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® Project proposal—this Friday 10/1 |
» Title
» Andrew email addresses of participants
» description (~500-750 words, or equivalent in pics/egns)
» dataset—access, contents, what do you hope to learn!?
» what is the first step?! possible milestones!?

» minimal and stretch success criteria

® HW2—2 weeks from today—Mon 10/21
® Midterm—10/28 in class
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Large images for handin
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® Some students reported problems uploading large

image files to the handin/discussion server (even if
below the limit of 950k/file)

® Until we track down and fix the cause of those
problems, we recommend that you avoid large-
image-based handin methods

» i.e., avoid scanned handwriting and LaTeX

» youre welcome to ignore this advice if you really are set
on handwriting or LaTeX, and we will try to support you

» if it worked for you in HWI, it should continue to work
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Projects
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® Availability of an interesting data set
» idea for what interesting things are in the data set

» idea how to get at these things

® We are looking for interactivity

» not just “run algorithms XYZ on data ABC,” but
interpret results and change course accordingly
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Project ideas—ML on FAWN
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® FAWN = Fast Array of Wimpy Nodes

» handle highly multithreaded workload by throwing lots of low-
energy processors at it, but great inter-node communication

® Calxeda:“Data Center Performance, Cell Phone Power”
» one box = up tol2 boards * 4 SOCs * 4 Cortex A9 cores
» 192 high-end cell phones
» Infiniband network

» 100s of Gbit/s
» ping time = |100ns (not ms!)

Geoff Gordon—10-701 Machine Learning—Fall 2013 httP:/ /www.calxeda.com



Pro]ect—wearable accelerometer

Fa T il

® Alex offers to buy hardware (disclaimer: may be
different from picture)

® Goal:interpret data

» segment and decompose observations into
motion primitives

a \
(Dsooymenrn |

» infer gait changes

» monitor convalescing patients

http://www.bodymedia.com
Geoff Gordon—10-701 Machine Learning—*Fall 2013 5




Project—video annotation
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Bayes rule: sum version

- — N S ——

® P(a| b) = P(b | ) P(a) / P(b)

S

[0:00:00]
[0:00:33)
[0-03:10]
[0:08:35])
[0:11:32)
[0:16:12)
[0:1943])
[0:23:19]
[0:27:28)
[0:29:11]

Related Reading
Bayes Rule

- Bayes rule: sum version

- Bayes rule m ML

- Baves rule vs. MAP vs. MLE
Frequentist vs. Baves

- Test for a rare disease

- Follow-up test

- Independence

- Conditional Independence
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Project—video annotation
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Bayes rule: sum version

St A N s e —rp . A

(0:0000] Related Reading
[0:00:53] Bayes Rule
[0:03:10] - Bayes rule: sum version
[0:08:35] - Bayes rule m ML

[0:11:32] - Baves rule vs. MAP vs. MLE
[0:16:12]) Frequentist vs. Bayes

[0:1943] - Test for a rare disease
[0:23:19] - Follow-up test

[0:27:28) - Independence

[0:29:11) - Conditional Independence
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Project—yvideo annotation
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® An ML project

» Can use 3rd party toolboxes to compute features (e.g.
OpenCV)—we don’t care how you get them

» Must have a learning component: use annotated lectures
for training

» ours, or scrape videolectures.net, techtalks.tv

® This is a project to satisfy a practical need
» Your work will be used

» We will need working, understandable code to be
published as open source
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Pro]ect—educatlonal data
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® Watch students interact w/ online tutoring system

® Understand what it is that they are learning, how
each student is doing

® Big data set:
» http://pslcdatashop.web.cmu.edu/KDDCup/

» | helped run this challenge, so | have ideas about what
might work...

® (Goals: cluster problems by skills used, cluster
students by knowledge of skills

Geoff Gordon—10-701 Machine Learning—*Fall 2013



Ed data, revisited
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® Or, much smaller data but deeper learning
» watch a student solve a problem

» capture pen strokes as they draw diagrams or solve
equations—I can provide software/HW for this

» learn to distinguish solutions from random marks on
paper, or eventually good solutions from bad ones

» what is latent structure of a solution (“diagram
grammar’’)
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Project ldeas—KaggIe
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® Runs many ML competitions

» data from StackExchange, cell phone accelerometers,
solar energy, household energy consumption, flight
delays, molecular activity, ...

® Similar idea to challenge problems on our HWVs,

but less structure, and competing against the
whole world

» CMU is the hardest part of the world to compete
against, so you should have no trouble...

Geoff Gordon—10-701 Machine Learning—*Fall 2013




Project ldeas—Tw:tter

mmﬁmwﬂﬁm“ bt L g e R AR ivaa st amon

® Get a huge pile of tweets

» http://www.ark.cs.cmu.edu/tweets/

® Build a network
® Analyze the network

® | earn something

» topics, social groups, hot news items, political
disinformation (“astroturf”), ...

