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1. True or False Please give an explanation for your answer, this is worth 1 pt/question.

(a) (2 points) No classifier can do better than a naive Bayes classifier if the distribution of
the data is known.

(b) (2 points) Maximizing the likelihood of linear regression yields multiple local optimums.

(¢) (2 points) If a function is not twice differentiable, that is the Hessian is undefined, then
it cannot be convex.

(d) (2 points) Ridge regression; linear regression with the lo penalty is a convex function.

2. Short Answer

(a) (2 points) Explain how you would use 10-fold cross validation to choose A for I;-regularized
linear regression.

(b) (2 points) Why does the kernel trick allow us to solve SVMs with high dimensional feature
spaces, without significantly increasing the running time.

(¢) (5 points) Consider the optimization problem

minimize 2% + 1
subject to (r —2)(x —4) <0

State the dual problem.
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9 Naive Bayes [10 pts]

Given the following training (x,y), what problem will Naive Bayes encounter with test data 22?

x1 = (0,0,0,1,0,0,1) yl = 1
x2 = (0,0,1,1,0,0,0) y2 = 1
x3 = (1,1,0,0,0,1,0) y3 = -1
x4 = (1,0,0,0,1,1,0) v4 = -1
zl1 = (1,0,0,0,0,1,0)
z2 = (0,1,1,0,0,1,1)

Using your fix for the problem, compute the Naive Bayes estimate for z1 and 22.
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10 Perceptron [10 pts]

Demonstrate how the perceptron without bias (i.e. we set the parameter b = 0 and keep it fixed) updates its
parameters given the following training sequence:

x1 = yl = 1
X2 = y2 = -1
x3 y3 = 1
x4 yvd = -1
x5 = y5 = -1

11



2 [16 Points] SVMs and the slack penalty C

The goal of this problem is to correctly classify test data points, given a training data set.
You have been warned, however, that the training data comes from sensors which can be
error-prone, so you should avoid trusting any specific point too much.

For this problem, assume that we are training an SVM with a quadratic kernel- that is,
our kernel function is a polynomial kernel of degree 2. You are given the data set presented
in Figure 1. The slack penalty C' will determine the location of the separating hyperplane.
Please answer the following questions qualitatively. Give a one sentence answer /justification
for each and draw your solution in the appropriate part of the Figure at the end of the
problem.
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Figure 1: Dataset for SVM slack penalty selection task in Question 2.

1. [4 points] Where would the decision boundary be for very large values of C (i.e.,
C — 00)? (remember that we are using an SVM with a quadratic kernel.) Draw on
the figure below. Justify your answer.

2. [4 points| For C' = 0, indicate in the figure below, where you would expect the decision
boundary to be? Justify your answer.



3. [2 points] Which of the two cases above would you expect to work better in the classi-
fication task? Why?

4. [3 points] Draw a data point which will not change the decision boundary learned for
very large values of C'. Justify your answer.

5. [3 points] Draw a data point which will significantly change the decision boundary
learned for very large values of C'. Justify your answer.
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Figure 2: Draw your solutions for Problem 2 here.



1 Conditional Independence, MLE/MAP, Probability (12 pts)

1. (4 pts) Show that Pr(X,Y|Z) = Pr(X|Z) Pr(Y|Z) if Pr(X|Y, Z) = Pr(X|Z).

2. (4 pts) If a data point y follows the Poisson distribution with rate parameter 6, then the
probability of a single observation y is

gve?
p(y|0) = ;1 , fory=0,1,2,---.

You are given data points y1, - -- ,y, independently drawn from a Poisson distribution with
parameter §. Write down the log-likelihood of the data as a function of 6.

3. (4 pts) Suppose that in answering a question in a multiple choice test, an examinee either
knows the answer, with probability p, or he guesses with probability 1 — p. Assume that the
probability of answering a question correctly is 1 for an examinee who knows the answer and
1/m for the examinee who guesses, where m is the number of multiple choice alternatives.
What is the probability that an examinee knew the answer to a question, given that he has
correctly answered it?



4 Bias-Variance Decomposition (12 pts)

1. (6 pts) Suppose you have regression data generated by a polynomial of degree 3. Characterize
the bias-variance of the estimates of the following models on the data with respect to the true
model by circling the appropriate entry.

Bias Variance
Linear regression low/high low/high
Polynomial regression with degree 3 | low/high low/high
Polynomial regression with degree 10 | low/high low/high

2. Let Y = f(X) + ¢, where € has mean zero and variance o2. In k-nearest neighbor (kNN)

€
regression, the prediction of Y at point xg is given by the average of the values Y at the k

neighbors closest to xg.

(a) (2 pts) Denote the ¢-nearest neighbor to xy by z(p and its corresponding Y value by
Y(r)- Write the prediction f(:zo) of the kNN regression for xg in terms of y(,),1 < £ < k.

(b) (2 pts) What is the behavior of the bias as k increases?

(c) (2 pts) What is the behavior of the variance as k increases?



5 Support Vector Machine (12 pts)

Consider a supervised learning problem in which the training examples are points in 2-dimensional
space. The positive examples are (1,1) and (—1,—1). The negative examples are (1,—1) and

(—1,1).

1. (1 pts) Are the positive examples linearly separable from the negative examples in the original
space?

2. (4 pts) Consider the feature transformation ¢(x) = [1,x1,z2, z122], where z1 and x9 are,
respectively, the first and second coordinates of a generic example x. The prediction function
is y(z) = w’ * ¢(z) in this feature space. Give the coefficients, w, of a maximum-margin
decision surface separating the positive examples from the negative examples. (You should
be able to do this by inspection, without any significant computation.)

