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What have we seen so far?

Several algorithms that seem to work fine on training datasets:

* Linear regression

 Nalve Bayes classifier

e Perceptron classifier

« Support Vector Machines for regression and classification

= Learning Theory

To answer these questions, we will need a few powerful tools
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Basic Estimation Theory




Rolling a Dice,
Estlmatlon of parameters 0,,0,,...,0,4

’l \

| ™




Rolling a Dice
Calculating the Empirical Average




Rolling a Dice,

Calculating the Empirical Average
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How fast do they converge? -



Key Questions

Do empirical averages converge?

e Does the MLE converge in the dice rolling problem?
 What do we mean on convergence?

 What is the rate of convergence?

Applications:
. drug testing (Does this drug modifies the average blood pressure?)
 User interface design (We wil see later)



Outline

Theory:

e Stochastic Convergences:
— Weak convergence = Convergence in distribution
— Convergence in probability
— Strong (almost surely)
— Convergence Iin L, norm

e Limit theorems:

— Law of large numbers
— Central limit theorem

 Tail bounds:
— Markov, Chebyshev




Stochastic convergence

definitions and properties



Convergence of vectors

In R" the Z,, — Z convergence definition is easy:

For each € > 0O, there exists a N > 0O treshold number such that,
for every n > N, we have |Z, — Z| < e.
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What do we mean on the convergence of random variables Z,, — 77
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Convergence In Distribution =
Convergence Weakly = Convergence In Law

Let {Z, Z,, Z,, ...} be a sequence of random variables.
F, and F' are the cumulative distribution functions of Z, and Z.

Notation: 5 4 5 , D 5 , L 7 gz 4 r

Tn o~ 2y Zn= 2, L(Zn) — L(Z), Fn—F

Definition:

im Fh(z) = F(z), Vz € R at which F' is continuous

n—oo

This Is the “weakest” convergence.
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Convergence In Distribution =
Convergence Weakly = Convergence in Law

Zn(w) can be very different of Z(w)
Random variable Z,, can be independent of random variable Z.




Convergence In Distribution =
Convergence Weakly = Convergence in Law

Continuity Is important!

In this example the limit Z is discrete, not random (constant 0),
although Z, is a continuous random variable.




Convergence In Distribution =
Convergence Weakly = Convergence in Law

Example: X, ~U[-1,1].
(Central Limit Theorem) 1

Znﬁzm_/\/'(ojl) T




Convergence In Probabllity

1Z1(w) — Z(w)]

N\ Zo(w) — Z(w)]
‘f % 1Z3(w) — Z(w)]

/o

{w:]Z3(w) = Z(w)| > €}

This iIndeed measures how far the values of Z,(») and Z(w) are from each other. .



Almost Surely Convergence




Convergence In p-th mean, L, norm
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Further Readings on
Stochastic convergence

*http://en.wikipedia.org/wiki/Convergence of random variables

Patrick Billingsley: Probability and Measure

Patrick Billingsley: Convergence of Probability Measures
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http://en.wikipedia.org/wiki/Convergence_of_random_variables

Finite sample tall

bounds

Useful tools!




Gauss Markov inequality

Corollary: Chebyshev's inequality



Chebyshev inequality

Here Var(X) Is the variance of X, defined as:

Var(X) = E[(X — E[X])?]




Generalizations of
Chebyshev's inequalit

This is equivalentto this: Pr(—a<X —p<a)>1-92

a

Symmetric two-sided case (X Is symmetric distribution)
Ao?

Pr(ki < X <ko)>1
(ko — k1)

Asymmetric two-sided case (X is asymmetric distribution)
4[(p = k1) (ko — p) — 0]
(ko — k1)?

Pr(ki < X <k»o) >

There are lots of other generalizations, for example multivariate X.
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Higher moments?




Law of Large Numbers




Do empirical averages converge?

Answer: Yes, they do. (Law of large numbers)



Law of Large Numbers

X1,...,Xp i.i.d. random variables with mean u = E[X]]

Empiricial average: ji, = —23_1




Weak Law of Large Numbers

Proof I

2
Using Chebyshev's inequality on fin results in Pr(|jin — u| > &) < ——.
ne

Therefore, 52

Priin —pl <e) =1—-Pr(lgn —pl2¢e) 21 - —.
ne

As n approaches infinity, this expression approaches 1.

~ P
= Un — U for n — o0.

29



Theory:

e Stochastic Convergences:
— Weak convergence = Convergence in distribution
— Convergence in probability
— Strong (almost surely)

— Convergence Iin L, norm

e Limit theorems:
— Law of large numbers
— Central limit theorem

e Tall bounds:
— Markov, Chebyshev




Thanks for your attention ©
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