### Introduction to Machine Learning CMU-10701 9. Tail Bounds

Barnabás Póczos

# Fourier Transform and Characteristic Function

## Fourier Transform

Fourier transform

unitary transf.

$$\mathcal{F}[f](\omega) = \widehat{f}(\omega) = \int_{\mathbb{R}^d} f(x) \exp(-2\pi i \langle \omega, x \rangle) dx$$

**Inverse Fourier transform** 

$$f(x) = \mathcal{F}^{-1}[\widehat{f}](x) = \int_{\mathbb{R}^d} \widehat{f}(\omega) \exp(2\pi i \langle \omega, x \rangle) d\omega$$

#### **Other conventions:** Where to put $2\pi$ ?

 $\widehat{f}(\omega) = \int_{\mathbb{R}^n} f(x) \exp(-i\langle\omega, x\rangle) \, dx.$   $f(x) = \mathcal{F}^{-1}[\widehat{f}](x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \widehat{f}(\omega) \exp(i\langle\omega, x\rangle) \, d\omega$ Not preferred: not unitary transf. Doesn't preserve inner product

$$\widehat{f}(\omega) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} f(x) \exp(-i\langle\omega, x\rangle) dx \qquad \text{unitary tran}$$

$$f(x) = \mathcal{F}^{-1}[\widehat{f}](x) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} \widehat{f}(\omega) \exp(i\langle\omega, x\rangle) d\omega$$

۱sf.

# Fourier Transform

Fourier transform

$$\mathcal{F}[f](\omega) = \int_{\mathbb{R}^d} f(x) \exp(-2\pi i \langle \omega, x \rangle) dx$$

**Inverse Fourier transform** 

$$\mathcal{F}^{-1}[g](x) = \int_{\mathbb{R}^d} g(\omega) \exp(2\pi i \langle \omega, x \rangle) d\omega$$

**Properties:** 

Inverse is really inverse:  $F \circ F^{-1}[g] = g F^{-1} \circ F[f] = f$ and lots of other important ones...

Fourier transformation will be used to define the characteristic function, and represent the distributions in an alternative way.

## **Characteristic function**

How can we describe a random variable?

- cumulative distribution function (cdf)
   F<sub>X</sub>(x) = Pr(X ≤ x) = E [1<sub>{X≤x}</sub>]

   probability density function (pdf)
- The Characteristic function provides an alternative way for describing a random variable

**Definition:**  $\varphi_X(t) = \mathbb{E}\left[e^{i\langle t,x\rangle}\right] = \int_{\mathbb{R}^d} e^{i\langle t,x\rangle} dF_X(x) = \int_{\mathbb{R}^d} e^{i\langle t,x\rangle} f_X(x) dx$ 

The Fourier transform of the density

## **Characteristic function**

$$\varphi_X(t) = \mathbb{E}\left[e^{i\langle t,x\rangle}\right] = \int_{\mathbb{R}^d} e^{i\langle t,x\rangle} \, dF_X(x) = \int_{\mathbb{R}^d} e^{i\langle t,x\rangle} f_X(x) \, dx$$

#### Properties

- $\varphi_X(t)$  of a real-valued random variable X always exists. For example, Cauchy doesn't have mean but still has characteristic function.
- Continuous on the entire space, even if X is not continuous.
- Bounded, even if X is not bounded  $|\varphi_X(t)| \le 1$ ,  $\forall t \in \mathbb{R}^d$ .
- Bijection between cdf and characteristic functions: For any two random variables X<sub>1</sub>, X<sub>2</sub>, F<sub>X1</sub> = F<sub>X2</sub> ⇔ φ<sub>X1</sub> = φ<sub>X2</sub>
   φ<sub>X+Y</sub>(t) = φ<sub>X</sub>(t)φ<sub>Y</sub>(t) if X ⊥ Y.
- $\varphi_{\frac{1}{n}X}(t) = \varphi_X(\frac{t}{n})$
- Characteristic function of constant *a*:  $\varphi_{\delta_a}(t) = \exp(i\langle t, a \rangle)$
- Levi's: continuity theorem  $\varphi_{X_n}(t) \rightarrow \varphi_X(t) \quad \forall t \in \mathbb{R} \Rightarrow X_n \xrightarrow{\mathcal{D}} X$

## Weak Law of Large Numbers

#### **Proof II:** Goal: $\hat{\mu}_n \xrightarrow{D} \mu$ .

Taylor's theorem for complex functions  $exp(itx) = 1 + itx + o(t), \quad t \to 0$ 

The Characteristic function

$$\varphi_X(t) = \mathbb{E}[\exp(itX)] = 1 + it\mu + o(t)$$

Properties of characteristic functions :

$$\varphi_{\frac{1}{n}X}(t) = \varphi_X(\frac{t}{n})$$
 and  $\varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t)$  if  $X \perp Y$ 

