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Regression Estimation

* Find function f minimizing regression error
R[f] c= E:c,ywp(az,y) [l(ya f(il?))]

 Compute empirical average
1 ™m
Remp[f] c = E Zl(yza f(aj’L))
1=1

Overfitting as we minimize empirical error

* Add regularization for capacity control

Rreeglf) == — 3" s, f(1)) + 20U]

1=1
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Squared loss
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Penalized least mean squares

e Optimization problem

] — A
miniumize % ;(yz — <$zaw>)2 T 5 HwH2
e Solution
1 m
aw — 1 ! Ly )‘
.. mZ[mmzw xy]+w
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Penalized least mean squares

... now with kernels

e Optimization problem

minimize — Z(yz — <¢(ﬂfi),’w>)2 T i H’LUHZ

w 2m 4
=1

* Representer Theorem (Kimeldorf & Wahba, 1971)

2 2 2
o) Jwll? = [l |* + |
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Penalized least mean squares

. now with kernels

* Optimization problem
AU A
HU2e 5 Z(yz‘ — (B(x;),w))” + 5

1=1
* Representer Theorem (Kimeldorf & Wahba, 1971)
e Optimal solution is in span of data  w = Za@(xz)

2
|w]|

* Proof - risk term only depends on data via * ¢(z;)
* Regularization ensures that orthogonal part is O

e Optimization problem in terms of w

mmhmlze — Z(yz Z Kzg%> + % Z oy Ky
5]

solve for a = (K + m)\l) y as linear system
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SVM Regression
(e-insensitive loss)

don’t care about deviations within the tube
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SVM Regression

(e-insensitive loss)

e Optimization Problem (as constrained QP)

! , m
) [ o . C ,Z: >.I<
mmu%uze ; |w]|” + i_g 1 &+ &

subject to (w,z;) +b<y; +e+& and & >0

(w, ;) +b=>y; —e—¢ and & =0
* Lagrange Function

1 m m
L=z llw|’+CY &+&1-) &+ &1+
1=1 1=1
Z&i[<w7$i> ol yi—é—fi]ﬂLzaf[%—E—fj—<waflfi>—b]
1=1 1=1
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SVM Regression

(e-insensitive loss)

e First order conditions
8wL:O:’lU—|—Z[OéZ—Oé;k]CIZ’Z

(9bL:O:Z[a7;—ozf;]

8&[1:0:0—77@'—04@'
85;L:O:C’—77§<—osz

* Dual problem
1
minimize 5(04 — o' Kla—a)+el'(a+a®)+y' (o —a*)

subject to 1" (v — *) = 0 and o, af € [0, C]
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Properties

* Ignores ‘typical’ instances with small error
* Only upper or lower bound active at any time
QP in 2n variables as cheap as SVM problem
* Robustness with respect to outliers

* |1 loss yields same problem without epsilon

* Huber’s robust loss yields similar problem but
with added quadratic penalty on coefficients

Carnegie Mellon University



Regression example

| |
sinc X + 81 —
sinc X - 0.1 -~
approximation -----

I N ° °
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Regression example

SIiNC X + 8% —
sing x - 0.2 -
approximation ----- -
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Regression example

SinC X -
approximation

sinlc X + 8? —

n University



Regression example

Support Vectors
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Huber’s robust loss

(y, f(z)) = {2(yf(f”)) 1 if [y — f(z)| < 1

y— f(z)] — % otherwise

trimmed mean
estimatior

~6 —4 -2 0 2 4 6 llon University
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Basic Idea

Data
Observations  (x;)
generated from

some P(z), e.g.,

® network usage
patterns

® handwritten digits

® alarm sensors

® factory status

Task
Find unusual events,
clean database, dis-
tinguish typical ex-
amples.
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Applications

Network Intrusion Detection
Detect whether someone is trying to hack the network,
downloading tons of MP3s, or doing anything else un-
usual on the network.
Jet Engine Failure Detection
You can’t destroy jet engines just to see how they falil.
Database Cleaning
We want to find out whether someone stored bogus in-
formation in a database (typos, etc.), mislabelled digits,
ugly digits, bad photographs in an electronic album.
Fraud Detection
Credit Cards, Telephone Bills, Medical Records
Self calibrating alarm devices
Car alarms (adjusts itself to where the car is parked),

home alarm (furniture, temperature, W|ndo&\ghe%lt&)euowmversﬁy




Novelty Detection via Density Estimation

Key Idea

® Novel data is one that we don’t see frequently.
® |t must lie in low density regions.

