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Homework 2

START HERE: Instructions

• The homework is due at 10:30am on October 21, 2013. Anything that is received after that time will
not be considered.

• Answers to everything but question 3 will be submitted electronically through the submission web-
site: http://alex.smola.org/teaching/cmu2013-10-701x/submission.html. Let us know
if you have any problems.

• Read this before handwriting or LATEXing your solutions: In HW1 some students reported difficulty
with submitting large image files to the discussion/handin server. So, we recommend that, to the
extent possible, you should not handwrite or LATEXyour solutions; instead use “plain text” or “markup
text” mode and type or paste your solutions into the compose box. We will make our best effort
to provide support for image-based handins, but until further notice they should be considered an
experimental feature.

• Please follow the instructions for code submission in problem 3 correctly. The code handout is
at http://alex.smola.org/teaching/cmu2013-10-701x/assignments/assignment_2_
handout.tar.

• Collaboration on solving the homework is allowed (after you have thought about the problems on
your own). However, when you do collaborate, you should list your collaborators! You might also
have gotten some inspiration from resources (books or online etc...). This might be OK only after you
have tried to solve the problem, and couldn’t. In such a case, you should cite your resources.

• If you do collaborate with someone or use a book or website, you are expected to write up your
solution independently. That is, close the book and all of your notes before starting to write up your
solution.

1 Convexity [Dougal; 25 pts]

In this question we’ll get some practice working with convex functions. You may want to refer to these notes
on convexity: http://alex.smola.org/teaching/cmu2013-10-701x/convexity-notes.pdf.

1.1 Calculus of convex functions [6 pts]

Show that the following functions are convex. (Each proof should be only a few lines.)

(a) h1(x) = f(Ax+ b) for convex f , matrix A, and vector b.

(b) h2(x) = max(f(x), g(x)) for convex f and g.

(c) h3(x) = g(f(x)) for convex f with range A ⊆ R and g : A→ R both convex and non-decreasing.

1.2 First-order condition [7 pts]

Prove that f : R→ R, where dom f is an open set and f is continuously differentiable, is convex iff

dom f is convex and f(y)− f(x) ≥ f ′(x) (y − x) for all x, y ∈ dom f. (1)

That is, show that (1) is equivalent to the “zeroth-order” condition

f(x+ λ(y − x)) ≤ f(x) + λ(f(y)− f(x)) for all x, y ∈ dom f and λ ∈ [0, 1]. (2)

Hint: Only one variable in (2) can vary freely; use it and the definition of a derivative to introduce f ′ to
show that (2) implies (1). The other direction requires a different approach to get rid of the f ′ term.
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1.3 Strict and strong convexity [6 pts]

(a) Show that all m-strongly convex functions are also n-strongly convex for m > n.

(b) Prove that all strongly convex functions are strictly convex.

(c) Give a function f(x) that is strictly convex that is not strongly convex for any m > 0. (Don’t just write
down a function; prove that it is strictly convex and not strongly convex.)

1.4 Examples [6 pts]

For each of the following functions, show whether it is strongly convex, strictly convex, convex, or not
convex.

(a) x2 + x4 on R (b) x2 + x4 on [1, 5] (c) Any norm ‖x‖ on Rn

Recall that a norm is any function Rn → R satisfying the following for any scalar a ∈ R and vectors
x, y ∈ Rn: ‖ax‖ = |a| ‖x‖, ‖x+ y‖ ≤ ‖x‖+ ‖y‖, and ‖x‖ = 0 iff x = 0.

2 Linear Regression, Again? [Ahmed; 25 pts]

For this question, X denotes an n × d matrix whose rows are training points, y denotes an n × 1 vector of
corresponding output values, β denotes a d × 1 parameter vector and β∗ denotes the optimal parameter
vector.

2.1 Why Lasso Works [12 pts]

Lasso is a form of regularized linear regression, where the L1 norm of the parameter vector is penalized.
It is used in an attempt to get a sparse parameter vector where features of little ”importance” are assigned
zero weight. But why does lasso encourage sparse parameters? In this part you will work out the math to
explain this behavior. To make analysis easier we will consider the special case where the training data is
whitened (i.e. XTX = I). For lasso regression, the optimal parameter vector is given by

β∗ = argmin
β

Jλ(β) = argmin
β

1

2
‖y −Xβ‖2 + λ|β|1,

where λ > 0.

