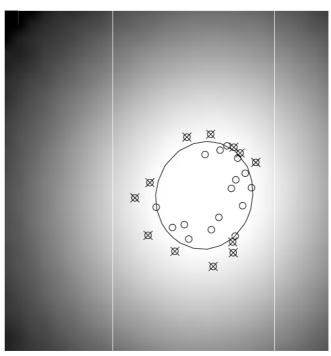
Data

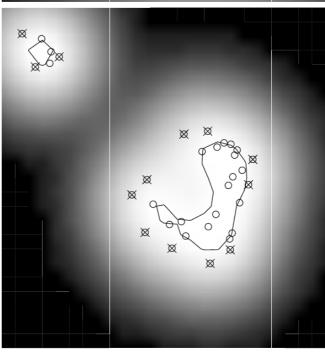
Observations (x_i) generated from some P(x), e.g.,

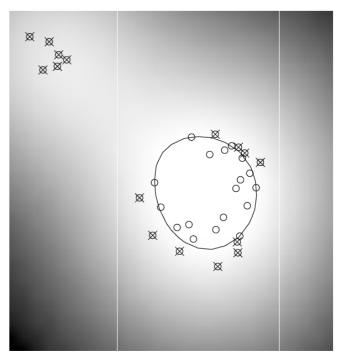
- network usage patterns
- handwritten digits
- alarm sensors
- factory status

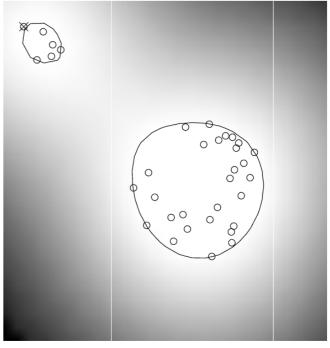
Task

Find unusual events, clean database, distinguish typical examples.









Carnegie Mellon University

Applications

Network Intrusion Detection

Detect whether someone is trying to hack the network, downloading tons of MP3s, or doing anything else *unusual* on the network.

Jet Engine Failure Detection

You can't destroy jet engines just to see *how* they fail.

Database Cleaning

We want to find out whether someone stored bogus information in a database (typos, etc.), mislabelled digits, ugly digits, bad photographs in an electronic album.

Fraud Detection

Credit Cards, Telephone Bills, Medical Records

Self calibrating alarm devices

Car alarms (adjusts itself to where the car is parked), home alarm (furniture, temperature, windows, etc.)

Novelty Detection via Density Estimation

Key Idea

- Novel data is one that we don't see frequently.
- It must lie in low density regions.

Step 1: Estimate density

- lacksquare Observations x_1, \ldots, x_m
- Density estimate via Parzen windows

Step 2: Thresholding the density

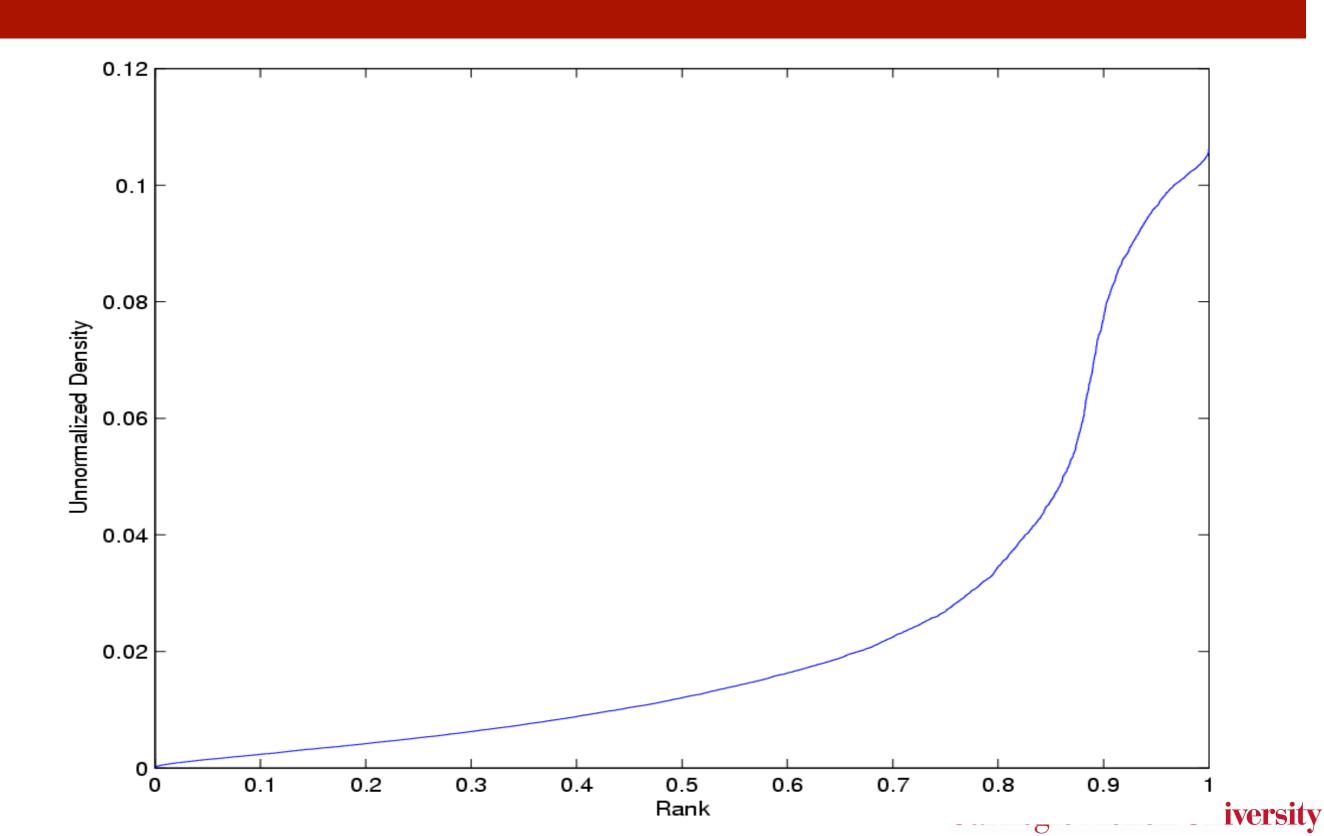
- Sort data according to density and use it for rejection
- Practical implementation: compute

$$p(x_i) = \frac{1}{m} \sum_{i} k(x_i, x_j) \text{ for all } i$$

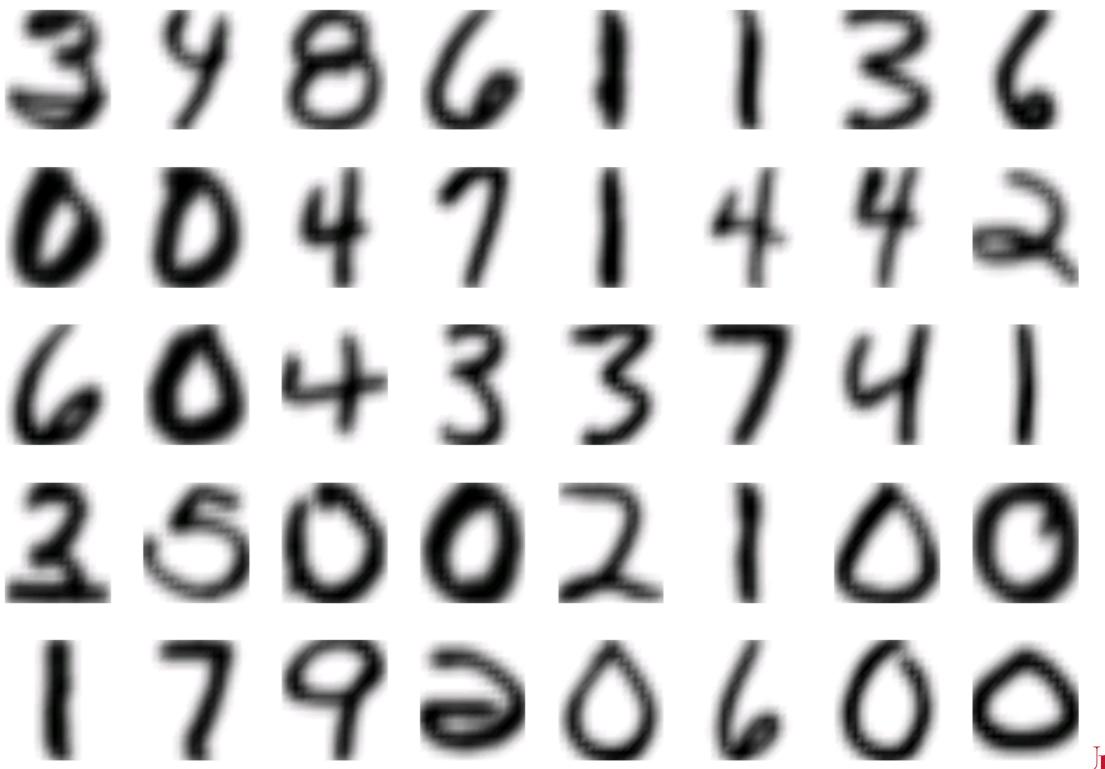
and sort according to magnitude.

ullet Pick smallest $p(x_i)$ as novel points.

Order Statistics of Densities



Typical Data



Jniversit

Outliers

A better way

Problems

- We do not care about estimating the density properly in regions of high density (waste of capacity).
- We only care about the relative density for thresholding purposes.
- We want to eliminate a certain fraction of observations and tune our estimator specifically for this fraction.

Solution

- Areas of low density can be approximated as the **level** set of an auxiliary function. No need to estimate p(x) directly use proxy of p(x).
- Specifically: find f(x) such that x is novel if $f(x) \le c$ where c is some constant, i.e. f(x) describes the amount of novelty.

 Carnegie Mellon University

Problems with density estimation

Exponential Family for density estimation

$$p(x|\theta) = \exp(\langle \phi(x), \theta \rangle - g(\theta))$$

MAP estimation

$$\underset{\theta}{\text{minimize}} \sum_{i} g(\theta) - \langle \phi(x_i), \theta \rangle + \frac{1}{2\sigma^2} \|\theta\|^2$$

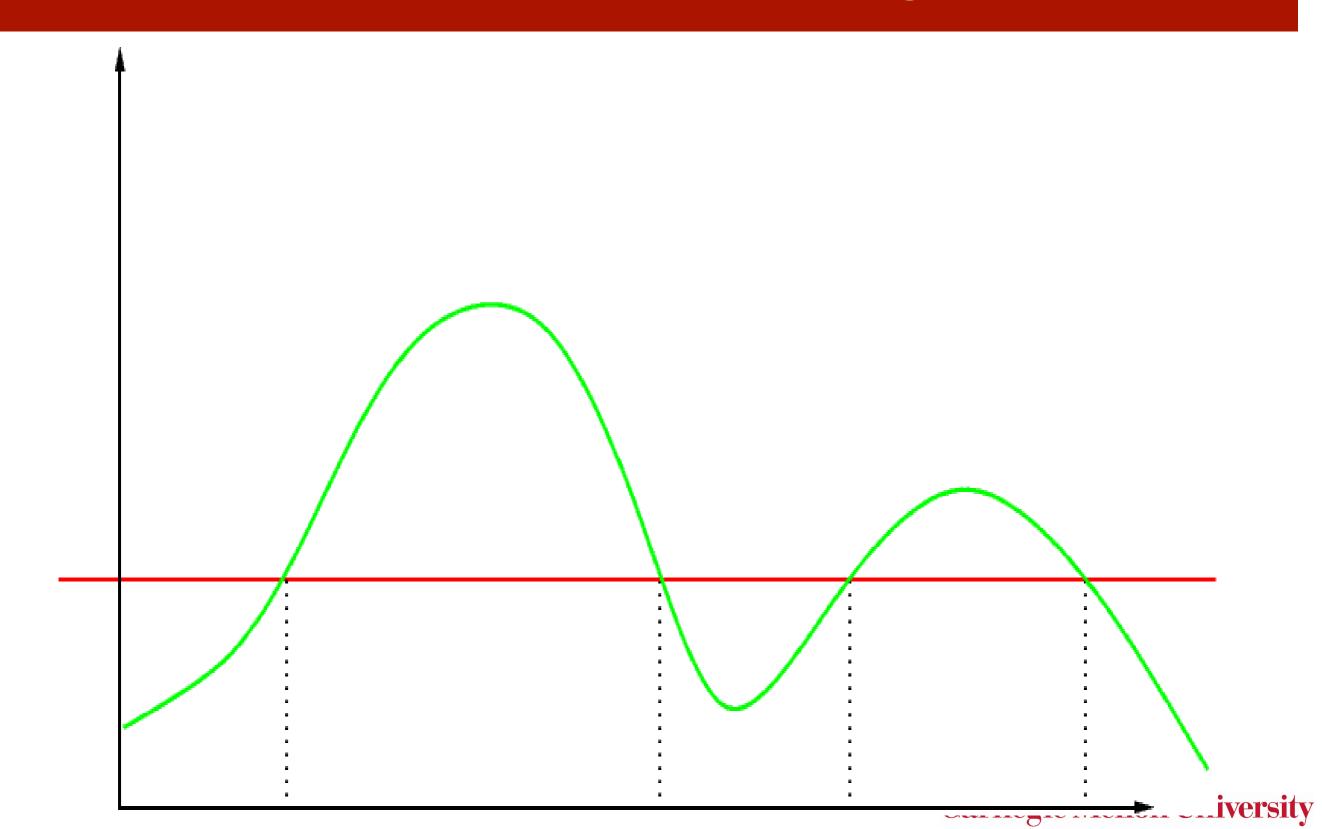
Advantages

- Convex optimization problem
- Concentration of measure

Problems

- lacksquare Normalization $g(\theta)$ may be painful to compute
- ullet For density estimation we need no normalized $p(x|\theta)$
- No need to perform particularly well in high density regions
 Carnegie Mellon University

Thresholding



Optimization Problem

Optimization Problem

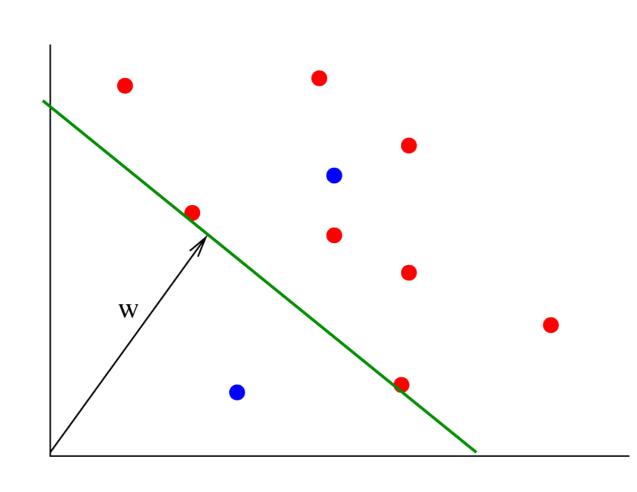
$$\begin{aligned} & \mathsf{MAP} \quad \sum_{i=1}^m -\log p(x_i|\theta) + \frac{1}{2\sigma^2} \|\theta\|^2 \\ & \mathsf{Novelty} \quad \sum_{i=1}^m \max \left(-\log \frac{p(x_i|\theta)}{\exp(\rho - g(\theta))}, 0 \right) + \frac{1}{2} \|\theta\|^2 \\ & \sum_{i=1}^m \max(\rho - \langle \phi(x_i), \theta \rangle, 0) + \frac{1}{2} \|\theta\|^2 \end{aligned}$$

Advantages

- **Polynomial Series** No normalization $g(\theta)$ needed
- No need to perform particularly well in high density regions (estimator focuses on low-density regions)
- Quadratic program

Maximum Distance Hyperplane

Idea Find hyperplane, given by $f(x) = \langle w, x \rangle + b = 0$ that has **maximum distance from origin** yet is still closer to the origin than the observations.