Step 1: Estimate density

® Observations z1, ..., z,,
® Density estimate via Parzen windows

Step 2: Thresholding the density

® Sort data according to density and use it for rejection
® Practical implementation: compute

1
Z-:—E i, xi) forall ¢
p(x;) m 2 k(x;,z;) for all ¢

and sort according to magnitude.
® Pick smallest p(x;) as novel points.

Carnegie Mellon University



Order Statistics of Densities

Unnormalized Density
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A better way

Problems

® We do not care about estimating the density properly
in regions of high density (waste of capacity).

® We only care about the relative density for threshold-
INg purposes.

® We want to eliminate a certain fraction of observations
and tune our estimator specifically for this fraction.

Solution

® Areas of low density can be approximated as the level

set of an auxiliary function. No need to estimate p(x)
directly — use proxy of p(x).

® Specifically: find f(x) such that x is novel if f(z) <

c where c is some constant, i.e. f(x) describes the

amount of novelty.
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Problems with density estimation

* Exponential Family for density estimation
p(z]0) = exp ((¢(x),0) — g(0))
* MAP estimation |
minimize » _ g(0) — (¢(z:),0) + 55 10]°
Advantages

® Convex optimization problem
® Concentration of measure

Problems

® Normalization ¢(6) may be painful to compute

® For density estimation we need no normalized p(x|0)

® No need to perform particularly well in high density
reg lons Carnegie Mellon University




Thresholding

A




Optimization Problem

Optimization Problem

m 1
MAP Z—logp(%‘w | QUQHHHQ

1=1

_ p(xi\ﬁ) > 1 2
Novelt max | — lo 0 )+ =0
y D (-t £ o) + 061

Zmax(p — (p(x;),0),0) + %H@HZ

Advantages

® No normalization ¢(#) needed

® No need to perform particularly well in high density
regions (estimator focuses on low-density regions)

® Quadratic program

Carnegie Mellon University



Maximum Distance Hyperplane

Idea Find hyperplane, given by f(z) = (w,x) + b = 0 that
has maximum distance from origin yet is still closer to
the origin than the observations.

Hard Margin
o 1
minimize §||w|\2
subjectto (w,x;) > 1

Soft Margin

S SR
minimize §HUJH +02§z
subjectto (w,x;) > 1— ¢,
& >0

Carnegie Mellon University




Optimization Problem

Primal Problem
minimize —HwH2 + C Z &

subjectto (w,z;) — 1 + 52 >0and ¢ > 0

Lagrange Function L

® Subtract constraints, multiplied by Lagrange multipli-
ers (o; and »n;), from Primal Objective Function.
® [ agrange function L has saddlepoint at optimum.

1 T m m
L = §||wH2 + CZ&—Z% ((w,z;) — 1+ &)—Zm&
1=1 1=1 1=1

SUbjeCt to a;,m; > 0.

Carnegie Mellon University



Dual Problem

Optimality Conditions

W — Zazxz—o — w—ZOzzxz

8§Z.L:C—cv@ =0 — q; € [O C’]

Now substitute the optimality conditions back into L.
Dual Problem

S R —
minimize 52 OéZ'Oéj<£E‘Z', ZIZj> — Z;Oéi
subjectto «; € |0,C]

All this Is only possible due to the convexity of the
primal problem.

Ow L

Carnegie Mellon University



Minimum enclosing ball

e Observations on

surface of ball

* Find minimum
enclosing ball

* Equivalent to
single class SYM

Carnegie Mellon University



Adaptive thresholds

Problem

® Depending on C, the number of novel points will vary.
® We would like to specify the fraction » beforehand.