(a) Show that whitening the training data nicely decouples the features, making β∗j determined by the
jth feature and the output regardless of other features. To show this, write Jλ(β) in the form

Jλ(β) = g(y) +

d∑
i=1

f(X.i, y, βi, λ),

where X.i is the ith column of X .

(b) Assume that β∗j > 0, what is the value of β∗j in this case?

(c) Assume that β∗j < 0, what is the value of β∗j in this case?
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(d) From (b) and (c) , what is the condition for β∗j to be 0 ? How can you interpret that condition?

(e) Now consider ridge regression where the regularization term is replaced by 1
2λ‖β‖

2
2. What is the

condition for β∗j = 0? How does it differ from the condition you obtained in (d) (why is β∗j more
likely to be 0 in the lasso case)?

2.2 Kernel Ridge Regression [13 pts]

[Note: In this part, training data is not necessarily whitened.]
In this part you will derive a kernelized version of ridge regression. This means we need to formulate

training and prediction such that data points appear only in inner products. By replacing the inner product
with the appropriate kernel, we can model non-linear functions or model regression over objects that are
not natively in a vector space (e.g. strings). Recall that for ridge regression the optimal weight vector is
given by

β∗ = (XTX + λI)−1XT y

(a) Show that β∗ is in the row space of X . That means β is in the space spanned by training points.

(b) Based on (a) , we can write β as a weighted combination of training data points

β =

n∑
i=1

αixi,

where xi denotes the ith column of XT . The training problem now becomes finding the optimal α.
Show that

α∗ = (XXT + λI)−1y

and hence show that computing α∗ requires only inner products between training data points.

(c) Show that predicting f̂(x) for a new data point x requires only inner products between x and training
data points.

(d) If we are to store each real value as a floating point number, how many floating point numbers are
needed to store the trained model in the non-kernelized version and the kernelized version ?

3 Kernels and Features [Carlton; 50 pts + 5 Bonus]

This is a coding question. In this question you will implement Perceptron Classification, and Kernel Perceptron
Classification in Octave.

For each sub question you will be given a single function signature, and asked to write a single octave
function which satisfies the signature.

This problem is Autograded using the CMU Autolab system. The code which you write will be executed
remotely against a suite of tests, and the results used to automatically assign you a grade. In order for your
code to execute correctly on our servers you should avoid using libraries beyond the basic octave libraries.

• Data All questions will use the following data structures: XTrain ∈ Rn×f is a matrix of training data,
where each row is a training point, and each column is a feature. XTest ∈ Rm×f is a matrix of (hidden)
test data, where each row is a test point, and each column is a feature. yTrain ∈ {1, ..., c}n×1 is a vector
of training labels. yTest ∈ {1, ..., c}m×1 is a (hidden) vector of test labels.
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• Submission Instructions We have provided you with a single folder containing each of the functions
you need to complete. Do not modify the structure of this directory or rename these files. Complete each
of these functions, then compress this directory as a tar file and submit to autolab online. You may
submit as many times as you like.

• CHECKLIST: You MUST do all of the following in order for your submission to be graded.

– MUST execute on our machines in less than 20 minutes.

– MUST be smaller than 100K

– MUST be a .tar file

– MUST return matrices of the exact dimension specified.

3.1 Perceptrons [18 pts]

In this question you will implement the perceptron classification algorithm using two different weight-
learning algorithms. The idea is that we will use the training data to learn a set of weights w which can be
used to predict the class of unknown examples.

(a) Perceptron-Algorithm Weights [6 pts]
Complete the function weightsP(XTrain, yTrain, nIter) which takes as input the training data XTrain,
the training labels yTrain, and the number of iterations nIter and returns a f × 1 weight vector w.
weightsP() should implement the iterative perceptron weight learning algorithm described in class.

(b) Least Squares Weights [6 pts]
Complete the function weightsL(XTrain, yTrain) which takes as input the training data XTrain, and the
training labels yTrain, and returns a f × 1 weight vector w. weightsP() should implement the least
squares weight learning algorithm: w = argminw||XTrain× w − yTrain||2.