 $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$   $\Rightarrow \varphi_{\hat{\mu}_n}(t) = \left[\varphi_X\left(\frac{t}{n}\right)\right]^n = \left[1 + i\mu\frac{t}{n} + o\left(\frac{t}{n}\right)\right]^n \xrightarrow{n \to \infty} e^{it\mu} = 1 + t\mu + \dots$ mean

Levi's continuity theorem  $\Rightarrow$  Limit is a constant distribution with mean  $\mu$ 

## "Convergence rate" for LLN

Gauss-Markov:  

$$\Pr(|\hat{\mu}_n - \mu| < \varepsilon) \ge 1 - \frac{\mathbb{E}[|\hat{\mu}_n - \mu|]}{\varepsilon} = 1 - \delta \quad \text{Doesn't give rate}$$
Chebyshev:  

$$\Pr(|\hat{\mu}_n - \mu| < \varepsilon) \ge 1 - \frac{\sigma^2}{n\varepsilon^2} = 1 - \delta. \Rightarrow |\hat{\mu}_n - \mu| < \varepsilon = \frac{\sigma}{\sqrt{n\delta}}$$
with probability 1- $\delta$ 

Can we get smaller, logarithmic error in  $\delta$ ??  $\sqrt{\log \frac{1}{\delta}} \ll \frac{1}{\sqrt{\delta}}$  if  $0 < \delta < 1$ 

## Further Readings on LLN, Characteristic Functions, etc

- <u>http://en.wikipedia.org/wiki/Levy\_continuity\_theorem</u>
- <u>http://en.wikipedia.org/wiki/Law\_of\_large\_numbers</u>
- <a href="http://en.wikipedia.org/wiki/Characteristic\_function\_(probability\_theory">http://en.wikipedia.org/wiki/Characteristic\_function\_(probability\_theory)</a>
- <u>http://en.wikipedia.org/wiki/Fourier\_transform</u>

## More tail bounds



## Hoeffding's inequality (1963)

$$X_{1}, ..., X_{n} \text{ independent} X_{i} \in [a_{i}, b_{i}] \\\varepsilon > 0 \end{cases} \Rightarrow \begin{cases} \mathbb{P}(|\frac{1}{n}\sum_{i=1}^{n}(X_{i} - \mathbb{E}X_{i})| > \varepsilon) \leq 2\exp\left(\frac{-2n\varepsilon^{2}}{\frac{1}{n}\sum_{i=1}^{n}(b_{i} - a_{i})^{2}}\right) \\ \text{two-sided} \end{cases}$$
$$\Rightarrow \begin{cases} \mathbb{P}(\frac{1}{n}\sum_{i=1}^{n}(X_{i} - \mathbb{E}X_{i}) > \varepsilon) \leq \exp\left(\frac{-2n\varepsilon^{2}}{\frac{1}{n}\sum_{i=1}^{n}(b_{i} - a_{i})^{2}}\right) \\ \text{one-sided} \end{cases}$$

It only contains the range of the variables, but not the variances.

## "Convergence rate" for LLN from Hoeffding

**Hoeffding** Let 
$$c^2 = \frac{1}{n} \sum_{i=1}^{n} (b_i - a_i)^2$$
  
 $\Rightarrow \Pr(|\hat{\mu}_n - \mu| > \varepsilon) \le 2 \exp\left(\frac{-2n\varepsilon^2}{c^2}\right)$ 

$$\delta = 2 \exp\left(\frac{-2n\varepsilon^2}{c^2}\right)$$
$$\log \frac{\delta}{2} = \frac{-2n\varepsilon^2}{c^2}$$
$$\frac{c^2}{2n} \log \frac{2}{\delta} = \varepsilon^2$$
$$\varepsilon = c \sqrt{\frac{\log 2 - \log \delta}{2n}}$$

$$\Rightarrow |\hat{\mu}_n - \mu| < \varepsilon = c_1 \sqrt{\frac{1}{2n} \log \frac{2}{\delta}}$$



## Proof of Hoeffding's Inequality

A few minutes of calculations.

## Bernstein's inequality (1946)

$$\begin{cases} X_1, \dots, X_n \text{ indep.} \\ X_i \in [a, b] \\ \sigma^2 = \frac{1}{n} \sum_{i=1}^n Var(X_i) \\ \varepsilon > 0 \end{cases}$$
  
$$\Rightarrow \mathbb{P}(|\frac{1}{n} \sum_{i=1}^n X_i - \mathbb{E}X_i| > \varepsilon) \le 2 \exp\left(\frac{-n\varepsilon^2}{2\sigma^2 + \frac{2}{3}\varepsilon(b-a)}\right)$$

It contains the variances, too, and can give tighter bounds than Hoeffding.

