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Data: X1, ...,Xn

Estimate: θ̂ = θ̂(X1, ...,Xn)

How good is this estimator θ̂?
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Suppose the true parameter is θ, we need to quantify how far is
θ̂ from θ.

Squared error loss: L(θ, θ̂) = (θ − θ̂)2

Absolute error loss/L-1 loss: L(θ, θ̂) = |θ − θ̂|
L-p loss: L(θ, θ̂) = |θ − θ̂|p

Zero-one loss: L(θ, θ̂) = I(θ = θ̂)

Large deviation loss: L(θ, θ̂) = I(|θ − θ̂| > c)

KL loss: L(θ, θ̂) =
∫

log(p(x ;θ)
p(x ;θ̂)

)p(x ; θ)dx
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If θ = (θ1, ..., θk ) is a vector, then some common loss functions
are:

Squared error loss: L(θ, θ̂) = ||θ − θ̂||2 =
∑k

j=1(θ̂j − θj)
2

L-p loss: L(θ, θ̂) = ||θ − θ̂||p = (
∑k

j=1 |θ̂j − θj |p)1/p
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Loss: examples

For classification, we usually want to predict Y ∈ {0,1}
based on some classifier h(x)

Zero-one loss: L(Y ,h(X )) = I(Y 6= h(X ))

For regression, we usually want to predict Y ∈ R based on
some regressor h(x)

Squared-error loss: L(Y ,h(X )) = (Y − h(X ))2
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The risk of an estimator θ̂ is:

R(θ, θ̂) = Eθ(L(θ, θ̂)) =

∫
L(θ, θ̂)p(x ; θ)dx

When the loss function is squared error, the risk is the MSE:

R(θ, θ̂) = Eθ(θ − θ̂)2 = Varθ(θ̂) + bias2
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MSE

Bias = Eθ(θ̂)− θ
Variance=Varθ(θ̂) = Eθ(θ̂ − Eθ(θ̂))2

The bias-variance decomposition of MSE:

Eθ(θ − θ̂)2 = Eθ(θ − Eθ(θ̂) + Eθ(θ̂)− θ̂)2

= Eθ(θ̂ − Eθ(θ̂))2 + (Eθ(θ̂)− θ)2

+ 2(Eθ(θ̂)− θ)Eθ(θ̂ − Eθ(θ̂))

= Varθ(θ̂) + bias2

Risk Minimization, Learning theory



Risk Minimization
Learning theory

Gaussian Process

Loss
Risk

Bias-Variance Decomposition

An estimator is unbiased if the bias is 0. Then MSE=Var.
Usually there is a tradeoff between bias and variance.
Low bias can imply high variance and vice versa.
Underfitting: high bias, low variance
Overfitting: low bias, high variance
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MSE example

Suppose X1, ...,Xn ∼ N(µ, σ2).
Estimate µ, σ2 using X̄ = 1

n
∑

Xi ,S2 = 1
n−1

∑
(Xi − X̄ )2.

X̄ is unbiased, since E(X̄ ) = µ.

Hence MSE=Var(X̄ ) = E(X̄ − µ)2 = σ2

n

S2 is also unbiased, since E(S2) = σ2.

Hence MSE=Var(S2) = E(S2 − σ2)2 = 2σ4

n−1
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Examples

Empirical cdf
Fn(t) = 1

n

∑
I(Xi ≤ t)

P(|Fn(t)− F (t)| > ε) ≤ 2e−2nε2

P(supt |Fn(t)− F (t)| > ε) ≤?

Classification
R(h) = P(Y 6= h(X )),Rn(h) = 1

n

∑
I(Yi 6= h(Xi ))

P(|Rn(h)− R(h)| > ε) ≤ 2e−2nε2

P(suph |Rn(h)− R(h)| > ε) ≤?
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Uniform Bounds

Why do we care about this?
R(h) = P(Y 6= h(X )),Rn(h) = 1

n
∑

I(Yi 6= h(Xi))

P(suph |Rn(h)− R(h)| > ε) ≤?

If it holds, we can say something nice about the training
procedure in Machine Learning.
In supervised learning we usually minimize the training error:

Rn(h) =
1
n

∑
I(Yi 6= h(Xi))

Suppose we get ĥ that minimizes Rn(h).
How can we expect it performs well on the test data, i.e., how
small is R(h) = P(Y 6= h(X ))?
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Uniform Bounds

Let h∗ be the function that minimize the true error R(h).
If the following holds:

P(sup
h
|Rn(h)− R(h)| > ε) ≤ something small

Then with high probability,

R(ĥ) ≤ Rn(ĥ) + ε ≤ Rn(h∗) + ε ≤ R(h∗) + 2ε

So we know if we minimize the training error, the smallest true
error will only be 2ε away from the test error using our trained
model.
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Finite classes

Union bound P(A1 ∪ ... ∪ AN) ≤
∑N

i=1 P(Ai)

Uniform Bounds
Suppose max1≤j≤N supx |fj(x)| ≤ B

P(sup
f
|Pn(f )− P(f )| > ε) = P(A1 ∪ ... ∪ AN) ≤

N∑
i=1

P(Ai)

≤
N∑

i=1

2e−nε2/(2B2)

= 2Ne−nε2/(2B2)
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Infinite classes: Shattering

Let A be a class of sets, F = {x1, ..., xn}. Let G be a subset of
F . Say that A picks out G if A ∩ F = G.
Let s(A,F ) be the number of subsets picked out by A.
Examples: A = {(a,b) : a ≤ b}.