Hard Margin

minimize
$$\frac{1}{2}||w||^2$$
 subject to $\langle w, x_i \rangle \geq 1$

Soft Margin

minimize
$$\frac{1}{2}||w||^2 + C\sum_{i=1}^m \xi_i$$
 subject to
$$\langle w, x_i \rangle \geq 1 - \xi_i$$

$$\xi_i \geq 0$$
 Carnegie Mellon University

Optimization Problem

Primal Problem

minimize
$$\frac{1}{2}||w||^2 + C\sum_{i=1}^m \xi_i$$
 subject to
$$\langle w, x_i \rangle - 1 + \xi_i \geq 0 \text{ and } \xi_i \geq 0$$

Lagrange Function L

- Subtract constraints, multiplied by Lagrange multipliers (α_i and η_i), from Primal Objective Function.
- \blacksquare Lagrange function L has **saddlepoint** at optimum.

$$L = \frac{1}{2} ||w||^2 + C \sum_{i=1}^{m} \xi_i - \sum_{i=1}^{m} \alpha_i \left(\langle w, x_i \rangle - 1 + \xi_i \right) - \sum_{i=1}^{m} \eta_i \xi_i$$

subject to $\alpha_i, \eta_i \geq 0$.

Dual Problem

Optimality Conditions

$$\partial_w L = w - \sum_{i=1}^m \alpha_i x_i = 0 \implies w = \sum_{i=1}^m \alpha_i x_i$$

$$\partial_{\xi_i} L = C - \alpha_i - \eta_i = 0 \implies \alpha_i \in [0, C]$$

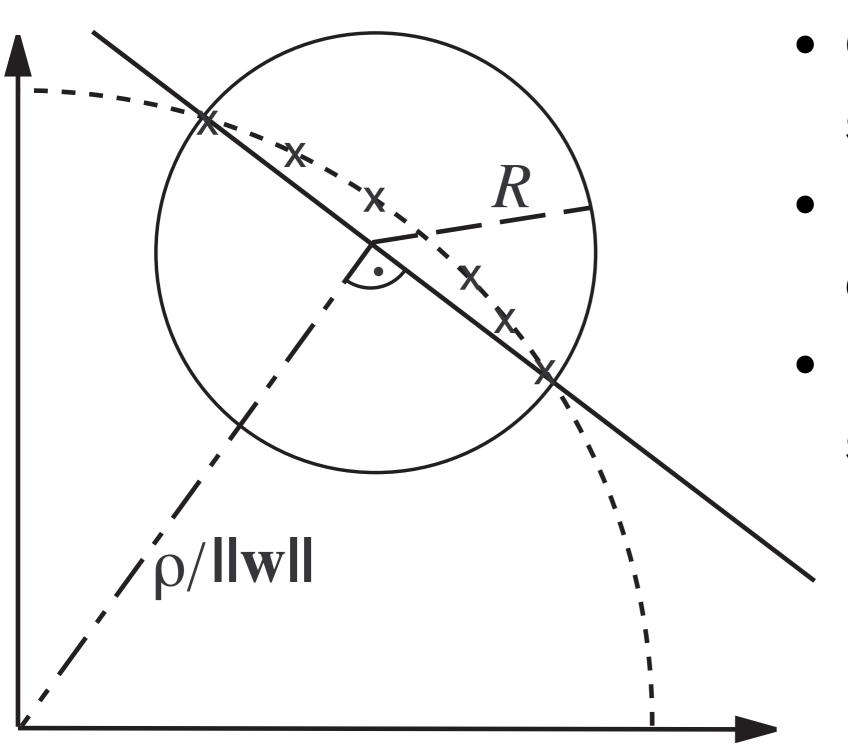
Now **substitute** the optimality conditions **back into** L. **Dual Problem**

minimize
$$\frac{1}{2}\sum_{i=1}^{m}\alpha_{i}\alpha_{j}\langle x_{i},x_{j}\rangle-\sum_{i=1}^{m}\alpha_{i}$$
 subject to
$$\alpha_{i}\in[0,C]$$

All this is only possible due to the convexity of the primal problem.

Carnegie Mellon University

Minimum enclosing ball



- Observations on surface of ball
- Find minimum enclosing ball
- Equivalent to single class SVM

Adaptive thresholds

Problem

- \blacksquare Depending on C, the number of novel points will vary.
- \blacksquare We would like to **specify the fraction** ν beforehand.

Solution

Use hyperplane separating data from the origin

$$H := \{x | \langle w, x \rangle = \rho\}$$

where the threshold ρ is adaptive.

Intuition

- ightharpoonup Let the hyperplane shift by shifting ρ
- Adjust it such that the 'right' number of observations is considered novel.
- Do this automatically

Optimization Problem

Primal Problem

minimize
$$\frac{1}{2}||w||^2 + \sum_{i=1}^m \xi_i - m\nu\rho$$
 where $\langle w, x_i \rangle - \rho + \xi_i \geq 0$ $\xi_i \geq 0$

Dual Problem

minimize
$$\frac{1}{2} \sum_{i=1}^{m} \alpha_i \alpha_j \langle x_i, x_j \rangle$$

where
$$\alpha_i \in [0,1]$$
 and $\sum \alpha_i = \nu m$.

$$\sum_{i=1}^{m} \alpha_i = \nu m.$$

The v-property theorem

Optimization problem

minimize
$$\frac{1}{2} \|w\|^2 + \sum_{i=1}^{m} \xi_i - m\nu\rho$$

subject to $\langle w, x_i \rangle \ge \rho - \xi_i$ and $\xi_i \ge 0$

- Solution satisfies
 - At most a fraction of v points are novel
 - At most a fraction of (1-v) points aren't novel
 - Fraction of points on boundary vanishes for large m (for non-pathological kernels)

Proof

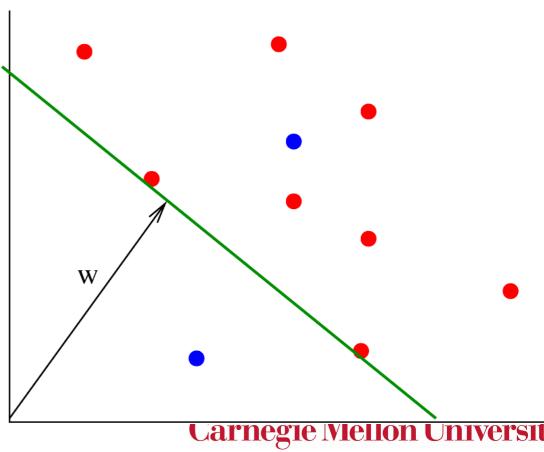
- Move boundary at optimality
 - For smaller threshold m. points on wrong side of margin contribute $\delta(m_- - \nu m) \leq 0$
 - For larger threshold m+ points not on 'good' side of margin yield

$$\delta(m_+ - \nu m) \ge 0$$

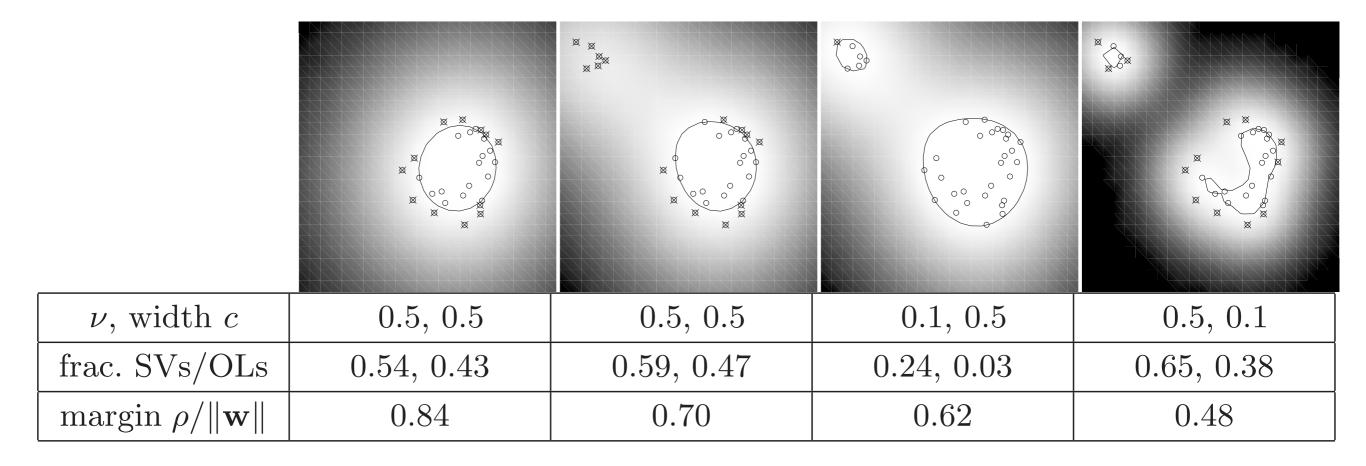
Combining inequalities

$$\frac{m_{-}}{m} \le \nu \le \frac{m_{+}}{m}$$

 $\frac{m_-}{m} \leq \nu \leq \frac{m_+}{m}$ • Margin set of measure 0

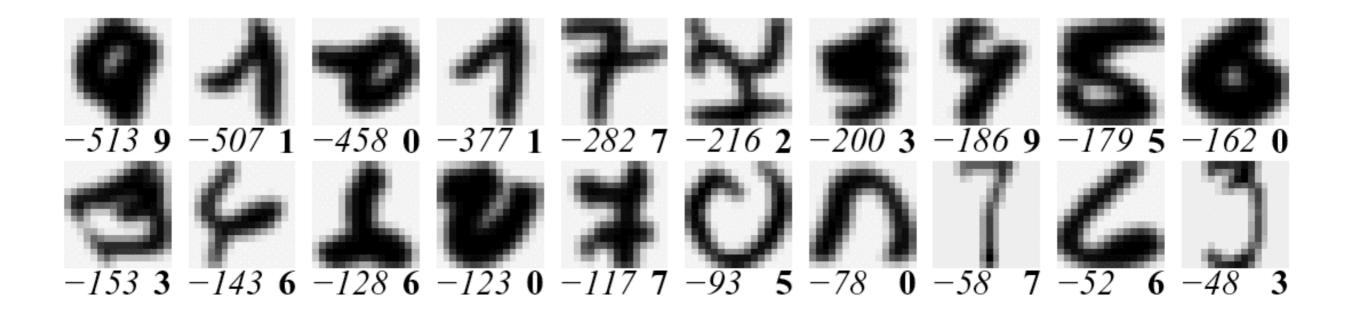


Toy example



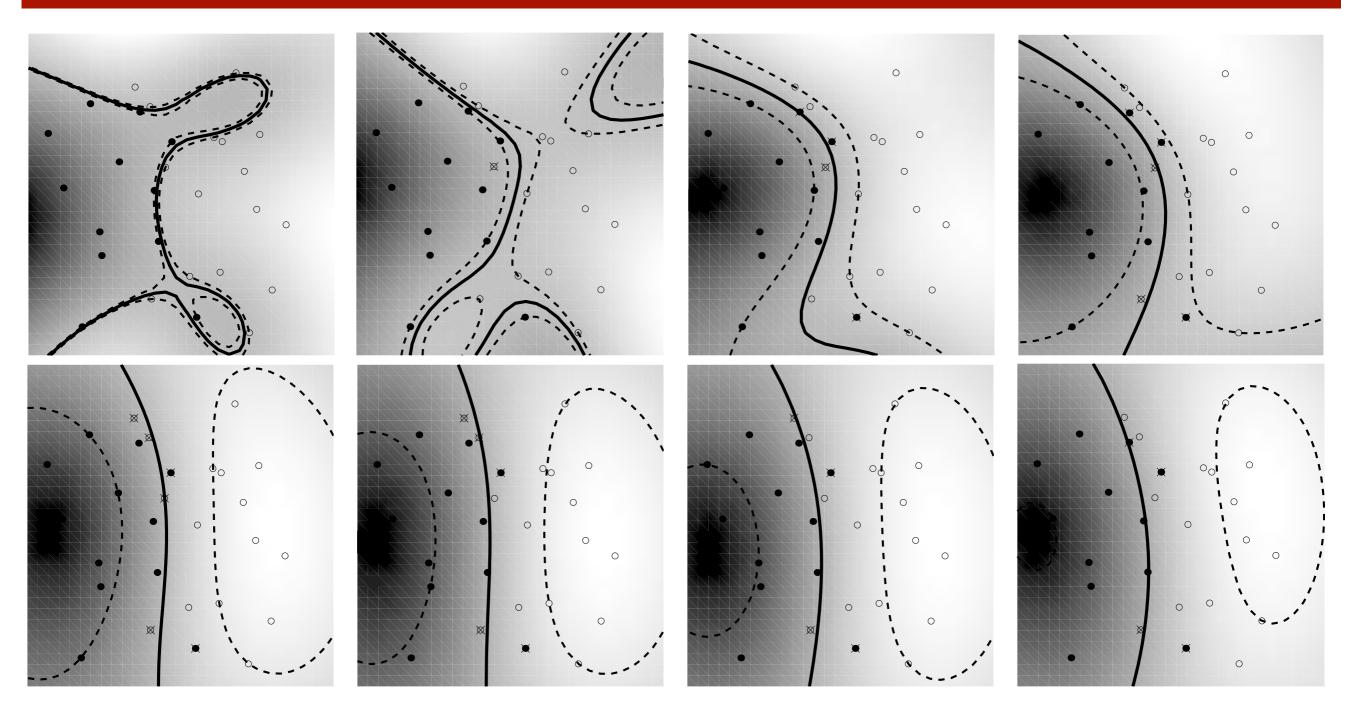
threshold and smoothness requirements

Novelty detection for OCR



- Better estimates since we only optimize in low density regions.
- Specifically tuned for small number of outliers.
- Only estimates of a level-set.
- ightharpoonup For $\nu=1$ we get the Parzen-windows estimator back.

