
Machine Learning 10-701 November 18, 2013
http://alex.smola.org/teaching/cmu2013-10-701x/ due November 27, 2013

Carnegie Mellon University

Homework 4

START HERE: Instructions

• The homework is due at 11:59 pm on Wednesday November 27, 2013. Anything that is received after
that time will not be considered.

• Answers to everything but question 3 will be submitted electronically through the submission web-
site: http://alex.smola.org/teaching/cmu2013-10-701x/submission.html. Let us know
if you have any problems.

• Read this before handwriting or LATEXing your solutions: Previously, some students reported diffi-
culty with submitting large image files to the handin server. So, we recommend that you should not
handwrite or LATEXyour solutions; instead use “plain text” or “markup text” mode and type or paste
your solutions into the compose box. We will make our best effort to provide support for image-based
handins, but until further notice they should be considered an experimental feature.

• Please follow the instructions for code submission in problem 3 correctly. The code handout is at
http://www.cs.cmu.edu/˜dsutherl/assignment_4_handout.tar; note that it’s 750 MB.

• Collaboration on solving the homework is allowed (after you have thought about the problems on
your own). When you do collaborate, you should list your collaborators! You might also have gotten
some inspiration from resources (books or online etc...). This might be OK only after you have tried
to solve the problem, and couldn’t. In such a case, you should cite your resources.

• If you collaborate with someone or use a book or website, you are expected to write up your solution
independently. That is, close the book and all of your notes before starting to write up your solution.

1 Graphical Models [Jing; 30 pts]

In this problem, you will get some practice with directed and undirected graphical models.

1.1 Directed Graphical Models (Bayesian Networks) [22 pts]
1. For the following problem, you will use D-separation to figure out which independence relations hold

for the graphical model specified in Figure 4. You will receive 1 pt for the correct answer and 1 pt for
the explanation. There are many names for the types of paths observed in the graphical model. Please
follow the naming convention below when referring to the paths in your explanation.

A B C

Figure 1: Serial Connection

A B C

Figure 2: Diverging Connection

A B C

Figure 3: Converging Connection

1

http://alex.smola.org/teaching/cmu2013-10-701x/
http://alex.smola.org/teaching/cmu2013-10-701x/submission.html
http://www.cs.cmu.edu/~dsutherl/assignment_4_handout.tar

Machine Learning 10-701 November 18, 2013
http://alex.smola.org/teaching/cmu2013-10-701x/ due November 27, 2013

Carnegie Mellon University

Homework 4

For this graphical model in Figure 4, determine if the independence relation is correct or incorrect,
and provide a short explanation.

A B

E

C D

F G H

Figure 4: Bayesian Network

1. a) C ⊥ E | B
1. b) A ⊥ E

1. c) A ⊥ C | E
1. d) D ⊥ F

1. e) F ⊥ H | G, D

2. Write out the factorization of the joint probability distribution of the random variables that guarantees
the same independence relations as in the directed graphical model given above (Figure 4).

3. Next we will perform variable elimination. Consider the following graphical model which models
how likely it is for a graduate student to go on holidays at the end of semester (Figure 5). When a
variable with multiple neighbors is eliminated, new intermediate factors are introduced. The vari-
ables are described below.

L Indicator that the last homework for 10-701 was completed.
C Indicator that a supply of coffee is constantly available.
F Indicator that the final project for 10-701 was finished.
R Indicator that the semester research goals were reached.
H Indicator that the student is going on holiday in December.

2

http://alex.smola.org/teaching/cmu2013-10-701x/

Machine Learning 10-701 November 18, 2013
http://alex.smola.org/teaching/cmu2013-10-701x/ due November 27, 2013

Carnegie Mellon University

Homework 4

L
Last
 HW

C
Coffee

R
Research

F
Final

Project

H
Holidays

Figure 5: Bayesian Network modeling the probability of winter holidays.

3. a) Give an elimination ordering that yields an intermediate factor with 4 variables.

3. b) Give a perfect elimination ordering, one that never increases the size of a factor.

3. c) Using the perfect ordering and the following probabilities, find the probability of going on hol-
idays given that the last homework was completed and that there was a boundless supply of
coffee.