3. (3 pts) Add one training example to the graph so the total five examples can no longer be
linearly separated in the feature space ¢(z) defined in problem 5.2.

4. (4 pts) What kernel K (x,2’) does this feature transformation ¢ correspond to?



6 Generative vs. Discriminative Classifier (20 pts)

Consider the binary classification problem where class label Y € {0,1} and each training example
X has 2 binary attributes X1, Xo € {0,1}.

In this problem, we will always assume X; and X, are conditional independent given Y, that
the class priors are P(Y = 0) = P(Y = 1) = 0.5, and that the conditional probabilities are as
follows:

PXY) [ X1=0 X;=1 PX3Y) [ X2=0 Xy;=1
Y =0 0.7 0.3 Y =0 0.9 0.1
Y =1 0.2 0.8 Y =1 0.5 0.5

The expected error rate is the probability that a classifier provides an incorrect prediction for an
observation: if Y is the true label, let Y (X1, X2) be the predicted class label, then the expected
error rate is

Pp (Y =1-V(X, X)) = ZZPD<X1,X2,Y_1—Y(X1,X2)>.
=0 Xo=

Note that we use the subscript D to emphasize that the probabilities are computed under the true
distribution of the data.
*You don’t need to show all the derivation for your answers in this problem.

1. (4 pts) Write down the naive Bayes prediction for all the 4 possible configurations of X, Xo.
The following table would help you to complete this problem.

X1 | Xo | P(X1,X2,Y=0) | P(X1,X2,Y=1) Y(Xl,Xg)

== OO
—| oo

2. (4 pts) Compute the expected error rate of this naive Bayes classifier which predicts Y given
both of the attributes {X1, Xo}. Assume that the classifier is learned with infinite training
data.



3 Logistic Regression [18 pts]

We consider here a discriminative approach for solving the classification problem illustrated
in Figure 1.

Figure 1: The 2-dimensional labeled training set, where ‘4’ corresponds to class y=1 and
‘O’ corresponds to class y = 0.

1. We attempt to solve the binary classification task depicted in Figure 1 with the simple
linear logistic regression model

1
1+ exp(—wo — W11 — U)2$2> ’

—

P(y = 1]Z, %) = g(wo + w1z + waxs) =

Notice that the training data can be separated with zero training error with a linear
separator.

Consider training regularized linear logistic regression models where we try to maximize
n
Zlog (P(yilws, wo, w1, wz)) — ijz-
i=1

for very large C'. The regularization penalties used in penalized conditional log-
likelihood estimation are —wa, where j = {0,1,2}. In other words, only one of the
parameters is regularized in each case. Given the training data in Figure 1, how does
the training error change with regularization of each parameter w;? State whether the
training error increases or stays the same (zero) for each w; for very large C'. Provide

a brief justification for each of your answers.



(a) By regularizing wy [3 pts]
(b) By regularizing w; [3 pts]

(¢) By regularizing wy [3 pts]

2. If we change the form of regularization to L1-norm (absolute value) and regularize w;
and wy only (but not wy), we get the following penalized log-likelihood

Zlog P(yi|xi,w0,w1,wg) — C(|U)1| + |U}2|)

=1

Consider again the problem in Figure 1 and the same linear logistic regression model
Py = 1|Z,9) = g(wo + wiz1 + was).

(a) [3 pts] As we increase the regularization parameter C' which of the following
scenarios do you expect to observe? (Choose only one) Briefly explain your choice:

() First wy will become 0, then ws.

() First we will become 0, then w;.

() wy and wy will become zero simultaneously.
()

None of the weights will become exactly zero, only smaller as C' increases.



(b) [3 pts] For very large C, with the same L1-norm regularization for w; and w, as
above, which value(s) do you expect wq to take? Explain briefly. (Note that the
number of points from each class is the same.) (You can give a range of values
for wy if you deem necessary).

(¢) [3 pts] Assume that we obtain more data points from the ‘+’ class that corre-
sponds to y=1 so that the class labels become unbalanced. Again for very large
C, with the same L1-norm regularization for w; and wy as above, which value(s)
do you expect wy to take? Explain briefly. (You can give a range of values for wy
if you deem necessary).



4 Kernel regression [16 pts]

Now lets consider the non-parametric kernel regression setting. In this problem, you will
investigate univariate locally linear regression where the estimator is of the form:

~

f(z) = 1+ fox

and the solution for parameter vector 8 = [3; [2] is obtained by minimizing the weighted
least square error:

n X;,—z
J(B1, B2) = ; Wi(z)(Y; = 1 — f2Xi)?  where Wi(z) = Z;{l (K }(lX})L—z) :

where K is a kernel with bandwidth h. Observe that the weighted least squares error can
be expressed in matrix form as

J(ﬁl, 52) = (Y - AB)TW(Y - Aﬁ):

where Y is a vector of n labels in the training example, W is a n x n diagonal matrix with
weight of each training example on the diagonal, and

1X;
1 X,

A=
1X,
1. [4 pts] Derive an expression in matrix form for the solution vector B that minimizes
the weighted least square.

2. [3 pts] When is the above solution unique?
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3. [3 pts] If the solution is not unique, one approach is to optimize the objective function
J using gradient descent. Write the update equation for gradient descent in this case.
Note: Your answer must be expressed in terms of the matrices defined above.

4. [3 pts] Can you identify the signal plus noise model under which maximizing the
likelihood (MLE) corresponds to the weighted least squares formulation mentioned
above?

5. [3 pts] Why is the above setting non-parametric? Mention one advantage and one
disadvantage of nonparametric techniques over parametric techniques.
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