# Benett's inequality (1962)

$$X_{1}, ..., X_{n} \text{ indep.}$$

$$\mathbb{E}X_{i} = 0$$

$$|X_{i}| \leq a$$

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} Var(X_{i})$$

$$h(u) \doteq (1+u) \log(1+u) - u, \quad u \geq 0$$

$$\Rightarrow \mathbb{P}(\sum_{i=1}^{n} X_{i} > t) \leq \exp\left(-\frac{n\sigma^{2}}{a^{2}}h\left(\frac{at}{n\sigma^{2}}\right)\right)$$

Benett's inequality  $\Rightarrow$  Bernstein's inequality.

Proof:  

$$h(u) \ge \frac{u^2}{2 + 2u/3}$$
  $t = n\varepsilon$   $n\sigma^2 h\left(\frac{n\varepsilon}{n\sigma^2}\right) \ge ... \ge \frac{n\varepsilon^2}{2\sigma^2 + \frac{2}{3}\varepsilon}$ 

## McDiarmid's Bounded Difference Inequality

Suppose  $X_1, X_2, \ldots, X_n$  are independent and assume that

$$\sup_{x_1, x_2, \dots, x_n, \hat{x}_i} |f(x_1, x_2, \dots, x_n) - f(x_1, x_2, \dots, x_{i-1}, \hat{x}_i, x_{i+1}, \dots, x_n)| \le c_i$$
  
for  $1 < i < n$ 

(In other words, replacing the *i*-th coordinate  $x_i$  by some other value changes the value of f by at most  $c_i$ .)

#### It follows that

$$\Pr\left\{f(X_1, X_2, \dots, X_n) - E[f(X_1, X_2, \dots, X_n)] \ge \varepsilon\right\} \le \exp\left(-\frac{2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right)$$
$$\Pr\left\{E[f(X_1, X_2, \dots, X_n)] - f(X_1, X_2, \dots, X_n) \ge \varepsilon\right\} \le \exp\left(-\frac{2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right)$$
$$\Pr\left\{|E[f(X_1, X_2, \dots, X_n)] - f(X_1, X_2, \dots, X_n)| \ge \varepsilon\right\} \le 2\exp\left(-\frac{2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right).$$

## Further Readings on Tail bounds

http://en.wikipedia.org/wiki/Hoeffding's\_inequality

http://en.wikipedia.org/wiki/Doob\_martingale (McDiarmid)

http://en.wikipedia.org/wiki/Bennett%27s\_inequality

http://en.wikipedia.org/wiki/Markov%27s\_inequality

http://en.wikipedia.org/wiki/Chebyshev%27s\_inequality

http://en.wikipedia.org/wiki/Bernstein\_inequalities\_(probability\_theory)

# Limit Distribution?

# **Central Limit Theorem**

Let 
$$X_1, \ldots, X_n$$
 be i.i.d  $E[X_i] = \mu$  and  $Var[X_i] = \sigma^2$   
LLN:  $\frac{X_1 + \ldots + X_n}{n} - \mu \xrightarrow{a.s.} 0$ 

Lindeberg-Lévi CLT:  $X_1, \ldots, X_n$  i.i.d,  $E[X_i] = \mu$ , and  $Var[X_i] = \sigma^2$ .  $\Rightarrow \sqrt{n} \left( \frac{X_1 + \ldots + X_n}{n} - \mu \right) \xrightarrow{D} \mathcal{N}(0, \sigma^2)$ 

Lyapunov CLT:  $E[X_i] = \mu_i, \ Var[X_i] = \sigma_i^2, \ s_n^2 = \sum_{i=1}^n \sigma_i^2.$ + some other conditions  $\Rightarrow \frac{1}{s_n} \left( \sum_{i=1}^n X_i - \mu_i \right) \xrightarrow{D} \mathcal{N}(0, \sigma^2)$ 

Generalizations: multi dim, time processes



## **Central Limit Theorem in Practice**



# Proof of CLT

Let 
$$\mathbb{E}[Y] = 0$$
, and  $Var(Y) = 1$ . From Taylor series around 0:  
 $\exp(ity) = 1 + ity + \frac{i^2}{2}t^2y^2 + o(|t|^2)$   
 $\Rightarrow \varphi_Y(t) = \mathbb{E}[\exp(itY)] = 1 - \frac{t^2}{2} + o(t^2), \quad t \to 0$ 

Let 
$$Y_i = \frac{X_i - \mu}{\sigma}$$
 and let  $Z_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{X_i - \mu_i}{\sigma} = \frac{1}{\sqrt{n}} \sum_{i=1}^n Y_i$   $\mathbb{E}[Y_i] = 0$   
 $Var(Y_i) = 1$ 

Properties of characteristic functions :