Classification with the v-trick



changing kernel width and threshold Carnegie Mellon University

MAGIC Etch A Sketch SCREEN

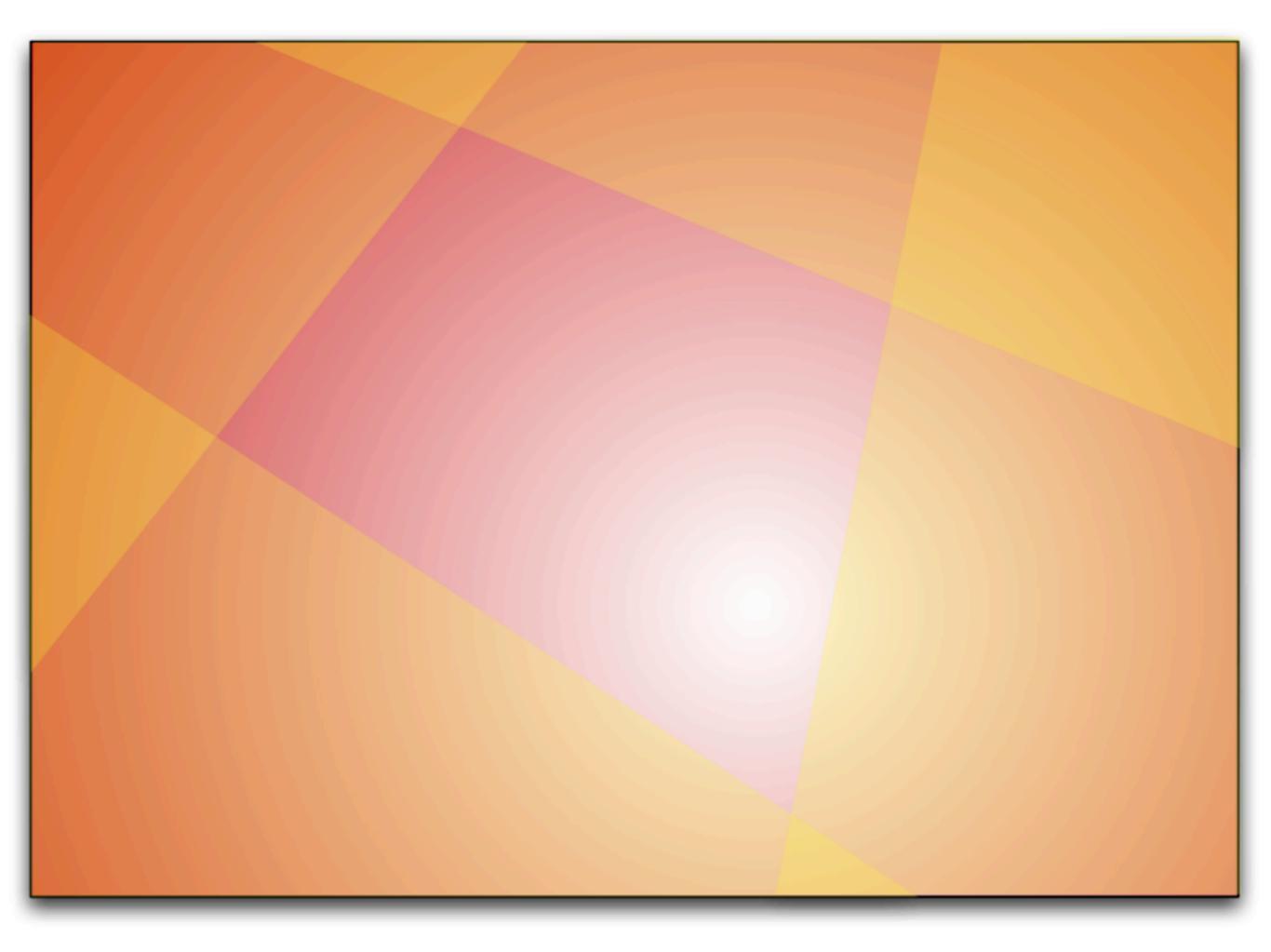
Selecting Variables

Constrained Quadratic Program

Optimization Problem

$$\underset{\alpha}{\text{minimize}}\, \frac{1}{2}\alpha^{\top}Q\alpha + l^{\top}\alpha \text{ subject to } C\alpha + b \leq 0$$

- Support Vector classification
- Support Vector regression
- Novelty detection
- Solving it
 - Off the shelf solvers for small problems
 - Solve sequence of subproblems
 - Optimization in primal space (the w space)



Subproblems

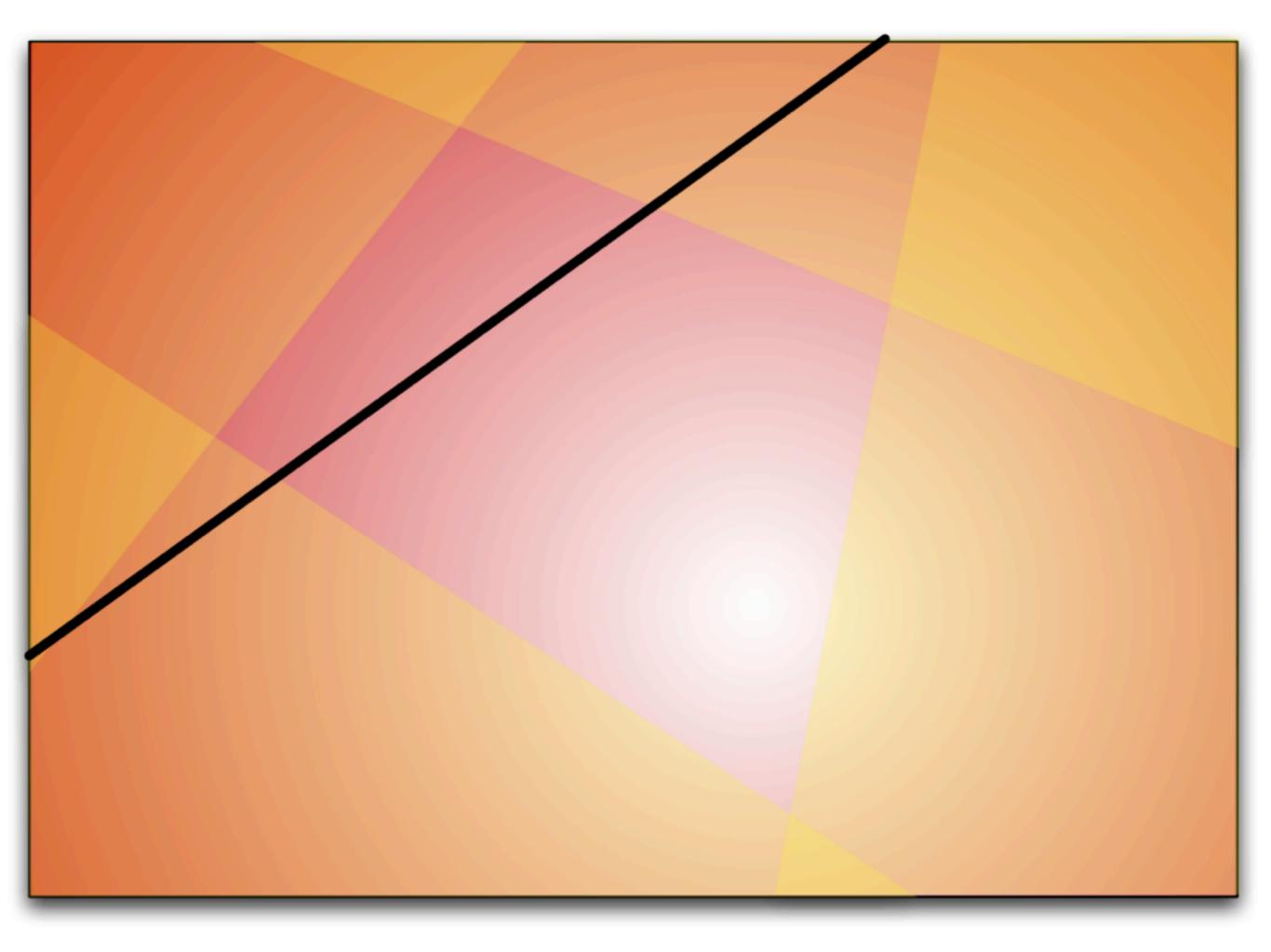
Original optimization problem

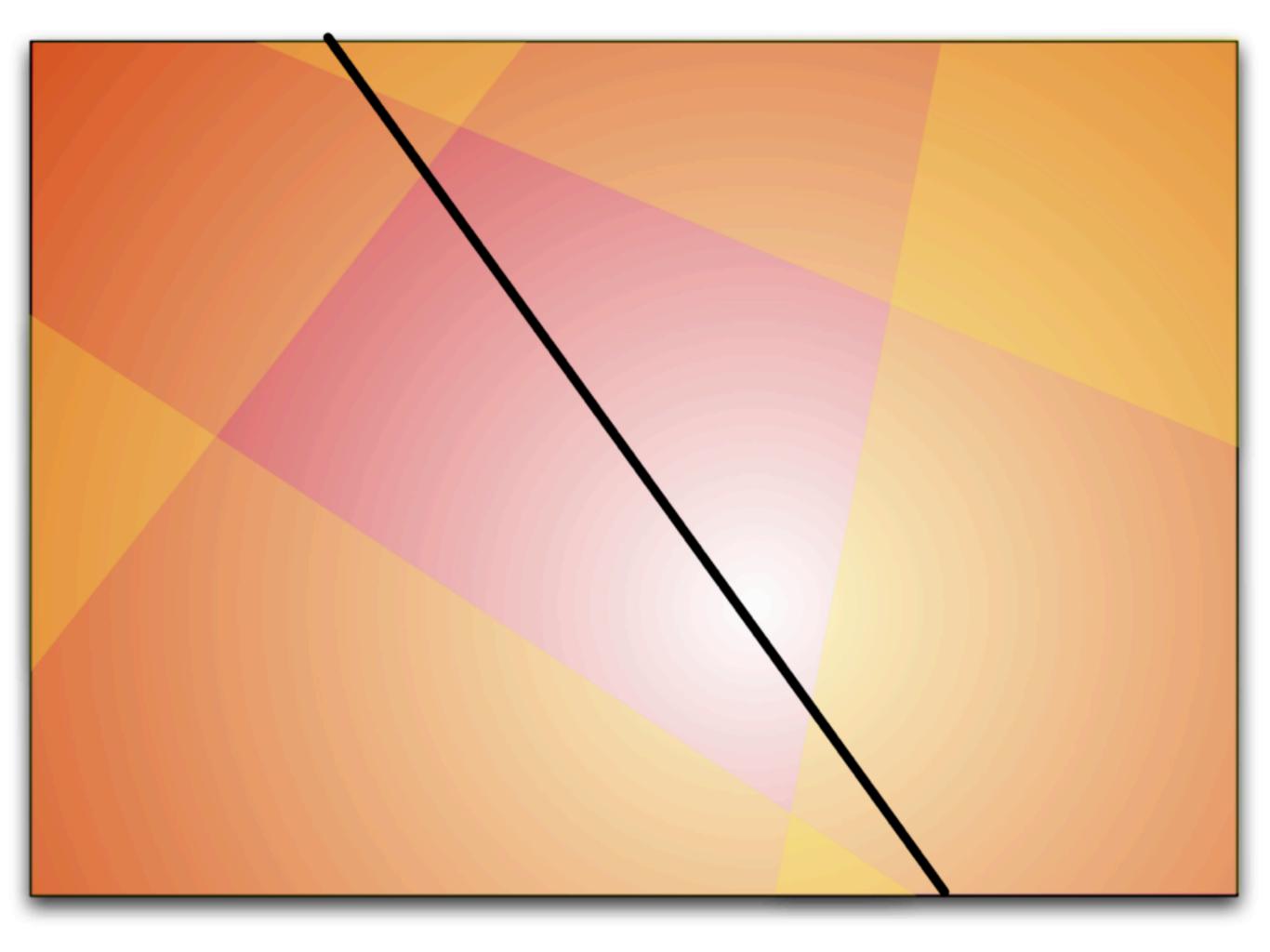
$$\underset{\alpha}{\text{minimize}} \frac{1}{2} \alpha^\top Q \alpha + l^\top \alpha \text{ subject to } C \alpha + b \leq 0$$

• Key Idea - solve subproblems one at a time and decompose into active and fixed set $\alpha = (\alpha_a, \alpha_f)$

