Risk Minimization, Learning theory

Xuezhi Wang

Computer Science Department
Carnegie Mellon University

10701-recitation, Mar 5

Risk Minimization, Learning theory



Outline

@ Risk Minimization
@ Loss
@ Risk

e Learning theory
@ From Empirical to truth
@ VC dimension

e Gaussian Process

@ Gaussian Process Regression
@ Gaussian Process Classification

Risk Minimization, Learning theory



Risk Minimization
Loss

Risk

Outline

@ Risk Minimization
@ Loss

Risk Minimization, Learning theory



Risk Minimization

Loss
Risk

e Data: Xj,..., Xj
@ Estimate: = 4(Xi, ..., Xn)
@ How good is this estimator §?
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Risk Minimization

Loss
Risk

§uppose the true parameter is 8, we need to quantify how far is
6 from 6.

@ Squared error loss: L(0,0) = (0 — §)?

@ Absolute error loss/L-1 loss: L(6,0) = |0 — 4|

@ L-ploss: L(0,0) = |0 — d|P

@ Zero-one loss: L(0,0) = I(6 = f)

@ Large deviation loss: L(6,8) = I(|0 — 0] > ¢)

@ KL loss: L(6,8) = [log( ig))p(x; 0)dx

~
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Loss
Risk

If = (64, ..., 0k) is a vector, then some common loss functions
are:

@ Squared error loss: L(0,0) = |10 — 8|2 = ), (9 — 6))2
o L-ploss: L(0,0) = |0 —0]|p = () 10 — 0,1P)1/P
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Risk

Loss: examples

@ For classification, we usually want to predict Y € {0,1}
based on some classifier h(x)
e Zero-one loss: L(Y, h(X)) = I(Y # h(X))
@ For regression, we usually want to predict Y € R based on
some regressor h(x)
e Squared-error loss: L(Y, h(X)) = (Y — h(X))?
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Risk Minimization

Loss
Risk

The risk of an estimator 4 is:
R(0,0) = E,(L(0,0)) = / L(8,0)p(x; 6)dx

When the loss function is squared error, the risk is the MSE:

R(6,0) = Ep(0 — 0)? = Vary(0) + bias?
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Loss
Risk

~

@ Bias = Ey(0) — 0
@ Variance=Var,(0) = Ep(0 — Es(9))?
The bias-variance decomposition of MSE:

A

Eo(0 — 0)2 = Eq(0 — Eo(0) + Eo(0) — 0)
= E5(0 — Ey(9))? + (Eo() — )2
+2(Ey(0) — 0)Eq(0 — Eo(0))
— Vary(f) + bias?
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Loss
Risk

Bias-Variance Decomposition

-
_—

Y

@ An estimator is unbiased if the bias is 0. Then MSE=Var.
@ Usually there is a tradeoff between bias and variance.

@ Low bias can imply high variance and vice versa.

@ Underfitting: high bias, low variance

@ Overfitting: low bias, high variance
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MSE example

Suppose X, ..., Xp ~ N(p, 0?).

Estimate ., 02 using X = 1 3~ X;, 82 = 1 57(X; — X)2.
@ X is unbiased, since E(X) = .
o Hence MSE=Var(X) = E(X — u)2 = 2
e S?is also unbiased, since E(S?) = o2.
@ Hence MSE=Var(8?) = E(S? — 02)2 = 22
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Learning theory VC dimension

Examples

@ Empirical cdf
o Fa(t) =2 I(Xi < 1)
o P(|Fy(t) — F(t)| > €) < 2e72n¢
o P(sup; |Fa(t) — F(t)| > €) <?
@ Classification
o R(h) = P(Y # h(X)), Ra(h) = 1 S I(Y; # h(X;))
° P(‘Rn(h) - Fl,(h)‘ > E) g 2e—2n52
o P(sup,|Ra(h) — R(h)| > €) <?
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Learning theory VC dimension

Uniform Bounds

Why do we care about this?
o RA(h) = P(Y # h(X)), Ra(h) = 1 S I(Y; # h(X}))
® P(sups|Rn(h) — R(h)| > €) <7
If it holds, we can say something nice about the training

procedure in Machine Learning.
In supervised learning we usually minimize the training error:

1
=D I(Yi # h(X)

Suppose we get h that minimizes R,(h).
How can we expect it performs well on the test data, i.e., how

small is R(h) = P(Y # h(X))?
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Uniform Bounds

Let h. be the function that minimize the true error R(h).
If the following holds:

P(sup |Rn(h) — R(h)| > €) < something small
h

Then with high probability,
R(h) < Rp(h) + € < Ra(h,) + € < R(h,) + 2¢

So we know if we minimize the training error, the smallest true
error will only be 2¢ away from the test error using our trained
model.
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Finite classes