Geoff Gordon—10-701 Machine Learning—*Fall 2013
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Others

VPRSI A B L Tt G oo B AT S5t 0 LT R PR e S st ek M e BTNCR 10, 0 o i ISV B I O NS

® | oan repayment probability
® Grape vine yield
® Neural data: MEG, EEG, fMRI, spike trains

® Music: audio or MIDI

Geoff Gordon—10-701 Machine Learning—*Fall 2013



Step back and take stock
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® | ots of ML methods:

Geoff Gordon—10-701 Machine Learning—*Fall 2013
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Step back and take stock
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® | ots of ML methods:

Nadaraya

Parzen

Geoff Gordon—10-701 Machine Learning—*Fall 2013



Common threads
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® Machine learning principles (MLE, Bayes, ...)

e Optimization techniques (gradient, LP, ...)

® Feature design (bag of words, polynomials, ...)

Goal: you should be able to mix and
match by turning these 3 knobs to get
a good ML method for a new situation

Geoff Gordon—10-701 Machine Learning—*Fall 2013



Machine Iearnmg prmc:ples
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® MLE:"“a model that fits training set well (assigns it

high probability) will be good on test set”
MK P A\ W\\ wl\{j\\ -4 P (Ate | A

wol\(/\i . .« 6 e
° F/egularlzed MLE:“even better if model is ‘simple

wia —la PLD M) o qeun (Rl &
® MAP:“want the most probable model given data”

W P(DIMY = D (M)

® Bayes:“average over all models according to their

probability” T [ | = PO PC@/ P(D)

’9)

Geoff Gordon—10-701 Machine Learning—*Fall 2013 15



More principles
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® Nonparametric: “future data will look like past
data”

® Empirical risk minimization:"a simple model that
fits our training set well (assigns it low E(loss)) will
be good on our test set”

Ma T ey F e (A

VU
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Examples
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® linear regression (Gaussian errors) MLE £¢FM
® linear regression (no error assumption) £gM
® ridge regression W@KU\(N\M MU

® k-nearest-neighbor — s -

® Naive Bayes for text classification

® Watson Nadaraya nencer + Foyss

® Parzen windows owpa”

Geoff Gordon—10-701 Machine Learning—*Fall 2013



Selecting a principle
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® Computational efficiency vs. data efficiency vs.
what we're willing to assume

» e.g., full Bayesian integration is often great for small data,
but really expensive to compute

» e.g., for huge # of examples and high-d parameter space,
stochastic gradient may be the only viable option

» e.g., if we're not willing to make strong assumptions about
data distribution, suggests nonparametric or ERM

® Often wind up trying several routes

» e.g., to see which one leads to a tractable optimization
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Common thread opt:mlzatlon

YEPISTEIRE A B L Tt g BT P S AT A A Tty 5= N ST CAL I e SN st i e aial, VIR

® Use a principle to derive an objective fn

» hopefully convex, often not

® Select algorithm to min or max it

» or sometimes integrate it—like optimization, but harder

Geoff Gordon—10-701 Machine Learning—*Fall 2013



Optimization techniques
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® |f we're lucky: set gradient to 0, solve analytically

® (Sub)gradient method
» analyzed: —log(error) = O(# iters) [note: bad constant]

® Stochastic (sub)gradient method

® Newton’s method

® Linear prog., quadratic prog., SOCPs, SDPs, ...
® Other: EM,APG,ADMM, ...

Geoff Gordon—10-701 Machine Learning—*Fall 2013 20



Comparison

of techmques for mm:mlzmg a convex funct:on

Newton APG  (sub)grad stoch. (sub)grad.

convergence FaSalEAlRS *x K ¥ =5% %
cost/iter 5599% $4L %3 £
assumptions * *RRS 3-S5 % PUVEVEVIE S

Geoff Gordon—10-701 Machine Learning—*Fall 2013
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Common thread: features
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® Customer/collaborator/boss hands you SQL DB

® You need to turn it into valid input for one of
these algorithms

» discarding outliers, calculating features that encapsulate
important ideas, ...

® Options:

» finite-length vector of real numbers

M il

» kernels: infinite feature spaces; strings, graphs, trees, etc.

Geoff Gordon—10-701 Machine Learning—*Fall 2013
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Where does it all Iead7
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® Different principles, assumptions, optimization
techniques, feature generation methods lead to
different algorithms for same qualitative problem
(e.g., many algos for “regression”)

® Different principles can give same/similar algos

» ridge regression as conditional MAP under Gaussian
errors, or as ERM under square loss

» many different linear classifiers: perceptron, NB, logistic
regression, SVM, ...

Geoff Gordon—10-701 Machine Learning—*Fall 2013
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Lagrange mult:pl:ers |
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® Technique for turning constrained optimization
problems into unconstrained ones

® Useful in general

» but in particular, leads to a
famous ML method: the
support vector machine

Geoff Gordon—10-701 Machine Learning—*Fall 2013 24



Recall: Newton’s method
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.minxf(x) - H/Ax¥%: O

» R4 = R 7@
JHD/
Dlenyy & GOy FON D
NEIN @Aj = O
~ EE S
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Equality constraints

e e e Lt T P

® min f(x) s.t.p(x) =0 M) = X Em

Geoff Gordon—10-701 Machine Learning—*Fall 2013
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