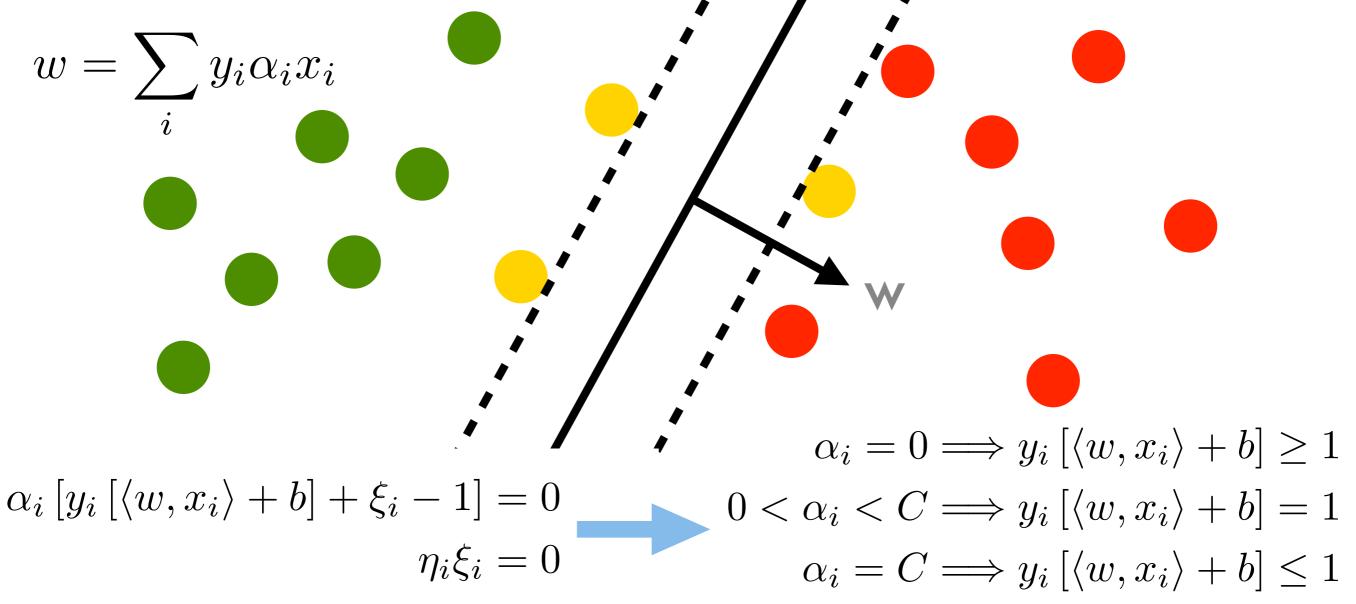
minimize
$$\frac{1}{2}\alpha_a^{\top}Q_{aa}\alpha_a + [l_a + Q_{af}\alpha_f]^{\top}\alpha_a$$
subject to $C_a\alpha_a + [b + C_f\alpha_f] \le 0$

- Subproblem is again a convex problem
- Updating subproblems is cheap





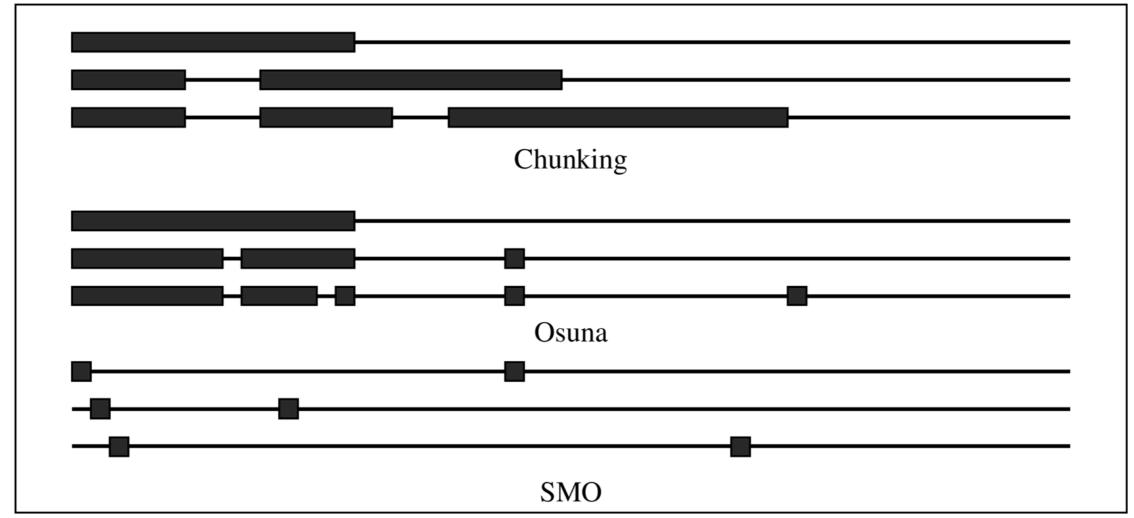
Picking observations



- Most violated margin condition
- Points on the boundary
- Points with nonzero Lagrange multiplier that are correct

Selecting variables

- Incrementally increase (chunking)
- Select promising subset of actives (SVMLight)
- Select pairs of variables (SMO)



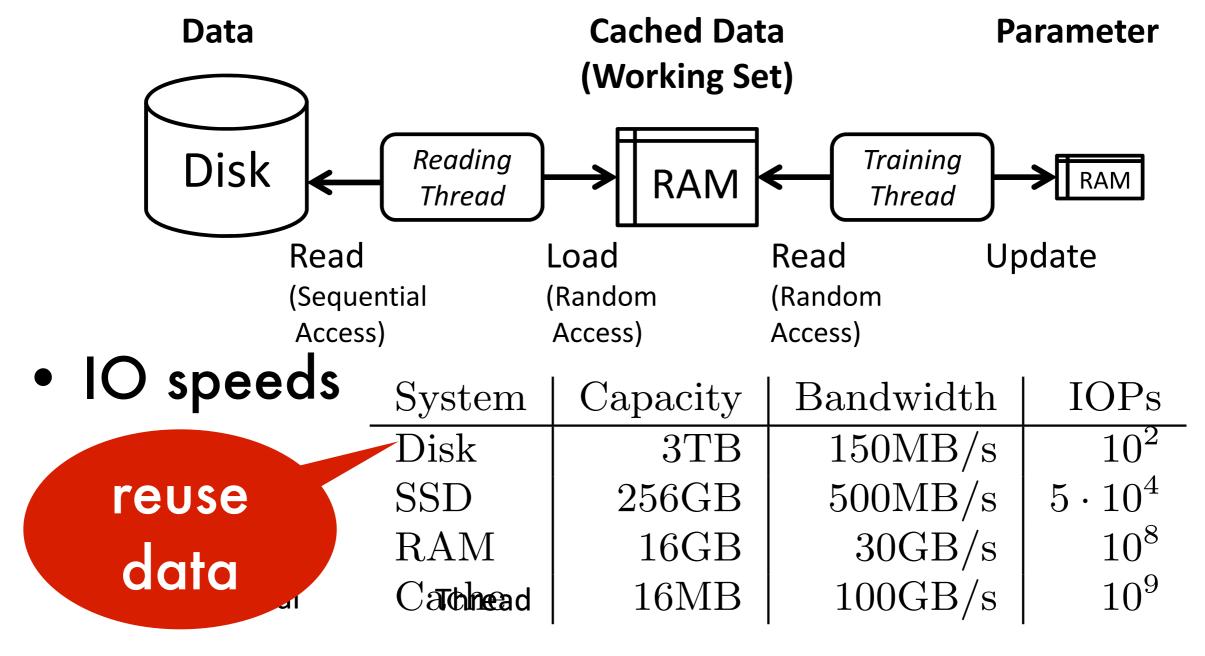
Being smart about hardware

Data flow from disk to CPU

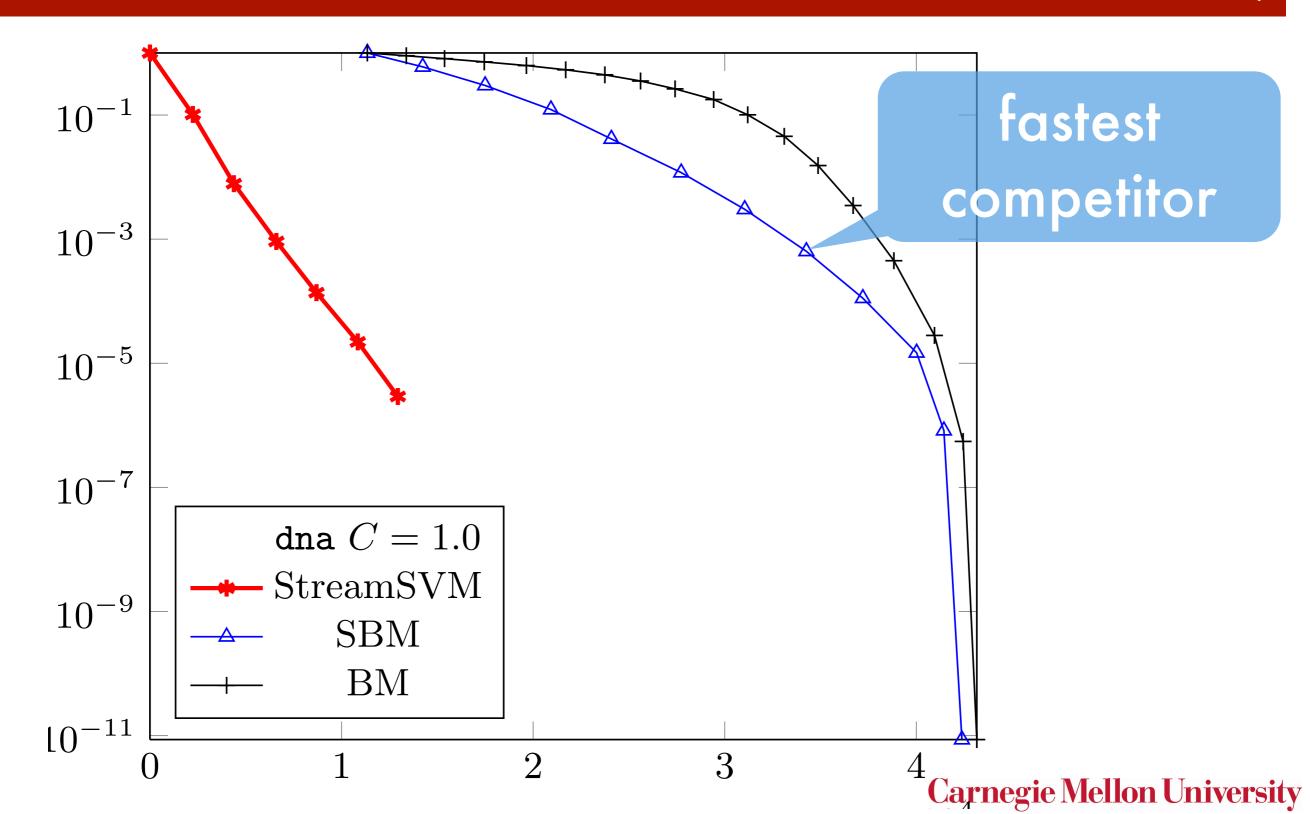


Being smart about hardware

Data flow from disk to CPU



Runtime Example (Matsushima, Vishwanathan, Smola, 2012)



Problems with Kernels

Myth

Support Vectors work because they map data into a high-dimensional feature space.

And your statistician (Bellmann) told you ...

The higher the dimensionality, the more data you need

Example: Density Estimation

Assuming data in $[0,1]^m$, 1000 observations in [0,1] give you on average 100 instances per bin (using binsize 0.1^m) but only $\frac{1}{100}$ instances in $[0,1]^5$.

Worrying Fact

Some kernels map into an infinite-dimensional space,

e.g.,
$$k(x, x') = \exp(-\frac{1}{2\sigma^2}||x - x'||^2)$$

Encouraging Fact

SVMs work well in practice . . .

Solving the Mystery

The Truth is in the Margins

Maybe the maximum margin requirement is what saves us when finding a classifier, i.e., we minimize $||w||^2$.

Risk Functional

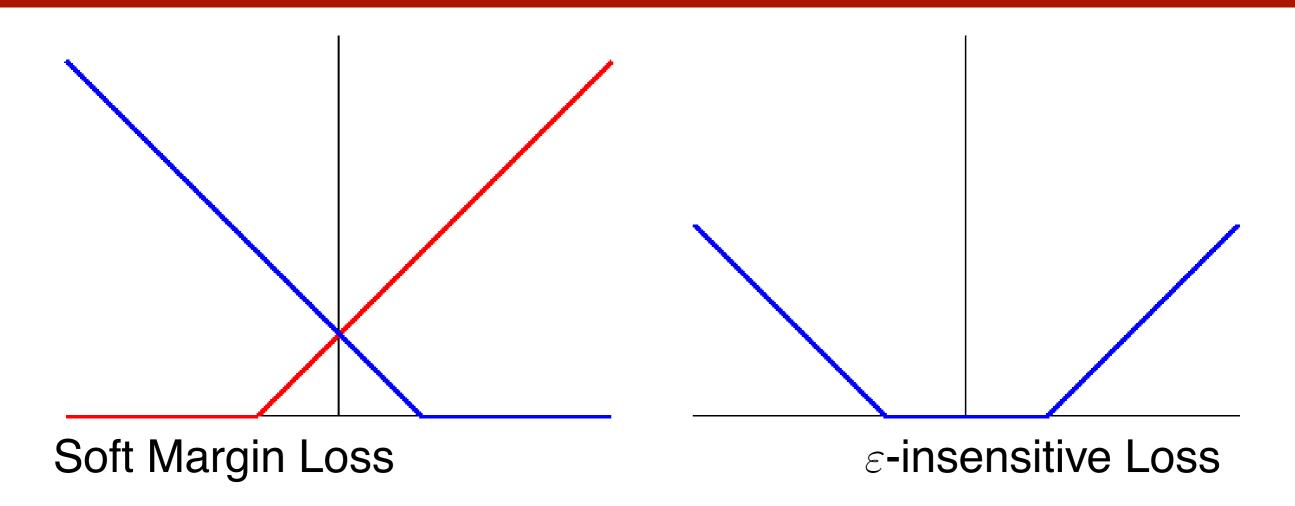
Rewrite the optimization problems in a unified form

$$R_{\text{reg}}[f] = \sum_{i=1}^{m} c(x_i, y_i, f(x_i)) + \Omega[f]$$

c(x,y,f(x)) is a loss function and $\Omega[f]$ is a regularizer.

- ▶ For classification $c(x, y, f(x)) = \max(0, 1 yf(x))$.

Typical SVM loss



Soft Margin Loss

Original Optimization Problem

$$\begin{split} & \underset{w,\xi}{\text{minimize}} & \frac{1}{2}\|w\|^2 + C\sum_{i=1}^m \xi_i \\ & \text{subject to} & y_i f(x_i) \geq 1 - \xi_i \text{ and } \xi_i \geq 0 \text{ for all } 1 \leq i \leq m \end{split}$$

Regularization Functional

minimize
$$\frac{\lambda}{2} ||w||^2 + \sum_{i=1}^{m} \max(0, 1 - y_i f(x_i))$$

- For fixed f, clearly $\xi_i \ge \max(0, 1 y_i f(x_i))$.
- For $\xi > \max(0, 1 y_i f(x_i))$ we can decrease it such that the bound is matched and improve the objective function.
- Both methods are equivalent.