P (L = T) = 0.8

P (C = T) = 0.9

P (R|C = T) = 0.6

P (F |C = T, L = T) = 0.9

P (F |C = T, L = F) = 0.8

P (F |C = F,L = T) = 0.7

P (F |C = F,L = F) = 0.4

P (H|F = T,R = T) = 0.9

P (H|F = T,R = F) = 0.7

P (H|F = F,R = T) = 0.6

P (H|F = F,R = F) = 0.2

3

http://alex.smola.org/teaching/cmu2013-10-701x/

Machine Learning 10-701 November 18, 2013
http://alex.smola.org/teaching/cmu2013-10-701x/ due November 27, 2013

Carnegie Mellon University

Homework 4

1.2 Undirected Graphical Models (Markov Networks) [8 pts]

In this question, we will investigate another class of graphical models called undirected graphical models
or Markov networks. These models are useful representations when the setting does not naturally require
directionality amongst the variables. In addition, certain probability distributions can be represented as a
Markov network, but not as a Bayesian network.

1. Consider the following Markov network in Figure 6 with five variables: x1, x2, x3, x4, and x5, where
each variable can take on the value of 0 or 1. Write down the joint distribution of this undirected
graphical model.

x1

x2

x3 x4 x5

Figure 6: Markov Network.

2. Suppose we observe that x5 = 1. Given the edge potentials ψ13(x1, x3), ψ23(x2, x3), ψ34(x3, x4),
ψ45(x4, x5), use belief propagation (message passing) to find all the marginals. That is, give P (xi =
0 | x5 = 1) and P (xi = 1 | x5 = 1) for i = 1, 2, 3, 4.

Hint: The potentials given are not normalized. You may find it helpful to normalize each message af-
ter it’s been computed. However, this is not required and it’s also fine to normalize the final marginal
probability.

ψ13(x1, x3) =
(x1 = 0 x1 = 1

x3 = 0 1 0.5
x3 = 1 0.5 1

)

ψ23(x2, x3) =

(
0.5 1
1 0.5

)

ψ34(x3, x4) =

(
0.2 1
1 0.2

)

ψ45(x4, x5) =

(
0.1 1
1 0.1

)

4

http://alex.smola.org/teaching/cmu2013-10-701x/

Machine Learning 10-701 November 18, 2013
http://alex.smola.org/teaching/cmu2013-10-701x/ due November 27, 2013

Carnegie Mellon University

Homework 4

2 Bootstrap [Ahmed; 20 pts]

[Note: This question involves simulation. You are not required to submit the code; you can use any lan-
guage or toolkit you choose.]

2.1 Two modes, one variance [4+0+7+3+2=16 pts]

Let X1, . . . , Xn be an i.i.d sample from a mixture of two Gaussians with means µ1 = −1 and µ2 = +1 and
standard deviation σ1 = σ2 = σ = 0.1. That is, Xi is generated from N (µ1, σ1) with probability p = 0.05,
and from N (µ2, σ2) with probability 1− p.

Let X̄ = 1
n

∑n
i=1Xi denote the sample mean. We want to use bootstrap to estimate its variance so that

we can report our confidence in X̄ .

1. Derive the variance of X̄ in terms of σ, µ, p and n. Hint: recall that the law of total variance says
Var[X] = EY [Var[X|Y]] + VarY [E[X|Y]].

2. Implement the following variance estimation procedure: Given X1, . . . , Xn, draw 100 bootstrap re-
samples each of size n. Estimate the sample mean of each bootstrap sample and then compute the
variance across bootstrap resamples. [You are not required to submit your answer to this part. You
may find the MATLAB function bootstrp function helpful.].

3. To analyze the general behavior of the estimator, sample n data points from the bimodal distribution
and compute the variance using the aforementioned bootstrap procedure. Repeat the process on 50
different samples of size n and compute the median of the variance estimates obtained from these
samples. Do this for n ∈ {2, 4, 6, 8, 10, . . . , 30} and plot a graph showing the median variance estimate
vs. n. In the same graph, show the true variance as a function of n (using the derivation in 1 or
estimating from a large sample).

4. From the graph, how well does the bootstrap estimate the variance for small n? How does it change
with n ? Can you explain the reason behind this behavior?

5. Repeat 3 using p = 0.5. How does that affect the performance of the bootstrap estimate for small n?
Can you explain why?