(c) Perceptron Classifier [6 pts]
Complete the function perceptronClassify(XTest, w) which takes as input the test data, and the weight
vector, and returns a n × 1 vector of class predictions p ∈ {1, ..., c}m. Note that pi is the predicted
class for the ith row of XTest. (Note: For this question, make sure you go through the test examples
in order, NOT in randomized order as we discussed in class.)

3.2 Kernel Perceptrons [17 pts]

In this question you will implement the kernel perceptron classification algorithm.
At an abstract level kernel perceptrons work by projecting the features into a high dimensional feature

space, then doing normal perceptron learning in the high dimensional feature space. i.e. for all xwe replace
x with φ(x), then run perceptron learning using φ(x) as our features.

Unfortunately it is computationally infeasible to do this explicitly. Instead we work in the high dimen-
sional space implicitly using inner products. We note that given a data point φ(x) and a weight vector w,
we classify φ(x) by calculating 〈φ(x), w〉. Furthermore we know w is a linear combination of the points
φ(x1), ..., φ(xn) (i.e. w =

∑
i αiφ(xi) for some α1, ..., αn. Therefore 〈φ(x), w〉 =

∑
i αi〈φ(x), φ(xi)〉. Therefore

all we really need to do is calculate the inner products between points, and keep track of the α values.
Note that in this question we use a nth degree polynomial kernel with inner product 〈φ(xi), φ(xj)〉 =

〈xi, xj〉n.
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(a) Kernel Weights [9 pts]
Complete the function kernelWeights(XTrain, yTrain, nIter, d) which takes as input the training data
XTrain, the training labels yTrain, the number of iterations to run for nIter, and the degree of the poly-
nomial kernel d. kernelWeights() should output an n×1 weight vector w. Note that w is equivalent to
the α values in the above discussion; in other words, we can reconstruct our weight vector in feature
space as

∑
i wi × XTraini.

(b) Kernel Perceptron Classifier [8 pts]
Complete the function kernelPerceptronClassify(XTrain,XTest, w, d) which takes as input the training
data XTrain, the test data XTest, the weight vector w, and the degree of the polynomial kernel d.
kernelPerceptronClassify() should output a n × 1 vector of class predictions p. Note that pi is the
predicted class for the ith row of XTest.

3.3 CHALLENGE: SPAM Feature Engineering [15 pts + 5 bonus]

Welcome to the second 10-701 Challenge Question! Once again this problem is much, much more difficult
than the previous questions. Once again this is a competition (view the class leaderboard on the autolab
website) and bonus points will be awarded to students who have top 10 classification accuracy on the class
leaderboard. I was really impressed with how well you guys did on the first challenge question, and I look
forward to seeing what you can do with this one.

• In this question you will engineer a list of features for SPAM email classification. The idea is to convert
an email into a list of real numbers, which can then be used train a machine learning classification
algorithm. The performance of the resulting classifier will depend heavily on how good your features
are, so select them carefully!

• Specifically, your task is to complete the function mail2Feat(Mail) which converts a set of emails into a
matrix of real numbers. Suppose we have e emails, where the ith email has wi words. Mail is a e × 1
cell array of emails, each of which is wi × 1 cell array of words. You can produce as many output
features as you like; the only caveat is that all emails must have the same set of features. If you decide
to output f features, then mail2Feat() should output a e× f matrix of real numbers.

• In addition to the mail2Feat() function you may also use the dictionary.csv file. This file allows you
to include arbitrary data (such as a dictionary of words) with your submission. Use this file to store
and retrieve preprocessed results in your submission. An example of how to use this file is included
in the mail2Feat.m template file.

• Your will be graded based on how well your features support classification. Specifically, your mail2Feat()
function will be used to convert two hidden sets of emails into features. We will then train a percep-
tron using one set of emails, and test the performance of the perceptron on another. Your grade will
be directly proportional to the classification accuracy obtained.

HINTS: I have included code in the mail2Feat.m template file which demonstrates an incredibly basic
feature map. This code simply takes a few words and counts how many times each word appears in each
email. These counts are the features. For more advanced (and successful) feature maps, TF-IDF is a good
place to start. (https://en.wikipedia.org/wiki/Tf-idf)
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