Solution
Use hyperplane separating data from the origin

H = {z|(w,z) = p;

where the threshold p is adaptive.
Intuition

® L et the hyperplane shift by shifting p
® Adjust it such that the right’ number of observations is
considered novel.
® Do this automatically

Carnegie Mellon University



Optimization Problem

Primal Problem

1 dh
minimize inHQ + 2 & — mup
where (w,z;) —p+& >0
& =0

Dual Problem

T
minimize - 21 ;i (T, i)
Z:

where o; € [0,1] and | ) @, = vm.
1=1

Carnegie Mellon University



The v-property theorem

e Optimization problem
min}umize % lw|)? + ;fz — mup
subject to (w,xz;) > p—&; and & >0
e Solution satisfies
* At most a fraction of v points are novel
* At most a fraction of (1-v) points aren’t novel

* Fraction of points on boundary vanishes for
large m (for non-pathological kernels)

Carnegie Mellon University



Proof

* Move boundary at optimality

* For smaller threshold m. points on wrong side
of margin contribute s5(m_ — vm) <0

* For larger threshold m+ points not on ‘good’
side of margin yield

o(my —vm) >0

e Combining inequalities

* Margin set of measure O

Larnegie vielion University



Toy example

w X o—X oS
Joi: o

o X = © o)

o o

KX( S b ® © S o

4 o)

0] e} 9) o e}
o o o
o9 o : 00 o © o

o .;:’ b o
. | ‘
..--“‘ ..h ..l.__ i

v, width c 0.5, 0.5 0.5, 0.5 0.1, 0.5 0.5, 0.1
frac. SVs/OLs 0.54, 0.43 0.59, 0.47 0.24, 0.03 0.65, 0.38
margin p/||w|| 0.84 0.70 0.62 0.48

threshold and smoothness requirements

Carnegie Mellon University



Novelty detection for OCR

Q@API1THESTYES

=513 9 =507 1 =458 0 =377 1 —2627 —2162 —2003 —158569 —1795 —162 0

FFAVION (6

—1533 =143 6 =128 6 —123 0 =117 7 —93 — =58 T =52 —48 3

® Better estimates since we only optimize in low density
regions.

® Specifically tuned for small number of outliers.
® Only estimates of a level-set.
® For v =1 we get the Parzen-windows estimator back.

Carnegie Mellon University
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Selecting Variables
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Constrained Quadratic Program

e Optimization Problem

1
minimize iaTQoz + 1" o subject to Ca+b < 0

87

e Support Vector classification
* Support Vector regression
* Novelty detection
* Solving it
o Off the shelf solvers for small problems
* Solve sequence of subproblems

* Optimization in primal space (the w space)

Carnegie Mellon University






Subproblems

* Original optimization problem

1
minimize iaTQOz + 1" subject to Ca+b <0

87

* Key Idea - solve subproblems one at a time and
decompose into active and fixed set o = (a,,ay)

1
minimize 5041@&&&& + [lq + Qafaf]T g

subject to Cpa, + b+ Crayr] <0
e Subproblem is again a convex problem

e Updating subproblems is cheap

Carnegie Mellon University









: , a;, = 0=y, <U),CEZ> -+ b > 1
a; [y; [(w, z;) + b+ & —1] =0 0<a; <C=y;[(w,z;)+b] =
77@52 =0 o, = (C —= Yi <w,xz> T b <1

* Most violated margin condition
* Points on the boundary

° . . . . h t t
Points with nonzero Lagrange multiplier that are correc Carnegie Mellon University



Selecting variables

* Incrementally increase (chunking)
* Select promising subset of actives (SVMLight)
* Select pairs of variables (SMO)

]

I

T

Chunking

I

I - T L]

I [ ] {]
Osuna

[ [ ]

- {1

{1 ]

SMO

Carnegie Mellon University



Being smart about hardware

e Data flow from disk to CPU

Data Cached Data Parameter

O (Working Set)
N Reading Training i
DISk <_[ Thread ]_> RAM <_[ Thread ]_)IRAM

N—
Read Load Read Update
(Sequential (Random (Random
Access) Access) Access)
* 10 speeds System | Capacity | Bandwidth | IOPs
Disk 3TB | 150MB/s 10°
SSD 256GB | 500MB/s | 5-10°
RAM 16GB 30GB/s 10°
Cache 16MB 100GB/s 10°