Why Regularization?

What we really wanted ...

Find some f(x) such that the expected loss $\mathbf{E}[c(x,y,f(x))]$ is small.

What we ended up doing ...

Find some f(x) such that the empirical average of the expected loss $\mathbf{E}_{\mathrm{emp}}[c(x,y,f(x))]$ is small.

$$\mathbf{E}_{\text{emp}}[c(x, y, f(x))] = \frac{1}{m} \sum_{i=1}^{m} c(x_i, y_i, f(x_i))$$

However, just minimizing the empirical average does not guarantee anything for the expected loss (overfitting).

Safeguard against overfitting

We need to constrain the class of functions $f \in \mathcal{F}$ somehow. Adding $\Omega[f]$ as a penalty does exactly that.

Some regularization ideas

Small Derivatives

We want to have a function f which is smooth on the entire domain. In this case we could use

$$\Omega[f] = \int_X \|\partial_x f(x)\|^2 dx = \langle \partial_x f, \partial_x f \rangle.$$

Small Function Values

If we have no further knowledge about the domain X, minimizing $||f||^2$ might be sensible, i.e.,

$$\Omega[f] = ||f||^2 = \langle f, f \rangle.$$

Splines

Here we want to find f such that both $||f||^2$ and $||\partial_x^2 f||^2$ are small. Hence we can minimize

$$\Omega[f] = ||f||^2 + ||\partial_x^2 f||^2 = \langle (f, \partial_x^2 f), (f, \partial_x^2 f) \rangle$$

Regularization

Regularization Operators

We map f into some Pf, which is small for desirable f and large otherwise, and minimize

$$\Omega[f] = ||Pf||^2 = \langle Pf, Pf \rangle.$$

For all previous examples we can find such a P.

Function Expansion for Regularization Operator

Using a linear function expansion of f in terms of some

$$f_i$$
, that is for $f(x) = \sum_i \alpha_i f_i(x)$ we can compute

$$\Omega[f] = \left\langle P \sum_{i} \alpha_{i} f_{i}(x), P \sum_{j} \alpha_{j} f_{i}(x) \right\rangle = \sum_{i,j} \alpha_{i} \alpha_{j} \langle P f_{i}, P f_{j} \rangle.$$

Regularization and Kernels

Regularization for $\Omega[f] = \frac{1}{2}||w||^2$

$$w = \sum_{i} \alpha_{i} \Phi(x_{i}) \Longrightarrow ||w||^{2} = \sum_{i,j} \alpha_{i} \alpha_{j} k(x_{i}, x_{j})$$

This looks very similar to $\langle Pf_i, Pf_j \rangle$.

Key Idea

So if we could find a P and k such that

$$k(x, x') = \langle Pk(x, \cdot), Pk(x', \cdot) \rangle$$

we could show that using a kernel means that we are minimizing the empirical risk plus a regularization term.

Solution: Greens Functions

A sufficient condition is that k is the Greens Function of P^*P , that is $\langle P^*Pk(x,\cdot), f(\cdot)\rangle = f(x)$.

One can show that this is necessary and sufficient.

Carnegie Mellon University

Building Kernels

Kernels from Regularization Operators:

Given an operator P^*P , we can find k by solving the self consistency equation

$$\langle Pk(x,\cdot), Pk(x',\cdot)\rangle = k^{\top}(x,\cdot)(P^*P)k(x',\cdot) = k(x,x')$$

and take f to be the span of all $k(x, \cdot)$.

So we can find k for a given measure of smoothness.

Regularization Operators from Kernels:

Given a kernel k, we can find some P^*P for which the self consistency equation is satisfied.

So we can find a measure of smoothness for a given k.

Spectrum and Kernels

Effective Function Class

Keeping $\Omega[f]$ small means that f(x) cannot take on arbitrary function values. Hence we study the function class

$$\mathcal{F}_C = \left\{ f \left| \frac{1}{2} \langle Pf, Pf \rangle \le C \right\} \right\}$$

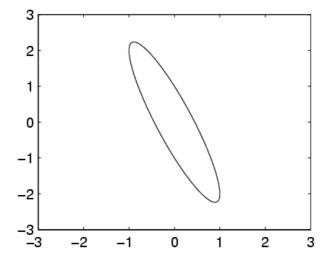
Example

For
$$f = \sum_{i} \alpha_{i} k(x_{i}, x)$$
 this implies $\frac{1}{2} \alpha^{\top} K \alpha \leq C$.

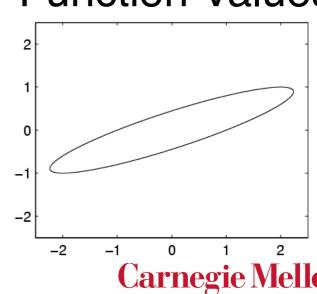
Kernel Matrix

$$K = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$$

Coefficients



Function Values



Carnegie Mellon University

Fourier Regularization

Goal

Find measure of smoothness that depends on the frequency properties of f and not on the position of f.

A Hint: Rewriting $||f||^2 + ||\partial_x f||^2$

Notation: $\tilde{f}(\omega)$ is the Fourier transform of f.

$$||f||^2 + ||\partial_x f||^2 = \int |f(x)|^2 + |\partial_x f(x)|^2 dx$$

$$= \int |\tilde{f}(\omega)|^2 + \omega^2 |\tilde{f}(\omega)|^2 d\omega$$

$$= \int \frac{|\tilde{f}(\omega)|^2}{p(\omega)} d\omega \text{ where } p(\omega) = \frac{1}{1 + \omega^2}.$$

Idea

Generalize to arbitrary $p(\omega)$, i.e. $\Omega[f] := \frac{1}{2} \int \frac{|f(\omega)|^2}{p(\omega)} d\omega$

Carnegie Mellon University

Greens Function

Theorem

For regularization functionals $\Omega[f]:=\frac{1}{2}\int \frac{|f(\omega)|^2}{p(\omega)}d\omega$ the self-consistency condition

$$\langle Pk(x,\cdot), Pk(x',\cdot)\rangle = k^{\top}(x,\cdot)(P^*P)k(x',\cdot) = k(x,x')$$

is satisfied if k has $p(\omega)$ as its Fourier transform, i.e.,

$$k(x, x') = \int \exp(-i\langle \omega, (x - x') \rangle) p(\omega) d\omega$$

Consequences

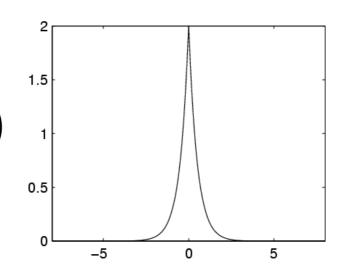
- \blacksquare small $p(\omega)$ correspond to high penalty (regularization).
- ullet $\Omega[f]$ is translation invariant, that is $\Omega[f(\cdot)] = \Omega[f(\cdot x)]$.

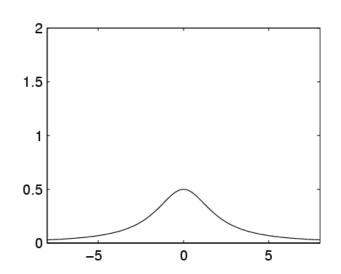
Examples

Laplacian Kernel

$$k(x, x') = \exp(-\|x - x'\|)$$

 $p(\omega) \propto (1 + \|\omega\|^2)^{-1}$

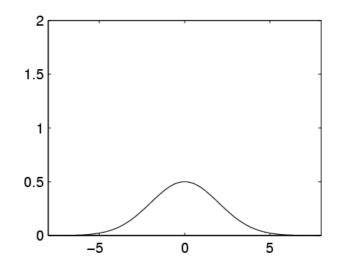


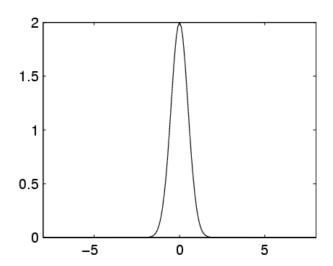


Gaussian Kernel

$$k(x, x') = e^{-\frac{1}{2}\sigma^{-2}||x - x'||^2}$$

 $p(\omega) \propto e^{-\frac{1}{2}\sigma^{2}||\omega||^2}$





Fourier transform of k shows regularization properties.

The more rapidly $p(\omega)$ decays, the more high frequencies are filtered out.

Rules of thumb

- Fourier transform is sufficient to check whether k(x, x') satisfies Mercer's condition: only check if $\tilde{k}(\omega) \geq 0$.
- Example: $k(x,x') = \mathrm{sinc}(x-x')$. $\tilde{k}(\omega) = \chi_{[-\pi,\pi]}(\omega)$, hence k is a proper kernel.
- Width of kernel often more important than type of kernel (short range decay properties matter).
- Convenient way of incorporating prior knowledge, e.g.: for speech data we could use the autocorrelation function.
- Sum of derivatives becomes polynomial in Fourier space.

Polynomial Kernels

Functional Form

$$k(x, x') = \kappa(\langle x, x' \rangle)$$

Series Expansion

Polynomial kernels admit an expansion in terms of Legendre polynomials (L_n^N : order n in \mathbb{R}^N).

$$k(x, x') = \sum_{n=0}^{\infty} b_n L_n(\langle x, x' \rangle)$$

Consequence:

 L_n (and their rotations) form an orthonormal basis on the unit sphere, P^*P is rotation invariant, and P^*P is diagonal with respect to L_n . In other words

$$(P^*P)L_n(\langle x,\cdot\rangle) = b_n^{-1}L_n(\langle x,\cdot\rangle)$$
Carnegie Mellon University

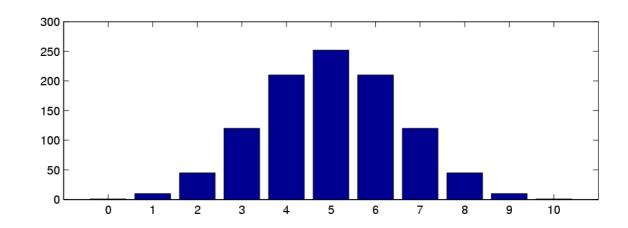
Polynomial Kernels

- **Decay** properties of b_n determine smoothness of functions specified by $k(\langle x, x' \rangle)$.
- For $N \to \infty$ all terms of L_n^N but x^n vanish, hence a Taylor series $k(x,x') = \sum_i a_i \langle x,x' \rangle^i$ gives a good guess.

Inhomogeneous Polynomial

$$k(x, x') = (\langle x, x' \rangle + 1)^p$$

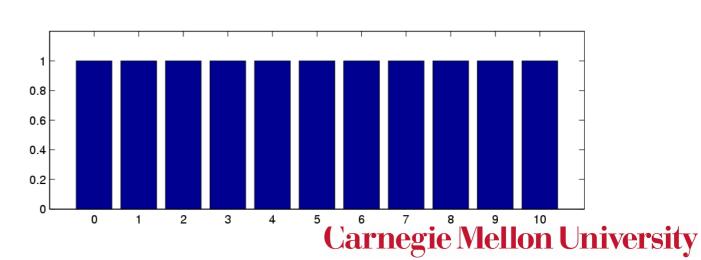
$$a_n = \binom{p}{n} \text{ if } n \le p$$



Vovk's Real Polynomial

$$k(x, x') = \frac{1 - \langle x, x' \rangle^p}{1 - (\langle x, x' \rangle)}$$

$$a_n = 1 \text{ if } n < p$$



Mini Summary

Regularized Risk Functional

- From Optimization Problems to Loss Functions
- Regularization
- Safeguard against Overfitting

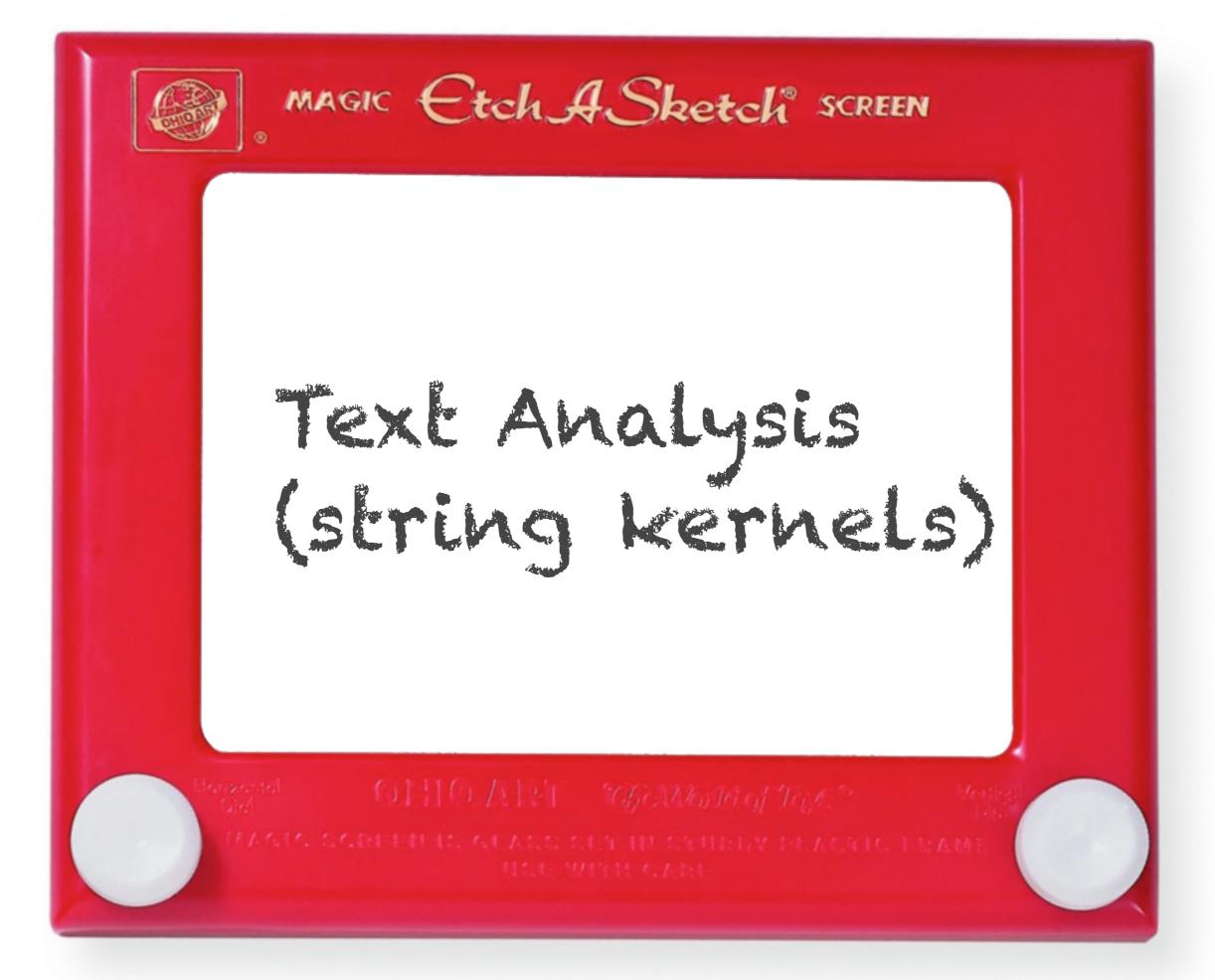
Regularization and Kernels

- Examples of Regularizers
- Regularization Operators
- Greens Functions and Self Consistency Condition

Fourier Regularization

- Translation Invariant Regularizers
- Regularization in Fourier Space
- Kernel is inverse Fourier Transformation of Weight

Polynomial Kernels and Series Expansions



String Kernel (pre) History

The Kernel Perspective

Design a kernel implementing good features

$$k(x, x') = \langle \phi(x), \phi(x') \rangle$$
 and $f(x) = \langle \phi(x), w \rangle = \sum_{i} \alpha_i k(x_i, x)$

- Many variants
 - Bag of words (AT&T labs 1995, e.g. Vapnik)
 - Matching substrings (Haussler, Watkins 1998)
 - Spectrum kernel (Leslie, Eskin, Noble, 2000)
 - Suffix tree (Vishwanathan, Smola, 2003)
 - Suffix array (Teo, Vishwanathan, 2006)
 - Rational kernels (Mohri, Cortes, Haffner, 2004 ...)

