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Recitation 6: Kernel SVM 

SVM Revision. The Kernel Trick. 
Reproducing Kernels. Examples. 
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Main Source: F2009 10-701 course taught by Carlos Guestrin 
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SVM Primal 
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Find maximum margin hyper-plane 

Hard Margin 
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SVM Primal 

2/26/2013 3 Recitation 6: Kernels 

Find maximum margin hyper-plane 

Soft Margin 



Carnegie Mellon University 10-701 Machine Learning Spring 2013 

SVM Dual 
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Find maximum margin hyper-plane 

Dual for the hard margin SVM 
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SVM Dual 
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Find maximum margin hyper-plane 

Dual for the hard margin SVM 

Substituting α for w 

Presenter
Presentation Notes
Notice here that the points for which alpha is 0 are not going to change w.
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SVM Dual 
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Find maximum margin hyper-plane 

Dual for the hard margin SVM 

The constraints are active for the support vectors 
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SVM Dual 
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Find maximum margin hyper-plane 

Dual for the hard margin SVM 
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SVM – Computing w 
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Find maximum margin hyper-plane 

Dual for the hard margin SVM 
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SVM – Computing w 
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Find maximum margin hyper-plane 

Dual for the soft margin SVM 

only difference from 
the separable case 

Presenter
Presentation Notes
The intuition: in the separable case, if a constraint was violated that set the corresponding alpha to infinity. Here, alpha is caped at C.

If we were to only be interested in linear classifiers, we’d be basically done.
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SVM – the feature map 

2/26/2013 10 Recitation 6: Kernels 

Find maximum margin hyper-plane 

But data is not linearly separable  

We’ll apply a transformation 
to a high dimensional space 
where the data is linearly 
separable 

inputs 

feature map 
features 
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SVM – the feature map 
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Find maximum margin hyper-plane 

But data is not linearly separable  

We obtain a linear separator 
in the feature space. inputs 

feature map 
features 

!! 

is expensive to compute! 
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Introducing the kernel 
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We obtain a linear separator 
in the feature space. 

!! 

is expensive to compute! 

But we don’t have to! 

What we need is the dot product: 

Let’s call this a kernel 
- 2-variable function 
- can be written as a dot product 

The dual formulation no longer depends on w, only on a dot product! 



Carnegie Mellon University 10-701 Machine Learning Spring 2013 

Kernel SVM 
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The dual formulation no longer depends on w, only on a dot product! 

closed form 

This is the famous ‘kernel trick’. 
- never compute the feature map 
- learn using the closed form K 
- constant time for HD dot products 
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Kernel SVM –Run time 
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What happens when we need to classify some x0? 

Recall that w depends on α  

Our classifier for x0 uses w 

Presenter
Presentation Notes
Shouldn’t the fact the we apparently need w cause a problem?
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Kernel SVM –Run time 
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What happens when we need to classify some x0? 

Recall that w depends on α  

Our classifier for x0 uses w 

Who needs w 
when we’ve got 
dot products? 

Presenter
Presentation Notes
It would, if we actually needed it
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Kernel SVM Recap 
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Pick kernel 
 
Solve the optimization to get α 

Compute b using the support vectors 

Classify as 

Presenter
Presentation Notes
It would, if we actually needed it
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Other uses of Kernels in ML 

Logistic Regression 
http://books.nips.cc/papers/files/nips14/AA13.pdf 

Multiple Kernel Boosting 
http://siam.omnibooksonline.com/2011datamining/data/papers/146.pdf 

Trees and Kernels 
http://users.cecs.anu.edu.au/~williams/papers/P175.pdf 

Conditional Mean Embeddings 
http://arxiv.org/abs/1205.4656 
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More on Kernels 
Gram Matrix 

of a set of vectors  x1 … xn in the inner product space 
defined by the kernel K 
  

Reproducing Kernels 
Point evaluation function for a Hilbert sp. of functions 
 
Reproducing property 

2/26/2013 18 Recitation 6: Kernels 



Carnegie Mellon University 10-701 Machine Learning Spring 2013 

SVM Pop Quiz 
What’s the maximum number of Support 
Vectors for a linear classification problem? 

Hint: it’s related to a concept you’ve recently studied 
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1-d case 2-d case 
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SVM Pop Quiz 
What’s the worst case number of Support 
Vectors for a [linear] classification problem? 

Hint: it’s related to a concept you’ve recently studied 
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1-d case 2-d case 

A: it’s the same as the VC 
dimension of the classifier. 

Because we can’t have these 
as support vectors in 2D 
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K-SVM Pop Quiz 
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Here’s the result of training different kernels on this dataset 

    Linear     Quadratic Polynomial      RBF      

What happens when we translate the points up 
by a large constant  T on the vertical axis? 
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K-SVM Pop Quiz 
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Here’s the result of training different kernels on this dataset 

    Linear     Quadratic Polynomial      RBF      

What happens when we translate the points up 
by a large constant  T on the vertical axis? 

the bound retains relative 
position to points - it is 
shifted by 10 units 

the bound depends 
more on the y value, 
therefore the bound 
becomes more arched 

the value of the kernel is 
the same for each pair of 
points, so the bound retains 
position relative to points 
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Reminder: midterm is on Monday, feel free to ask 
questions about problems given in previous years 
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