Carnegie Mellon University



Being smart about hardware

e Data flow from disk to CPU

Data Cached Data Parameter

O (Working Set)
N Reading Training i
DISk <_[ Thread ]_> RAM <_[ Thread ]_)IRAM

N—
Read Load Read Update
(Sequential (Random (Random
Access) Access) Access)
* 10 speeds System | Capacity | Bandwidth | IOPs
Disk 3TB | 150MB/s 10°
SSD 256GB | 500MB/s | 5-10°
RAM 16GB 30GB/s 10°
Cache 16MB 100GB/s 10°
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10~

10— 11

Runtime Example
(Matsushima, Vishwanathan, Smola, 2012)

T
A

_|_

dna C' = 1.0
StreamSVM
SBM
BM

1 2 3

y Y

Carnegie Mellon University



Primal Space Methods
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Gradient Descent

* Assume we can optimize
in feature space directly

* Minimize regularized risk

l — Ao
Rlw| = — Zl(xi,yuw) + 5 vl

e Compute gradient ¢ = 9, R[w]
and update w + w — ~g
* This fails in narrow canyons

e Wasteful if we have lots of similar data

Carnegie Mellon University



Stochastic gradient descent

e Empirical risk as expectation
= U — (650, 0)) = Big,my [ 51— (8(0),0))

e Stochastic gradient descent (pick random x,y)
Wiy1 < Wy — Nty (Y, (O(T1), we))

e Often we require that parameters are restricted
to some convex set X, hence we project on it
Wiyl < T (W — NeOw (Yt (P(T4), wi))]
here mx (w) = argmin || — w||

reX
Carnegie Mellon University



 Classification
o Soft margin loss i(z,y, w) = max(0,1 -y (w, ¢(z)))
* Logistic loss (2, y,w) = log (1 + exp (—y (w, ¢(2))))

* Regression

e Quadratic loss (z,y,w) = (y — (w, ¢(2)))”

e |1 loss l(z,y,w) = |y — (w, p(x))

e H r'e | . w{%ig<y<w,¢<m>>2 if [y — (w, ¢(x)| <o
uber’s loss (OB =Ly~ w0 = 5 i y— (w,6(@)] > 0

* Novelty detection I(z,w)=max(0,1 - (w, ¢(z)))
... and many more

Carnegie Mellon University



Convergence in Expectation

1) = E(, [1(y, (3(2),6))] and I* = inf 1(A) and § = Y Ve
oY | 7 0c X ZZ;—()l "

* Proof
Show that parameters converge to minimum

0* € argminl(6) and set r; := ||0* — ;|
0cX

from Nesterov and Vial Carnegie Mellon University



2
hence E [frt 11—

e Summing over inequality for t proves claim

* This yields randomized algorithm for
minimizing objective functions (try log times
and pick the best / or average median trick)

Carnegie Mellon University



e Guarantee

R2+L2Zt 0 77t

E; [1(0)] — 1" <

252120
* If we know R, L, T pick constant learning rate
n = LfﬁT and hence Eg[l(0)] — I* < Rl ;\}%T]L < L—\/}%

* If we dont know T pick n =o0(2)
This costs us an additional log term

E[1(0)] - I* = O (1(;5;)

Carnegie Mellon University



Strong Convexity

1
1:(8') 2 1:(0) + (061i(6),0' — ) + S A1l6 — ')

* Use this to bound the expected deviation
repr <N lgell® — 2me (6, — 0%, g1)

< 7“? T 77752L2 = 2n [14(0e) — 1:(07)] — 2>\77t"°12c
hence E[ry, ] < (1 — Ah)E[r;] — 2n, [E[1(6;)] — U]

* Exponentially decaying averaging

0 =

1l —0

1 —ol

T —1
E : O_T—l—tet
t=0

and plugging this into the discrepancy yields

1(0)

o< 2%
=7 08

14

RT3

2L

2 ART:
forn = —log |14 X

)‘TCarnegie Melloz Jé’nivg




More variants

* Adversarial guarantees
Or+1 < 7o [0 — 100 (Yr, (P(24), 01))]
has low regret (average instantaneous cost) for
arbitrary orders (useful for game theory)