@ Union bound P(A; U...UAN) < SN, P(A)
@ Uniform Bounds
Suppose maxq<j<n sup, |fi(x)| < B

N

P(sup|Py(f) — P(f)] > €) = P(Aj U...UAy) < Y _ P(A)
f =1
N
< Zze—nez/(ZBz)
i=1

— 2Nefn62/(232)
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Infinite classes: Shattering

Let A be a class of sets, F = {x1, ..., Xn}. Let G be a subset of
F. Say that Apicksout Gif AN F = G.
Let s(A, F) be the number of subsets picked out by A.
Examples: A= {(a,b) : a < b}.

e F={1,2,3}. Then A can pick out:

0.{1}.{2},{3},{1,2},{2,3},{1,2,3}
s(AF)=17.
@ F ={1,2} Then A can pick out:
0.{1}.{2},{1,2}

S(A, F) = 4.
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Infinite classes: Shattering

nis the number of points in F.
@ Obviously, s(A, F) < 2"
@ Fis shattered if s(A, F) = 2".
@ Shatter coefficient: s,(A) = supg. 7, S(A, F).
@ Still sp(A) < 2"
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Infinite classes: Shattering

Let A be a class of sets. Then

P(sup |Pa(A) — P(A)| > ¢) < 8sp(A)e /32
Ac A

How large is sp(A)?
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VC dimension

The VC dimension is:
d = d(A) = largest n such that s,(A) = 2"

d is the size of the largest set that can be shattered. Hence
@ Forn<d, sp(A) =2"
@ Forn>d, sp(A) <27

But for n > d, how does s;(.A) behave?

Risk Minimization, Learning theory



From Empirical to truth

Learning theory VC dimension

Sauer’s Theorem

Suppose A has finite VC dimension d. Then for all n > d,
s(A,n) < (n+1)4
So now we can conclude:

P(SUp |Pn(A) — P(A)‘ > 6) < 8(n+ 1)de—n52/32
AcA
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Learning theory VC dimension

VC dimension: examples

@ Intevals [a, b] on the real line: d = 2
@ Halfspace in R%: d = 3
@ DiscsinR?: d =3
@ Convex polygons in R?: d = oo
@ sin(rax)forac R: d = o
Exercise: What is the VC dimension for {a} U [b, c] U {d}?

Risk Minimization, Learning theory



Gaussian Process Regression

. Gaussian Process Classification
Gaussian Process

Outline

e Gaussian Process
@ Gaussian Process Regression

Risk Minimization, Learning theory



Gaussian Process Regression

. Gaussian Process Classification
Gaussian Process

Conditional Gaussian

if X1, Xz is jointly Gaussian, i.e.,
X1 X1 1 PRTIEDEP) ]
) Z — N )
P([XZ}W ) ([X2]|[M2} [221 Yoo )
The conditional distribution is also Gaussian:

p(x1[X2) = N(x1|my2, Vy2)

Myjp = i1 + L1235, (Xo — p12), Vg = Tqq — L1235, Lo
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Gaussian Process Regression

The joint Gaussian is:

AR R
Then
Yy ~ Nz + KTK Ny — th), Kew — KT KK,
where

Kix, x') = o2t~ X4 4 o25(x, x)

202
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Gaussian Process Classification

We recieve xi, ..., Xp, but y; € {—1,1}.

Can we assume
1 K K.
nrarl

-

If not, how can we connect this with previous results in
regression?
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Solution: We assume doing regression for {xq, t }, ..., {Xn, n},
where t; € R. Now we add a model from ¢; to y;:

1

p(yilt) = Tre

We can still assume that: t ~ NV (p, K)
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Gaussian Process Classification

Solution: We observe x;, y;,i = 1, ..., n, and we want to
maximize

p(tly, x) o< p(t[x)p(y|t)
o p(t|x) Hp(yf\ti)

1

1 _
i

Equivalently we maximize:

log p(tly, x) = —%fTKf1 t— Z log(1 + e*fi}/i)
i
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Solution: 1
; T pr—1 —ty;
min -t K~ 't + E log(1 + e~
in 21‘ t : og(1+ e ")

We get t, which is continuous. For a new point x*, we can first

do regression:
t A K K*
R

Blt ~ Npe + KK (y — ur), K = KTKTTKL)

After we get t*, we can predict y* using

kR) 1
PYIT) = g

Risk Minimization, Learning theory



	Risk Minimization
	Loss
	Risk

	Learning theory
	From Empirical to truth
	VC dimension

	Gaussian Process
	Gaussian Process Regression
	Gaussian Process Classification