Bag of words

At least since 1995 known in AT&T labs

$$k(x, x') = \sum_{w} n_w(x) n_w(x') \text{ and } f(x) = \sum_{w} \omega_w n_w(x')$$

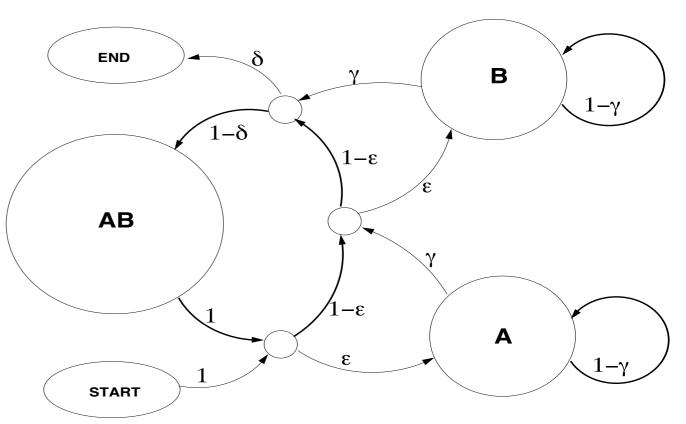
(to be or not to be) \longrightarrow (be:2, or:1, not:1, to:2)

- Joachims 1998: Use sparse vectors
- Haffner 2001: Inverted index for faster training
- Lots of work on feature weighting (TF/IDF)
- Variants of it deployed in many spam filters

Substring (mis) matching

- Watkins 1998+99 (dynamic alignment, etc)
- Haussler 1999 (convolution kernels)

$$k(x, x') = \sum_{w \in x} \sum_{w' \in x'} \kappa(w, w')$$



- In general O(x x') runtime
 (e.g. Cristianini, Shawe-Taylor, Lodhi, 2001)
- Dynamic programming solution for pair-HMM

Spectrum Kernel

- Leslie, Eskin, Noble & coworkers, 2002
- Key idea is to focus on features directly
 - Linear time operation to get features
 - Limited amount of mismatch (exponential in number of missed chars)
 - Explicit feature construction (good & fast for DNA sequences)

```
DKQ AKQ ... AKY
EKQ AAQ
```

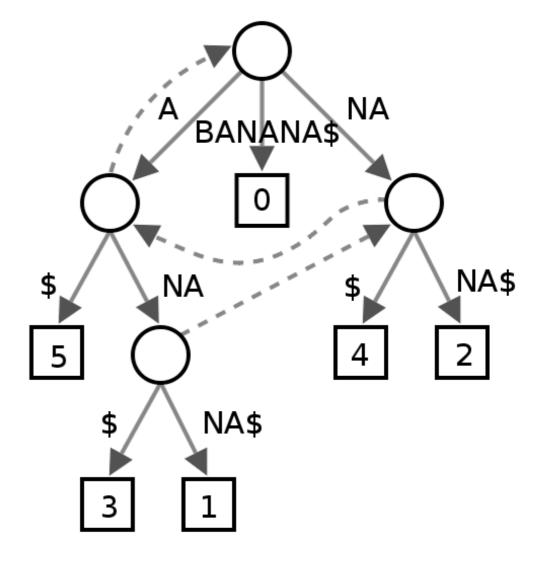
```
AKQDYYYYEI
AKQ
 KQD
  QDY
    DYY
     YYY
      YYY
       YYE
         YEI
```

Suffix Tree Kernel

- Vishwanathan & Smola, 2003 (O(x + x') time)
- Mismatch-free kernel + arbitrary weights

$$k(x, x') = \sum_{w} \omega_w n_w(x) n_w(x')$$

- Linear time construction (Ukkonen, 1995)
- Find matches for second string in linear time (Chang & Lawler, 1994)
- Precompute weights on path



Are we done?

- Large vocabulary size
- Need to build dictionary
- Approximate matches are still a problem
- Suffix tree/array is storage inefficient (40-60x)
- Realtime computation
- Memory constraints (keep in RAM)
- Difficult to implement

From: bat <kilian@gmail.com>

Subject: hey whats up check this meds place out

Date: April 6, 2009 10:50:13 PM PDT

To: Kilian Weinberger Reply-To: bat <kilian@gmail.com>

Your friend (kilian@gmail.com) has sent you a link to the following Scout.com story: Savage Hall Ground-Breaking Celebration

Get Vicodin, Valium, Xanax, Viagra, Oxycontin, and much more. Absolutely No Prescription Required. Over Night Shipping! Why should you be risking dealing with shady people. Check us out today! http://jenkinstege. 3.blogspot.com

The University of Toledo will hold a ground-breaking celebration to kick-off the UT Athletics Complex and Savage Hall renovation project on Wednesday, December 12th at Savage Hall.

To read the rest of this story, go here: http://toledo.scout.com/2/708390.html

From: bat <kilian@gmail.com>

Subject: hey whats up check this meds place out

Date: April 6, 2009 10:50:13 PM PDT

To: Kilian Weinberger Reply-To: bat <kilian@gmail.com>

Your friend (kilian@gmail.com) has sent you a link to the following Scout.com story: Savage Hall Ground-Breaking Celebration

Get Vicodin, Valium, Xanax, Viagra, Oxycontin, and much more. Absolutely No Prescription Required. Over Night Shipping! Why should you be risking dealing with shady people. Check us out today! http://jenkinstege. 3.blogspot.com

The University of Toledo will hold a ground-breaking celebration to kick-off the UT Athletics Complex and Savage Hall renovation project on Wednesday, December 12th at Savage Hall.

To read the rest of this story, go here: http://toledo.scout.com/2/708390.html

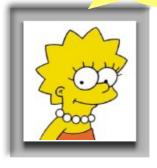
1: spam!

0: quality

1: donut?

0: notspam!

?



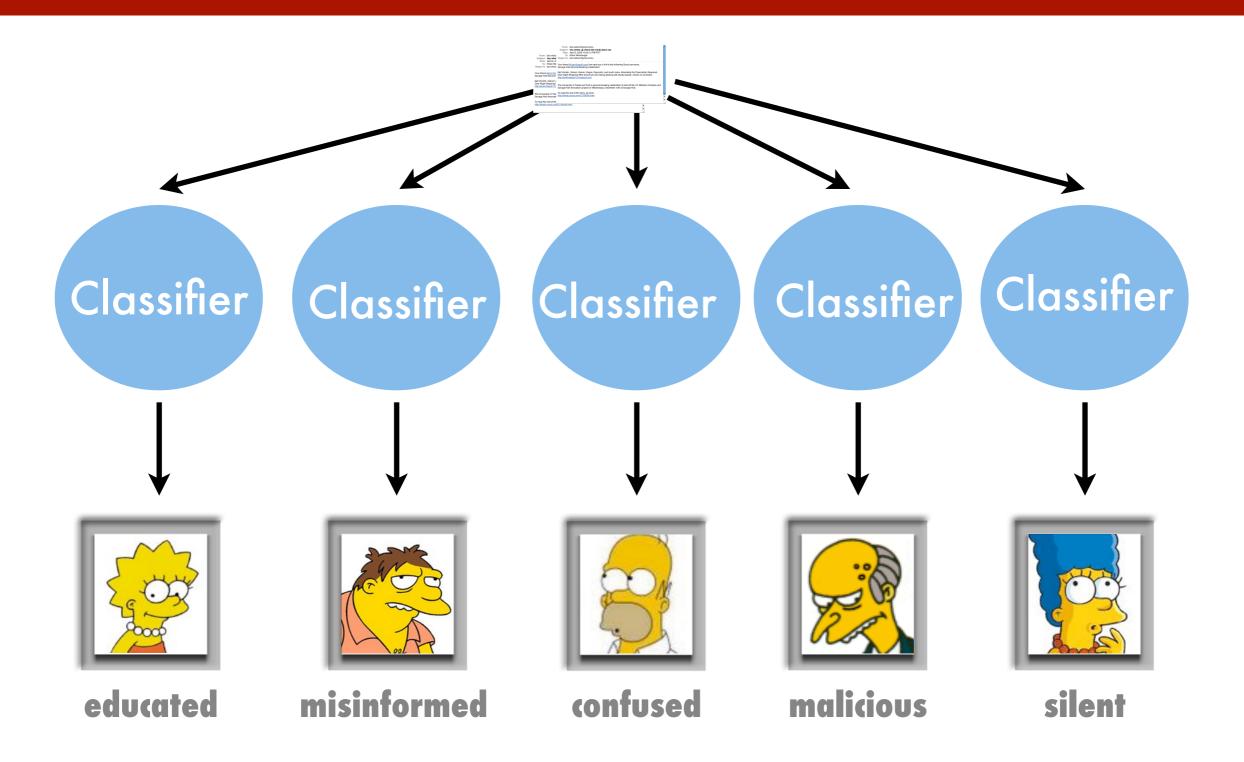
educated

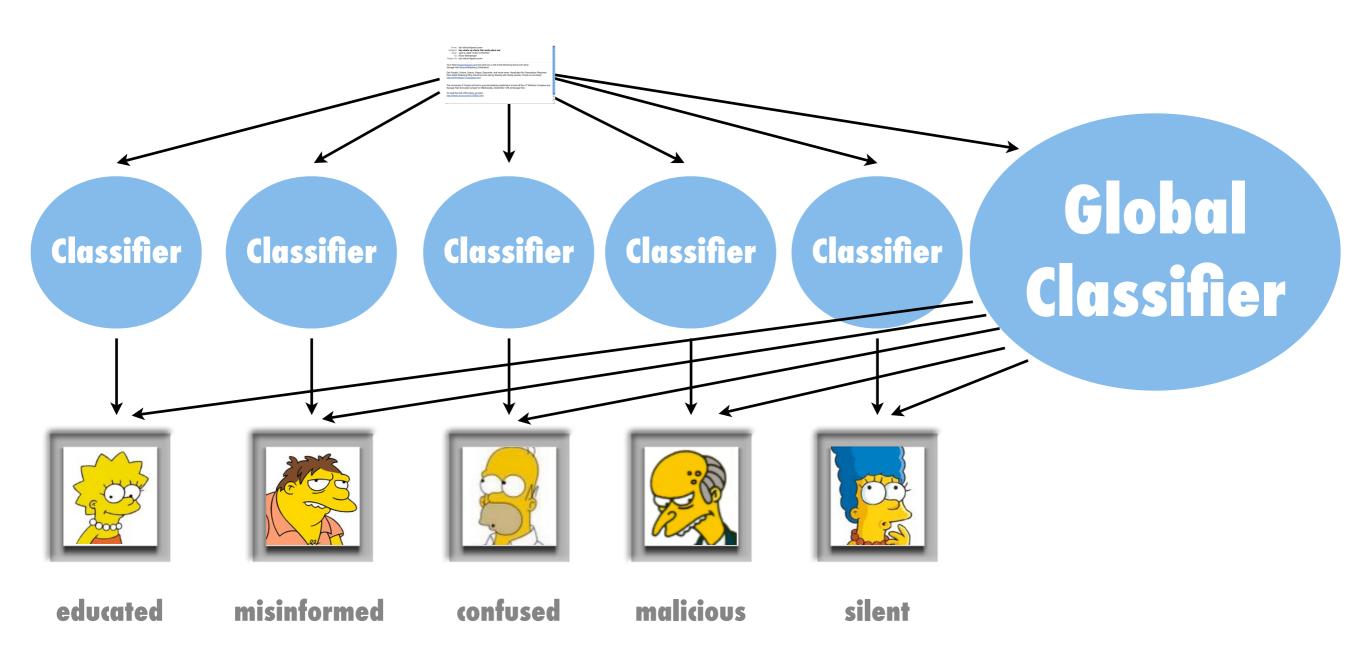
misinformed

confused

malicious

silent





Collaborative Classification

Primal representation

$$f(x,u) = \langle \phi(x), w \rangle + \langle \phi(x), w_u \rangle = \langle \phi(x) \otimes (1 \oplus e_u), w \rangle$$

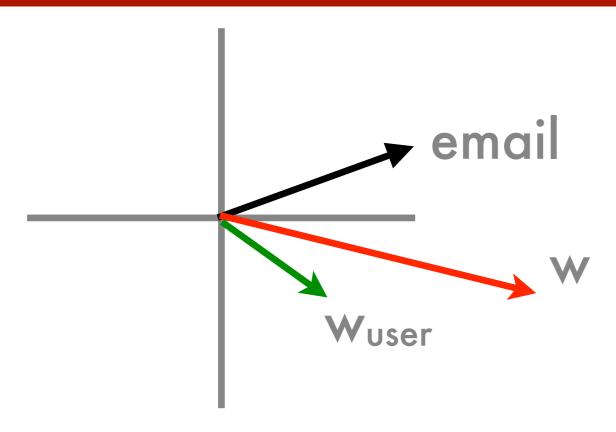
Kernel representation

$$k((x, u), (x', u')) = k(x, x')[1 + \delta_{u, u'}]$$

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...