 Ratliff, Bagnell, Zinkevich
O(t"2) learning rate

* Shalev-Shwartz, Srebro, Singer (Pegasos)
O(t~') learning rate (but need constants)

e Bartlett, Rakhlin, Hazan
(add strong convexity penalty)

Carnegie Mellon University



Reqularization
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Problems with Kernels

Myth
Support Vectors work because they map data into a
high-dimensional feature space.
And your statistician (Bellmann) told you ...
The higher the dimensionality, the more data you need
Example: Density Estimation
Assuming data in [0, 1]™, 1000 observations in |0, 1| give
you on average 100 instances per bin (using binsize 0.1")
but only - instances in [0, 1]°.
Worrying Fact
Some kernels map into an infinite-dimensional space,
e.g., k(z, ') = exp(—5= ||z — 2'||?)
Encouraging Fact
SVMs work well in practice ...

Carnegie Mellon University



Solving the Mystery

The Truth is in the Margins
Maybe the maximum margin requirement is what saves
us when finding a classifier, i.e., we minimize ||w||*.
Risk Functional
Rewrite the optimization problems in a unified form

m

Rreg[f] — Z C(ZUZ', Yi, f(xz)) + Q[f]

1=1
c(x,y, f(x)) is aloss function and 2| f] is a regularizer.

® Q[f] = 5|lwl|* for linear functions.
® For classification c(x,y, f(x)) = max(0,1 — yf(x)).
® For regression c(z,y, f(x)) = max(0, |y — f(x)| — €).

Carnegie Mellon University



Typical SVM loss

\/\ /

Soft Margin Loss e-insensitive Loss

Carnegie Mellon University



Soft Margin Loss

Original Optimization Problem

w,§
subjectto y;f(x;) >1—-¢&and§ >0foralll <i<m

T T -
minimize - C ;
Sl + €3 e

Regularization Functional

A . w—
minimize §HwH + Zl max(0, 1 — y; f(z;))
® For fixed f, clearly & > max(0,1 — y; f(z;)).
® For £ > max(0,1 — y;f(x;)) we can decrease it such
that the bound is matched and improve the objective
function.

® Both methods are equivalent.

Carnegie Mellon University



Why Regularization?

What we really wanted ...
Find some f(z) such that the expected loss
Elc(x,y, f(x))] is small.
What we ended up doing ...
Find some f(z) such that the empirical average of the
expected loss Eq,|c(z,y, f(z))] is small.
Eemp[C(ZE, Y, f(x))] — % Z C(xia Yiy f(x”&))
1=1
However, just minimizing the empirical average does not
guarantee anything for the expected loss (overfitting).
Safeguard against overfitting
We need to constrain the class of functions f € F some-
how. Adding 2| f] as a penalty does exactly that.

Carnegie Mellon University




Some regularization ideas

Small Derivatives
We want to have a function f which is smooth on the
entire domain. In this case we could use

Qlf] = /X 10, f (@) di = (0.f, 0,f).

Small Function Values
If we have no further knowledge about the domain X,
minimizing || f||* might be sensible, i.e.,

Q] = I£IIF = (S, f)-

Splines
Here we want to find f such that both || f||* and ||5%f]|?
are small. Hence we can minimize

QU1 = IFIF + 19:£ 117 = ((f, 021), (f, Oz1))

Carnegie Mellon University



Regularization

Regularization Operators
We map f into some P f, which is small for desirable f
and large otherwise, and minimize

QUff = IPfII* = (Pf.Pf).

For all previous examples we can find such a P.
Function Expansion for Regularization Operator
Using a linear function expansion of f in terms of some

f:, that is for f(x Z o, f;(x) we can compute

Qf] = <PZ&2fZ(x)7PZ&jfZ > Z@za] Pf@apfj>

Carnegie Mellon University



Regularization and Kernels

Regularization for Q[f] = 5|jw||?
w=> abz;) = |wl* = aok(zi, ;)
i 0]

This looks very similar to (Pf;, Pf;).
Key Idea
So if we could find a P and & such that

k(x,z') = (Pk(x,-), Pk(z',-))

we could show that using a kernel means that we are

minimizing the empirical risk plus a regularization term.
Solution: Greens Functions

A sufficient condition is that & is the Greens Function of

P*P,thatis (P"Pk(x,-), f(+)) = f(x).