2.2 Bootstrap Cross-Validation [4 pts]

Consider the following method to estimate the generalization error of a classifier using limited data: Take
a bootstrap sample from the data and perform 10 fold cross-validation on that sample to estimate the error.
Repeat the process on B bootstrap resamples and report the average.

What do you think can go wrong with such a method and why?

3 Solving Systems of Linear Equations [Carlton; 40 pts + 5 Bonus]

A system of linear equations is an equation of the form Ax = b where A ∈ Rn×n and b ∈ Rn are known,
and x ∈ Rn is unknown.

Solving a system of linear equations is the problem of finding an xwhich satisfies this equation. It is one
of the most fundamental operations in machine learning. Many of the most important algorithms we will
teach you reduce to solving such systems. Because of this it is vitally important that we can find solutions
quickly.

5

http://alex.smola.org/teaching/cmu2013-10-701x/

Machine Learning 10-701 November 18, 2013
http://alex.smola.org/teaching/cmu2013-10-701x/ due November 27, 2013

Carnegie Mellon University

Homework 4

You might think that this is a simple problem with a single “correct” solution. Nothing could be further
from the truth. In reality there are hundreds of different algorithms for solving this problem, each with its
own advantages and disadvantages. This means that we need to carefully consider the stucture of A before
deciding which algorithm we should use.

In this question you will implement several common linear system solvers, and explore how different
values of A affect their execution time.

For each subquestion you will be given a single function signature, and asked to write a single octave
function which satisfies the signature.

This problem is autograded using the CMU Autolab system. The code which you write will be executed
remotely against a suite of tests, and the results used to automatically assign you a grade. In order for your
code to execute correctly on our servers you should avoid using libraries beyond the basic octave libraries.

• Submission Instructions We have provided you with a single folder containing each of the functions
you need to complete. Do not modify the structure of this directory or rename these files. Complete each
of these functions, then compress this directory as a tar file and submit to autolab online. You may
submit as many times as you like.

• SUBMISSION CHECKLIST

– MUST execute on our machines in less than 20 minutes.

– MUST be smaller than 100K.

– MUST be a .tar file.

– MUST return matrices of the exact dimension specified.

• You can assume for all questions that A is full rank.

• Asmall , xsmall , bsmall is a small system of linear equations you can use to test your code for parts 3.1-3.4.
Ai, xi, bi are the systems of linear equations for the challenge question 3.5.

3.1 Matrix Inverse Solver

The most naive algorithm is to explicitly calculate A−1, then use A−1 to calculate x = A−1b. While seem-
ingly reasonable, in practice this is a terrible idea: it’s both slow and numerically unstable. Nevertheless
this gives us a reasonable place to start from.

• Complete the function f inv() which solves the system of linear equations Ax = b by calculating A−1b.
Feel free to use the octave inv function here.

• f inv() takes as input A and b and outputs x.

3.2 Gaussian Elimination Solver

Gaussian elimination is another common approach to solving systems of linear equations. This was prob-
ably the first algorithm you were taught in your Linear Algebra 101 course. Gaussian elimination has the
advantage that it works on any system of linear equations. As a reminder, in its simplest form Gaussian
elimination consists of two steps: Row Reduction, which results in an upper triangular matrix in row echelon
form, followed by Back Substitution, which results in a diagonal matrix.

6

http://alex.smola.org/teaching/cmu2013-10-701x/

Machine Learning 10-701 November 18, 2013
http://alex.smola.org/teaching/cmu2013-10-701x/ due November 27, 2013

Carnegie Mellon University

Homework 4

• Complete the function f gaussian() which solves the system of linear equations Ax = b using Gaus-
sian elimination. Implement the algorithm yourself rather than using any Octave builtins that do
this.

• f gaussian() takes as input A and b and outputs x and Atri . Here Atri ∈ Rn×n is the upper triangular
matrix in row echelon form which is obtained after row reduction, but before back substitution.

• We require Atri for autograding purposes.

3.3 Steepest Descent Solver

If A is positive semi-definite (PSD) then our problem is convex, and we can use algorithms based on the
idea of gradient descent.