Problem - dimensionality is 10¹³. That is 40TB of space

Collaborative Classification



Primal representation

$$f(x,u) = \langle \phi(x), w \rangle + \langle \phi(x), w_u \rangle = \langle \phi(x) \otimes (1 \oplus e_u), w \rangle$$

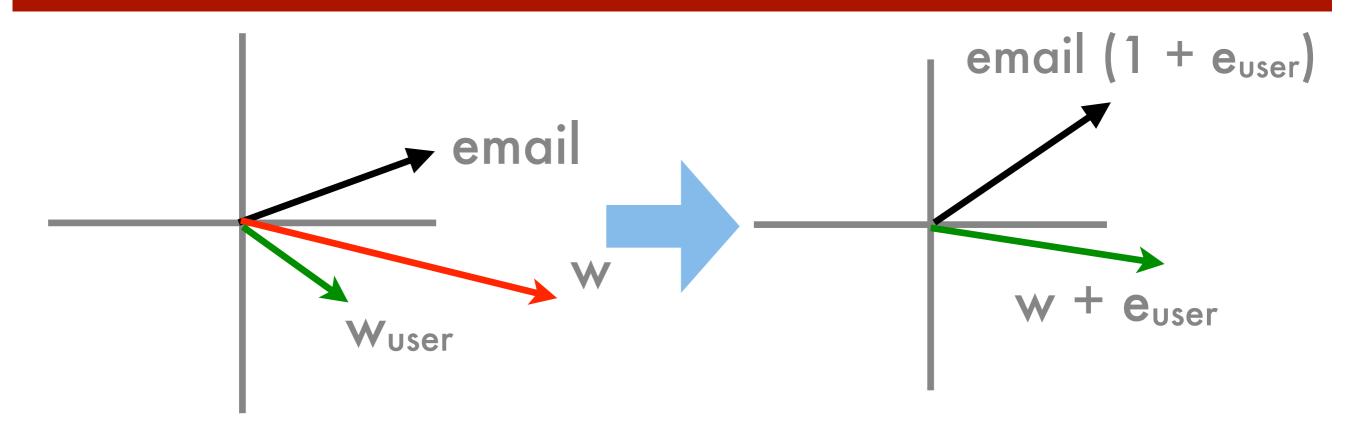
Kernel representation

$$k((x, u), (x', u')) = k(x, x')[1 + \delta_{u, u'}]$$

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...

Problem - dimensionality is 10¹³. That is 40TB of space

Collaborative Classification



Primal representation

$$f(x,u) = \langle \phi(x), w \rangle + \langle \phi(x), w_u \rangle = \langle \phi(x) \otimes (1 \oplus e_u), w \rangle$$

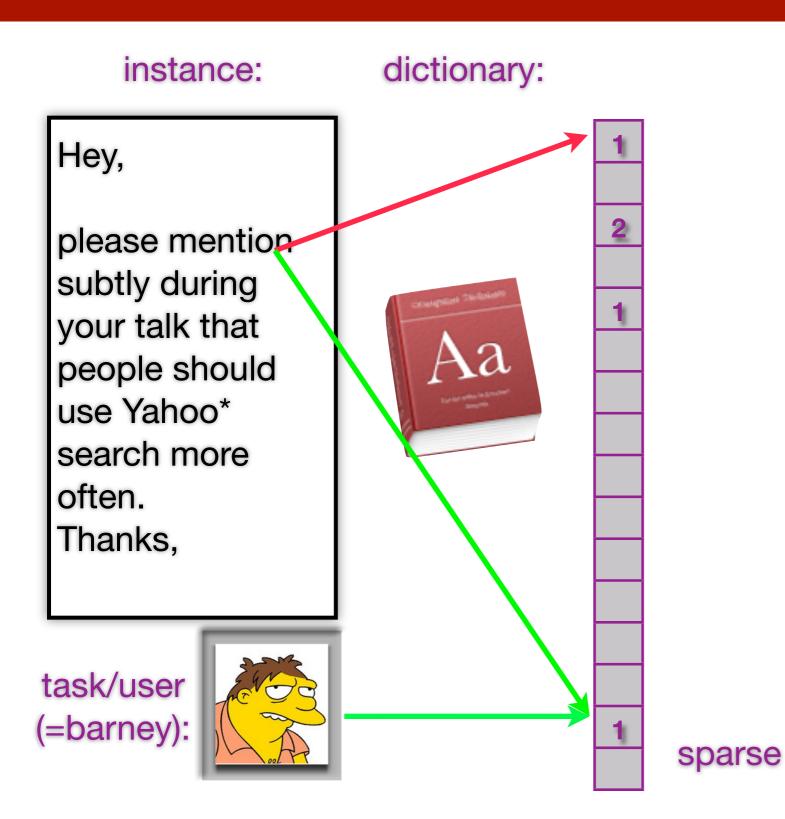
Kernel representation

$$k((x, u), (x', u')) = k(x, x')[1 + \delta_{u, u'}]$$

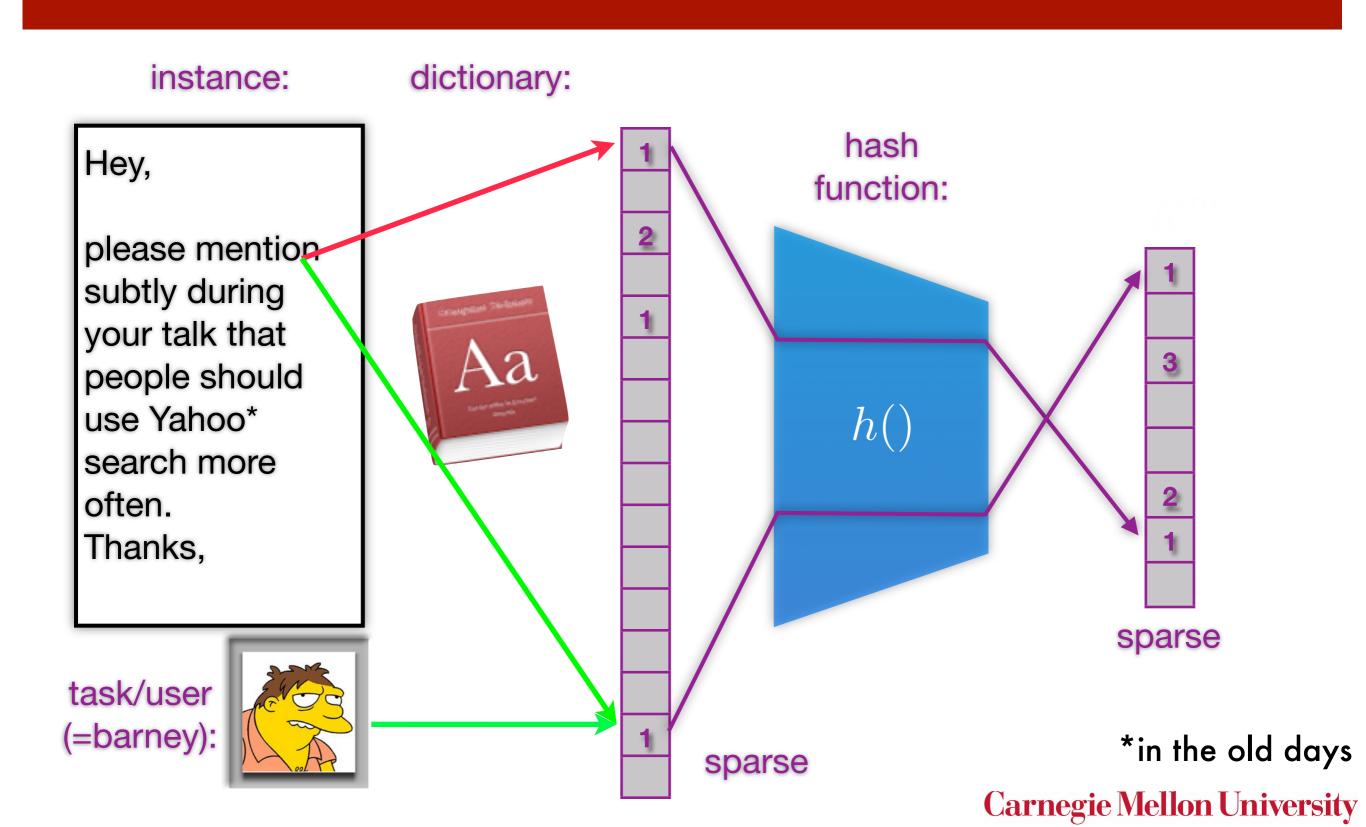
Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...

Problem - dimensionality is 10¹³. That is 40TB of space

Hashing



*in the old days



instance:

Hey,

please mentionsubtly during your talk that people should use Yahoo search more often.
Thanks,

| \(\lambda \text{\(\lambda \ta \text{\) \\ \ethinto \text{\(\lambda \ta \text{\) \eth} \text{\) \\ \eth \text{\(\lambda \ta \text{\(\lambda \ta \text{\(\lambda \ta \text{\) \eth \ta \text{\(\lambda \ta \text{\) \eth \ta \text{\) \\ \eth \ta \text{\(\lambda \ta \ta \text{\) \eth \t

task/user (=barney):

Similar to count hash (Charikar, Chen, Farrach-Colton, 2003)

- No dictionary!
 - Content drift is no problem

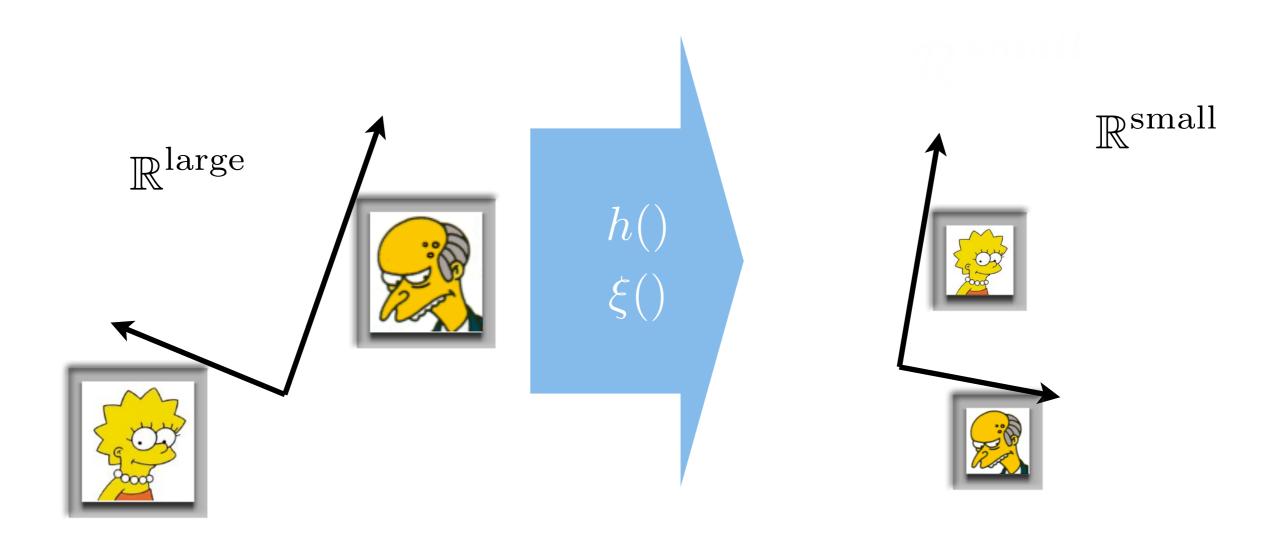
Finite memory guarantee (via online learning)

- No dictionary!
 - Content drift is no problem
 - All memory used for classification
 - Finite memory guarantee (via online learning)
- No Memory needed for projection. (vs LSH)

- No dictionary!
 - Content drift is no problem
 - All memory used for classification
 - Finite memory guarantee (via online learning)
- No Memory needed for projection. (vs LSH)
- Implicit mapping into high dimensional space!

- No dictionary!
 - Content drift is no problem
 - All memory used for classification
 - Finite memory guarantee (via online learning)
- No Memory needed for projection. (vs LSH)
- Implicit mapping into high dimensional space!
- It is sparsity preserving! (vs LSH)

Approximate Orthogonality



We can do multi-task learning!