One can show that this is necessary and sufficient.

Carnegie Mellon University



Building Kernels

Kernels from Regularization Operators:
Given an operator P*P, we can find k by solving the self
consistency equation

(Pk(z,-), Pk(z',-)) = k' (x, )(P*P)k(', ) = k(z, 2)
and take f to be the span of all k(x, -).
So we can find £ for a given measure of smoothness.

Regularization Operators from Kernels:
Given a kernel k, we can find some P*P for which the
self consistency equation is satisfied.

So we can find a measure of smoothness for a given k.

Carnegie Mellon University



Spectrum and Kernels

Effective Function Class
Keeping €| f| small means that f(x) cannot take on arbi-

trary function values. Hence we study the function class

go={f|5prrp<ct

\\ /

Example
For [ = ZO‘@ r;, x) this implies 1aTK@ < (C.
’ 2

Kernel Matrlx Coefficients Function Values

2
ol J
2 1 i | 1 |
- - of 1 o 1
=1}t 7 -1t g
-2t J
2
3

3 2 1 o0 1 2 3 2 4 o 1 2
Carnegie Mellon University
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Fourier Regularization

Goal
Find measure of smoothness that depends on the fre-
guency properties of f and not on the position of f.

A Hint: Rewriting || f||> + ||0.f||?
Notation: f(w) is the Fourier transform of f.

1+ 1051 = [ 15@F + |0 ()P
= [1F@)P + w2 f(w) P
/|fw dw where p(w) = :

(W) 1 4+ w?

Idea .
Generalize to arbitrary p(w), i.e. Q|f /‘f ‘

barnegle Mellon University




Greens Function

Theorem

For regularization functionals Q| f / ‘f v) dw the
(,d

self-consistency condition
(Pk(z,-), Pk(z', ")) = k' (z, )(P*P)k(<', ) = k(z, 2')
is satisfied if £ has p(w) as its Fourier transform, i.e.,

bz, 2') = / exp(—i{w, ( — 2')))p(w)dw

Consequences

® small p(w) correspond to high penalty (regularization).
® ()| f|is translation invariant, that is Q| f(:)] = Q[f(- — x)].

Carnegie Mellon University



Examples

2 - - 2

Laplacian Kernel

1.5 . 1.5

k(z,2') = exp(—||lz —2'||) | L

p(w) o< (1+[|wl]*)™t o AL
Gaussian Kernel o - - :
k(z,2") = 030 llz—a’|? |

“lwll?

p(w) o 6_%0 /\ o
Fourier transform of £ shows regularization properties.
The more rapidly p(w) decays, the more high frequencies

are filtered out.

Carnegie Mellon University



Rules of thumb

® Fourier transform is sufficient to check whether k(x, 2')
satisfies Mercer’s condition: only check if k(w) > 0.

® Example: k(x,2") = sinc(z — 2').
k(w) = x[_xn(w), hence k is a proper kernel.

® Width of kernel often more important than type of kernel
(short range decay properties matter).

® Convenient way of incorporating prior knowledge, e.qg.:
for speech data we could use the autocorrelation func-
tion.

® Sum of derivatives becomes polynomial in Fourier
space.

Carnegie Mellon University



Polynomial Kernels

Functional Form

k(z,a') = k((z,2"))

Series Expansion
Polynomial kernels admit an expansion in terms of Leg-
endre polynomials (L% : order n in RY).

k(z,2') =) byLn((z,2))

Consequence:
L,, (and their rotations) form an orthonormal basis on the
unit sphere, P*P is rotation invariant, and P*P is diago-
nal with respect to L,,. In other words
(P*P)Ly({x,-)) = b, Lu({z, "))

Carnegie Mellon University



Polynomial Kernels

® Decay properties of b, determine smoothness of func-
tions specified by k((x, x)).