F = {1,2,3}. Then A can pick out:

∅, {1}, {2}, {3}, {1,2}, {2,3}, {1,2,3}

s(A,F ) = 7.
F = {1,2} Then A can pick out:

∅, {1}, {2}, {1,2}

s(A,F ) = 4.
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Infinite classes: Shattering

n is the number of points in F .
Obviously, s(A,F ) ≤ 2n.
F is shattered if s(A,F ) = 2n.
Shatter coefficient: sn(A) = supF∈Fn

s(A,F ).
Still sn(A) ≤ 2n.
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Let A be a class of sets. Then

P(sup
A∈A
|Pn(A)− P(A)| > ε) ≤ 8sn(A)e−nε2/32

How large is sn(A)?
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VC dimension

The VC dimension is:

d = d(A) = largest n such that sn(A) = 2n

d is the size of the largest set that can be shattered. Hence
For n ≤ d , sn(A) = 2n

For n > d , sn(A) ≤ 2n

But for n > d , how does sn(A) behave?
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Sauer’s Theorem

Suppose A has finite VC dimension d . Then for all n > d ,

s(A,n) ≤ (n + 1)d

So now we can conclude:

P(sup
A∈A
|Pn(A)− P(A)| > ε) ≤ 8(n + 1)de−nε2/32
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VC dimension: examples

Intevals [a,b] on the real line: d = 2
Halfspace in R2: d = 3
Discs in R2: d = 3
Convex polygons in R2: d =∞
sin(πax) for a ∈ R: d =∞

Exercise: What is the VC dimension for {a} ∪ [b, c] ∪ {d}?
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Conditional Gaussian

if x1,x2 is jointly Gaussian, i.e.,

p(

[
x1
x2

]
| µ,Σ) = N (

[
x1
x2

]
|
[
µ1
µ2

]
,

[
Σ11 Σ12
Σ21 Σ22

]
)

The conditional distribution is also Gaussian:

p(x1|x2) = N (x1|m1|2,V1|2)

m1|2 = µ1 + Σ12Σ−1
22 (x2 − µ2), V1|2 = Σ11 − Σ12Σ−1

22 Σ21.
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Gaussian Process Regression

The joint Gaussian is:[
y
y∗

]
∼ N (

[
µ1
µ2

]
,

[
K K∗

K>∗ K∗∗

]
)

Then

y∗|y ∼ N (µ2 + K>∗ K−1(y − u1),K∗∗ − K>∗ K−1K∗)

where

K (x , x ′) = σ2
f [exp{−(x − x ′)2

2σ2 }] + σ2
nδ(x , x ′)
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Gaussian Process Classification

We recieve x1, ..., xn, but yi ∈ {−1,1}.
Can we assume[

y
y∗

]
∼ N (

[
µ1
µ2

]
,

[
K K∗

K>∗ K∗∗

]
)

If not, how can we connect this with previous results in
regression?
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Solution: We assume doing regression for {x1, t1}, ..., {xn, tn},
where ti ∈ R. Now we add a model from ti to yi :

p(yi |ti) =
1

1 + e−ti yi

We can still assume that: t ∼ N (µ,K )
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Solution: We observe xi , yi , i = 1, ...,n, and we want to
maximize

p(t |y , x) ∝ p(t |x)p(y |t)

∝ p(t |x)
∏

i

p(yi |ti)

∝ exp{−1
2

t>K−1t}
∏

i

1
1 + e−ti yi

Equivalently we maximize:

log p(t |y , x) = −1
2

t>K−1t −
∑

i

log(1 + e−ti yi )
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Solution:
min

t

1
2

t>K−1t +
∑

i

log(1 + e−ti yi )

We get t , which is continuous. For a new point x∗, we can first
do regression:[

t
t∗

]
∼ N (

[
µ1
µ2

]
,

[
K K∗

K>∗ K∗∗

]
)

t∗|t ∼ N (µ2 + K>∗ K−1(y − u1),K∗∗ − K>∗ K−1K∗)

After we get t∗, we can predict y∗ using

p(y∗|t∗) =
1

1 + e−y∗t∗
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