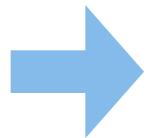
Guarantees

 For a random hash function the inner product vanishes with high probability via

$$\Pr\{|\langle w_v, h_u(x)\rangle| > \epsilon\} \le 2e^{-C\epsilon^2 m}$$

We can use this for multitask learning

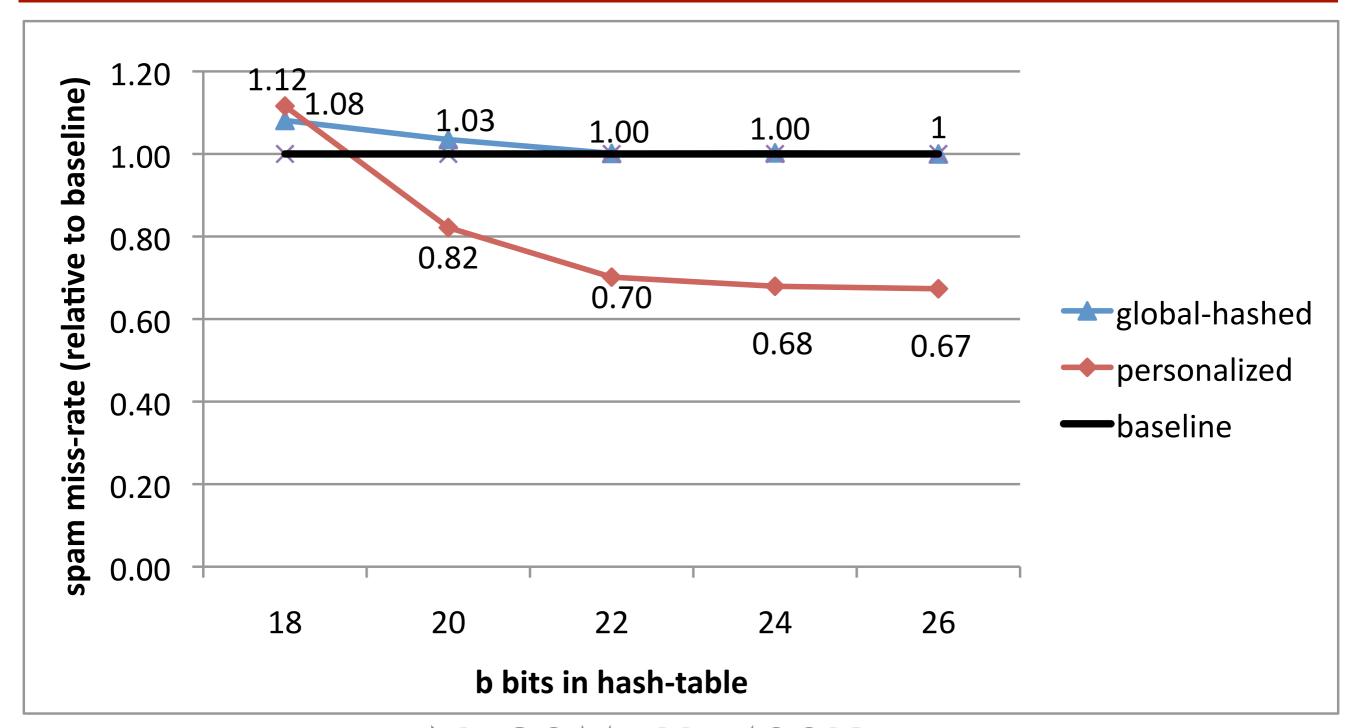
Direct sum in Hilbert Space



Sum in Hash Space

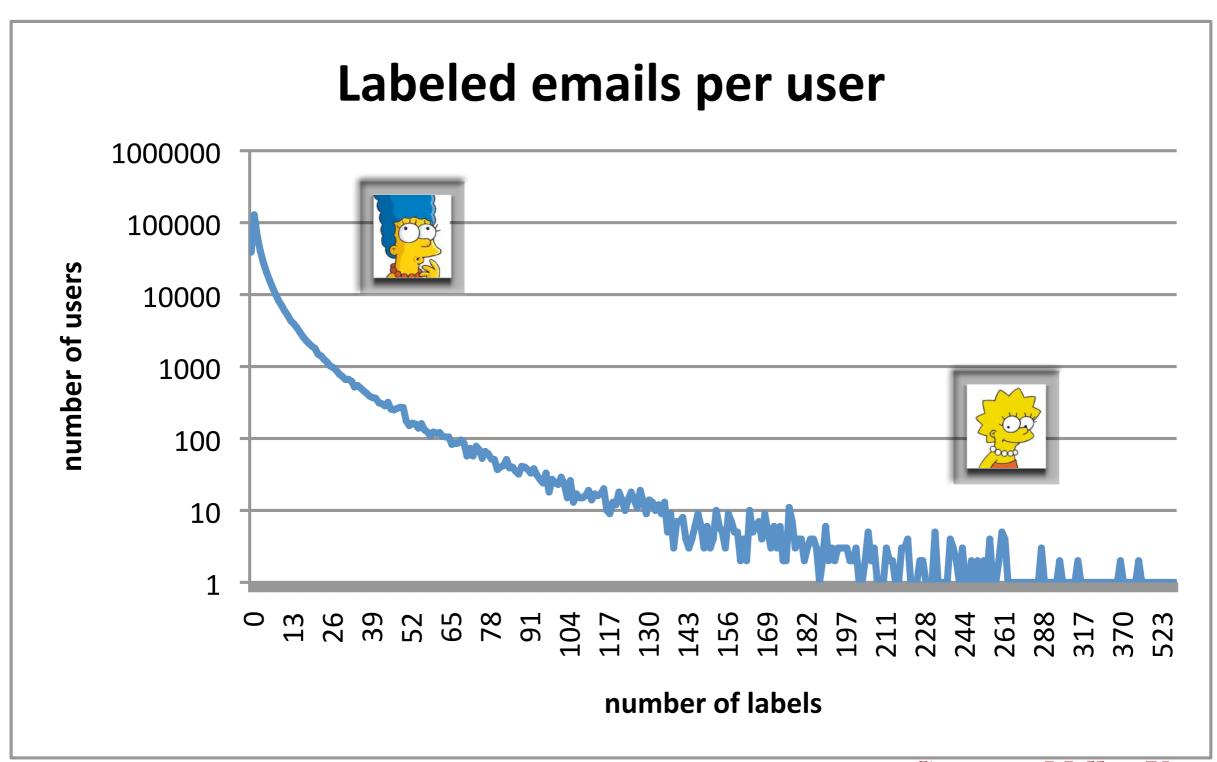
- The hashed inner product is unbiased
 Proof: take expectation over random signs
- The variance is O(1/n)
 Proof: brute force expansion
- Restricted isometry property (Kumar, Sarlos, Dasgupta 2010)

Spam classification results



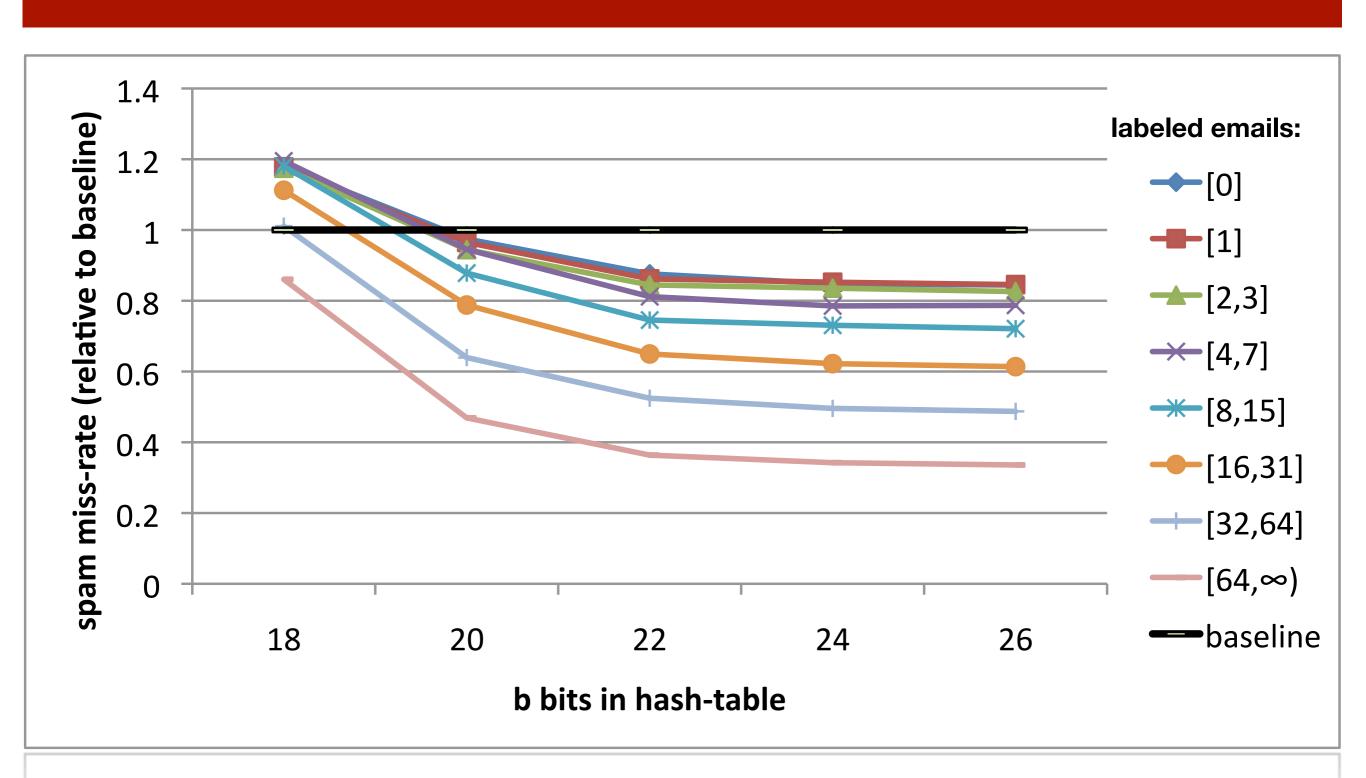
N=20M, U=400K

Lazy users ...

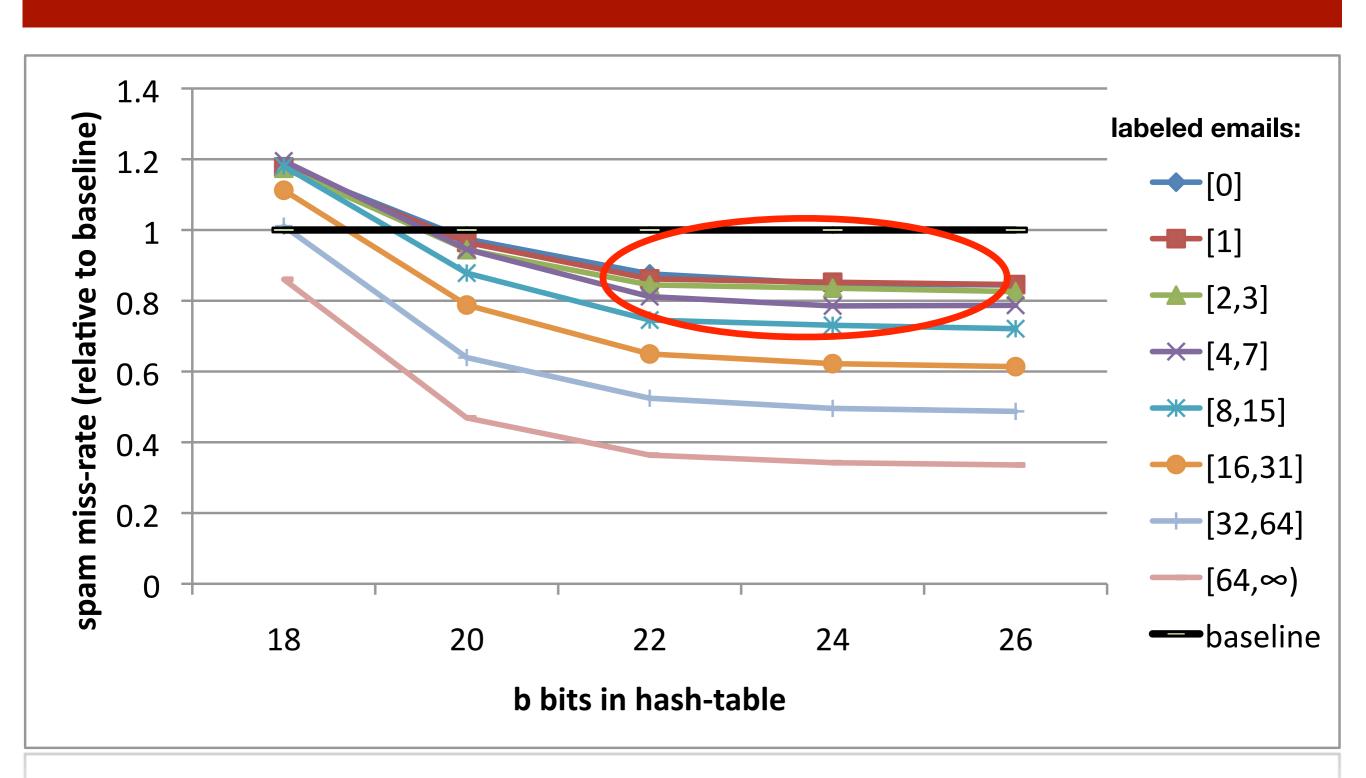


Results by user group

Results by user group



Results by user group



Details

Estimation details

- Works best with stochastic gradient descent (or any other primal space method)
- Never instantiate hash map explicitly

$$f(x) = \langle w, \phi(x) \rangle = \sum_{s} w[h(s)]n_s(x)$$

- Random memory access pattern (latency)
- Multiclass classification joint hash

Approximate Matches

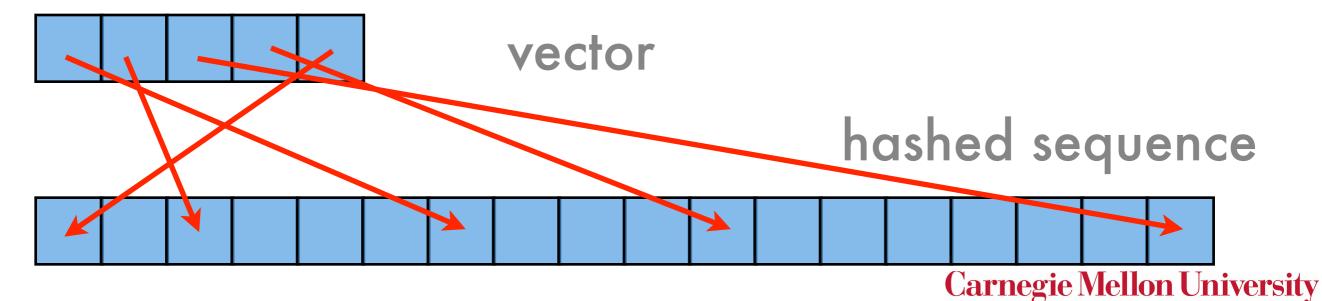
General idea

$$k(x, x') = \sum_{\bar{s}} \sum_{i} \kappa(w, w') \text{ for } |w - w'| \le \delta$$

- Simplification $w \in x \ w' \in x'$
 - Weigh by mismatch amount | w-w' |
 - Map into fragments: dog -> (*og, d*g, do*)
 - Hash fragments and weigh them based on mismatch amount
 - Exponential in amount of mismatch But not in alphabet size

Memory access patterns

- Cache size is a few MBs
 Very fast random memory access
- RAM (DDR3 or better) is GBs
 - Fast sequential memory access (burst read)
 - CPU caches memory read from RAM
 - Random memory access is very slow
 - CPU caches memory read from RAM



Speeding up access

- Key idea bound the range of h(i,j) for j=1 to n access h(i,j)
- Linear offset bad collisions in i
- Sum of hash functions bad collisions in j
- Optimal Golomb Ruler (Langford)
 NP hard in general
- Printed In general

 Epistel Network / Cryptography (p.

$$h(i,j) = h(i) + j$$

$$h(i,j) = h(i) + h'(j)$$

$$h(i,j) = h(i) + OGR(j)$$

Feistel Network / Cryptography (new)
$$h(i,j) = h(i) + \operatorname{crypt}(j|i)$$