 $\varphi_{\frac{1}{\sqrt{n}}Z}(t) = \varphi_Z(\frac{t}{\sqrt{n}})$  and  $\varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t)$  if  $X \perp Y$ .

$$\Rightarrow \varphi_{Z_n}(t) = \prod_{i=1}^n \varphi_{Y_i}\left(\frac{t}{\sqrt{n}}\right) = \left[1 - \frac{t^2}{2n} + o\left(\frac{t^2}{n}\right)\right]^n \to e^{-t^2/2}, \quad n \to \infty$$

Levi's continuity theorem + uniqueness  $\Rightarrow$  CLT

characteristic function of Gauss distribution

# How fast do we converge to Gauss distribution?

**CLT:** 
$$\sqrt{n} \left( \frac{X_1 + \dots + X_n}{n} - \mu \right) \xrightarrow{D} \mathcal{N}(0, \sigma^2)$$

It doesn't tell us anything about the convergence rate.

Berry-Esseen Theorem Let  $X_1, \ldots, X_n$  be i.i.d.  $\mathbb{E}[X_1] = \mu, \mathbb{E}[X_1^2] = \sigma^2 \mathbb{E}[|X_1|^3] = \rho < \infty$ Let  $Z_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{X_i - \mu_i}{\sigma}$  $F_n$  is the cdf of  $Z_n$   $\Phi(x)$  is the cdf of  $\mathcal{N}(0, 1)$ .

Then  $\exists C > 0$  such that for all x and n,  $|F_n(x) - \Phi(x)| \leq \frac{C\rho}{\sigma^3 \sqrt{n}}$ .

Independently discovered by A. C. Berry (in 1941) and C.-G. Esseen (1942)

Cumulative probability

1.0-

0.8

0.6

# Did we answer the questions we asked?

- Do empirical averages converge?
- What do we mean on convergence?
- What is the rate of convergence?
- What is the limit distrib. of "standardized" averages?

#### Next time we will continue with these questions:

How good are the ML algorithms on unknown test sets?
How many training samples do we need to achieve small error?
What is the smallest possible error we can achieve?

### Further Readings on CLT

- <u>http://en.wikipedia.org/wiki/Central\_limit\_theorem</u>
- http://en.wikipedia.org/wiki/Law\_of\_the\_iterated\_logarithm

# Tail bounds in practice



# A/B testing

- Two possible webpage layouts
- Which layout is better?

Experiment

- Some users see A
- The others see design B



How many trials do we need to decide which page attracts more clicks?

# A/B testing

Let us simplify this question a bit:

Assume that in group A p(click|A) = 0.10 click and p(noclick|A) = 0.90

Assume that in group B p(click|B) = 0.11 click and p(noclick|B) = 0.89

Assume also that we *know* these probabilities in group A, but we *don't know* yet them in group B.

We want to estimate p(click|B) with less than 0.01 error

# **Chebyshev Inequality**

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i \qquad X_i = \begin{cases} 1 & \text{click} \\ 0 & \text{no click} \end{cases}$$
  
Chebyshev: 
$$\Pr(|\hat{\mu}_n - \mu| \ge \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2}.$$

- In group B the click probability is  $\mu = 0.11$  (we don't know this yet)
- Want failure probability of  $\delta$ =5%

• If we have no prior knowledge, we can only bound the variance by  $\sigma^2 = 0.25$  (Uniform distribution hast the largest variance 0.25)

$$\Pr(|\hat{\mu}_n - \mu| \ge \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2} < \delta \implies \frac{\sigma^2}{\delta\varepsilon^2} < n \implies \frac{0.25}{0.05 \cdot 0.01^2} = 50,000 < n$$

• If we know that the click probability is < 0.15, then we can bound  $\sigma^2$  at 0.15 \* 0.85 = 0.1275. This requires at least 25,500 users.

# Hoeffding's bound

• Hoeffding Let 
$$c^2 = \frac{1}{n} \sum_{i=1}^{n} (b_i - a_i)^2$$
  
 $\Rightarrow \Pr(|\hat{\mu}_n - \mu| > \varepsilon) \le 2 \exp\left(\frac{-2n\varepsilon^2}{c^2}\right)$ 

- Random variable has bounded range [0, 1] (click or no click), hence c=1
- Solve Hoeffding's inequality for *n*:

$$2\exp\left(\frac{-2n\varepsilon^2}{c^2}\right) \le \delta \quad \Rightarrow \left(\frac{-2n\varepsilon^2}{c^2}\right) \le \log(\delta/2) \Rightarrow -2n\varepsilon^2 \le c^2\log(\delta/2)$$
$$\Rightarrow n > \frac{c^2\log(2/\delta)}{2\varepsilon^2} = 1 \cdot \frac{\log(2/0.05)}{2\cdot 0.01^2} = 18,445$$

This is better than Chebyshev.

# Thanks for your attention ③