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Motivation 
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What have we seen so far? 
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Several algorithms that seem to work fine on  training datasets: 
• Linear regression 
• Naïve Bayes classifier 
• Perceptron classifier 
• Support Vector Machines for regression and classification 

How good are these algorithms on unknown test sets? 
How many training samples do we need to achieve small error? 
What is the smallest possible error we can achieve? 

) Learning Theory 
To answer these questions, we will need a few powerful tools 



Basic Estimation Theory 
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Rolling a Dice,  
Estimation of parameters θ1,θ2,…,θ6 
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Does the MLE estimation converge to the right value? 
How fast does it converge? 
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Rolling a Dice  
Calculating the Empirical Average  

Does the empirical average converge to the true mean?  
How fast does it converge? 



5 sample traces 
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How fast do they converge? 

Rolling a Dice,  
 Calculating the Empirical Average  



Key Questions 

I want to know the coin parameter θ2[0,1] within ε = 0.1 
error, with probability at least 1-δ = 0.95.  
How many flips do I need? 
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• Do empirical averages converge? 
• Does the MLE converge in the dice rolling problem? 
• What do we mean on convergence?  
• What is the rate of convergence?  

Applications:  
• drug testing (Does this drug modifies the average blood pressure?)  
• user interface design (We will see later) 



Outline 
Theory: 
• Stochastic Convergences: 

– Weak convergence = Convergence in distribution  
– Convergence in probability  
– Strong (almost surely) 
–  Convergence in Lp norm 
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• Limit theorems: 
– Law of large numbers  
– Central limit theorem  

• Tail bounds: 
– Markov, Chebyshev 



Stochastic convergence 
definitions and properties 
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Convergence of vectors 
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Convergence in Distribution = 
 Convergence Weakly = Convergence in Law 
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Notation: 

Let {Z, Z1, Z2, …} be a sequence of random variables. 

Definition: 

This is the “weakest” convergence. 



Only the distribution functions converge!  
(NOT the values of the random variables) 
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Convergence in Distribution = 
 Convergence Weakly = Convergence in Law 
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Continuity is important! 

Proof: 

The limit random variable is constant 0: 

Example: 

In this example the limit Z is discrete, not random (constant 0),  
although Zn is a continuous random variable. 
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Convergence in Distribution = 
 Convergence Weakly = Convergence in Law 



This image cannot currently be displayed.
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Properties 

Scheffe's theorem: 
convergence of the probability density functions ) convergence in distribution 

Example: 
(Central Limit Theorem) 

Zn and Z can still be independent even if their distributions are the same! 

Convergence in Distribution = 
 Convergence Weakly = Convergence in Law 



Convergence in Probability 
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Notation: 
Definition: 

This indeed measures how far the values of Zn(ω) and Z(ω) are from each other. 



Almost Surely Convergence 
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Notation: 
Definition: 



Convergence in p-th mean, Lp norm 

Definition: 
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Notation: 

Properties: 



Counter Examples 
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Further Readings on  
Stochastic convergence 

•http://en.wikipedia.org/wiki/Convergence_of_random_variables  
 

•Patrick Billingsley: Probability and Measure 
 

•Patrick Billingsley: Convergence of Probability Measures 
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http://en.wikipedia.org/wiki/Convergence_of_random_variables


Finite sample tail 
bounds 

Useful tools!  
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This image cannot currently be displayed.

Gauss Markov inequality 

Decompose the expectation 

If X is any nonnegative random variable and a > 0, then 

Proof: 

Corollary: Chebyshev's inequality 
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Chebyshev inequality 
If X is any nonnegative random variable and a > 0, then 

Proof: 

Here Var(X) is the variance of X, defined as: 
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This image cannot currently be displayed.

Generalizations of  
Chebyshev's inequality 

Chebyshev:  

Asymmetric two-sided case (X is asymmetric distribution) 

Symmetric two-sided case (X is symmetric distribution)  

This is equivalent to this: 

There are lots of other generalizations, for example multivariate X. 
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Higher moments? 

Chebyshev: 

Markov: 

Higher moments: 
where n ≥ 1 

Other functions instead of polynomials? 
Exp function: 

Proof: (Markov ineq.) 

25 



Law of Large Numbers 
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Do empirical averages converge? 
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 Answer: Yes, they do. (Law of large numbers) 

Chebyshev’s inequality is good enough to study the question:  
Do the empirical averages converge to the true mean? 



Law of Large Numbers 
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Strong Law of Large Numbers: 

Weak Law of Large Numbers: 



Weak Law of Large Numbers 
Proof I: 

Assume finite variance. (Not very important) 

Therefore, 

As n approaches infinity, this expression approaches 1. 
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What we have learned today 
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Theory: 
• Stochastic Convergences: 

– Weak convergence = Convergence in distribution  
– Convergence in probability  
– Strong (almost surely) 
–  Convergence in Lp norm 

 
• Limit theorems: 

– Law of large numbers  
– Central limit theorem  

• Tail bounds: 
– Markov, Chebyshev 



Thanks for your attention  
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