Consider the function f(x) = 1
2‖Ax − b‖

2. This function will be minimized when Ax = b. Therefore
solving the equation Ax = b is equivalent to minimizing f(x) = 1

2‖Ax − b‖
2. We can minimize f(x) by

calculating the gradient∇f(x) = Ax− b and using gradient descent:

x(i+1) = x(i) + αi(Ax
(i) − b)

where x(i) is the ith step and αi ∈ R is the ith step size. Here αi = − ∇f(x(i))T∇f(x(i))

∇f(x(i))T A∇f(x(i))
.

Gradient descent with this (optimal) step size is called steepest descent.

• Complete the function f steepest() which solves the system of linear equations Ax = b using the
steepest descent algorithm with the αi values above.

• f steepest() takes as input A, b, x0, and nIter , and outputs x. x0 is the starting point, and nIter is the
number of iterations. Note that one iteration corresponds to a single gradient descent step.

3.4 Jacobi Solver

IfA is PSD and diagonally dominant then we can use the Jacobi method. A matrixA is diagonally dominant
iff for each row i, |Aii| >

∑
j 6=i|Aij |.

Suppose we split the matrix A into two parts: D, whose diagonal elements are identical to those of
A, and whose off-diagonal elements are zero; and E, whose diagonal elements are zero, and whose off-
diagonal elements are identical to those of A. Thus A = D + E. Then:

Ax = b

Dx = −Ex+ b

x = −D−1Ex+D−1b.

Because D is diagonal, it is easy to invert. This identity can be converted to an iterative algorithm by
forming the following recurrence:

x(i+1) = −D−1Ex(i) +D−1b.

This iterative algorithm is known as the Jacobi solver.

• Complete the function f jacobi() which solves the system of linear equations Ax = b using the Jacobi
solver.

• f jacobi() takes as input A, b, x0, and nIter , where x0 is the starting point, and nIter is the number of
iterations. Note that one iteration corresponds to a single update step.

7

http://alex.smola.org/teaching/cmu2013-10-701x/

Machine Learning 10-701 November 18, 2013
http://alex.smola.org/teaching/cmu2013-10-701x/ due November 27, 2013

Carnegie Mellon University

Homework 4

3.5 CHALLENGE: The fastest solver

Welcome to the third and final 10-701 Challenge Question! Once again this is a competition (view the
class leaderboard on the autolab website) and 5 bonus points will be awarded to students who have top 10
classification accuracy on the class leaderboard.

• You are given 6 systems of linear equations Aixi = bi for i ∈ 1, 2, ..., 6. Your task is to write 6
algorithms, one for each system of equations, such that your algorithms solve these systems as
quickly as possible.

• Each of these systems will be of a different form, and can be solved best with specific algorithms.

• Your algorithms must produce a solution x̂ such that if x is the true solution, then ‖x̂− x‖2 < 10−5.
If the solution produced by your algorithm breaks this bound, then your code will receive a grade of
zero.

• Your code will be tested serverside using systems of linear equations which are of the same form as
those given to you, but which contain different values.

• Your grade will be inversely logarithmically proportional to the time it takes your algorithm to cor-
rectly solve the equations. In other words faster code→ better grade.

• You are welcome to use builtin Octave libraries for this challenge, or to write your own code. I don’t
care what you use so long as your solvers run quickly.

HINT: The following is a list of techniques you might want to consider trying (in addition to the ones
you already implemented above). Many of these have built in octave implementations:

• Richardson Iteration

• Gauss-Seidel

• Successive Over-Relaxation

• Conjugate Gradient

• Preconditioning

• Cholesky Decomposition

• Chebychev Iteration

• Generalized Minimal Residual

• Biconjugate Gradient

• Pivoted Gaussian Elimination

8

http://alex.smola.org/teaching/cmu2013-10-701x/

	Graphical Models [Jing; 30 pts]
	Directed Graphical Models (Bayesian Networks) [22 pts]
	Undirected Graphical Models (Markov Networks) [8 pts]

	Bootstrap [Ahmed; 20 pts]
	Two modes, one variance [4+0+7+3+2=16 pts]
	Bootstrap Cross-Validation [4 pts]

	Solving Systems of Linear Equations [Carlton; 40 pts + 5 Bonus]
	Matrix Inverse Solver
	Gaussian Elimination Solver
	Steepest Descent Solver
	Jacobi Solver
	CHALLENGE: The fastest solver