® For N — oo all terms of L, but " vanish, hence a Taylor
series k(z,z') = > . a;(z,2')" gives a good guess.

Inhomogeneous Polynomial

Kz, o) = (2 +1)P =
0 (p> fn<p © lllll |
n 50 4

Vovk’s Real Polynomial

1 — /\p :
k(z,2') = &, ) —
1= ((z,2") |

a, = lifn<p o .

5 6 7 8 9 10
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Mini Summary

Regularized Risk Functional

® From Optimization Problems to Loss Functions
® Regularization
® Safeguard against Overfitting

Regularization and Kernels

® Examples of Regularizers
® Regularization Operators
® Greens Functions and Self Consistency Condition

Fourier Regularization

® Translation Invariant Regularizers
® Regularization in Fourier Space
® Kernel is inverse Fourier Transformation of Weight

Polynomial Kernels and Series Expansions
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String Kernel (pre)History



The Kernel Perspective

* Design a kernel implementing good features

k(z,2') = (6(x), 6(z')) and f(x) =Y auk(ai

* Many variants
* Bag of words (AT&T labs 1995, e.g. Vapnik)
* Matching substrings (Haussler, Watkins 1998)
e Spectrum kernel (Leslie, Eskin, Noble, 2000)
o Suffix tree (Vishwanathan, Smola, 2003)
o Suffix array (Teo, Vishwanathan, 2006)
e Rational kernels (Mohri, Cortes, Haffner, 2004 ...)
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Bag of words

e At least since 1995 known in AT&T labs

]C(CU,.CE/) — an(x)nw(x/) and f(il?) — wanw(x/)

(to be or not to be) =p (be:2, or:1, not:1, to:2)
* Joachims 1998: Use sparse vectors

* Hatfner 2001: Inverted index for faster training
* Lots of work on feature weighting (TF/IDF)

* Variants of it deployed in many spam filters
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Substring (mis)matching

* Watkins 1998+99 (dynamic alignment, etc)
 Haussler 1999 (convolution kernels)

* In general O(x x’) runtime
(e.g. Cristianini, Shawe-Taylor, Lodhi, 2001)
* Dynamic programming solution for pairHMM
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Spectrum Kernel

e Leslie, Eskin, Noble & coworkers, 2002 AKQDYYYYEI
* Key idea is to focus on features directly ﬂ
* Linear time operation to get features

* Limited amount of mismatch Aﬁgn
(exponential in number of missed chars) ODY
* Explicit feature construction DYY
(good & fast for DNA sequences) Yy
YYY
YYE
YEI

___— AKQ
DKQ / QITT\\\ AKY

EKQ  AAQ

Carnegie Mellon University



Suffix Tree Kernel

* Vishwanathan & Smola, 2003 (O(x + x’) time)
* Mismatch-free kernel + arbitrary weights

]f.CU,ZE/ — Wap Ty (L) Ty x’ ,*’v
) = Y el

/" /BANANA
* Linear time construction ' [0] .-
(Ukkonen, 1995) Voo ¥
Find matches for second $ AR S i
* Find ma '
string in linear time .$ As ] L]
(Chang & Lawler, 1994)

* Precompute weights on path
Carnegie Mellon University
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* Large vocabulary size
* Need to build dictionary

* Approximate matches are still a problem

o Suffix tree/array is storage inefficient (40-60x)
* Realtime computation
* Memory constraints (keep in RAM)

* Difficult to implement

Carnegie Mellon University
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ultitask Learning

From: bat<kilian@gmail.com: n
Subject: hey whats up check this meds place out
Date: April 6 2009 10:50:13 PM PDT
To: Kilian Weinberger
Reply-To: bat <kilian@gmail.com=

Your friend (kilian @gmail.com) has sent you a link to the following Scout.com story:
Savage Hall Ground-Breaking Celebration

Get Vicodin, Valium, Xanax, Viagra, Oxycontin, and much more. Absolutely No Prescription Bequired.

Owver Night Shipping! Why should you be risking dealing with shady people. Check us out today!
ittp Henkinste 32 + 3.bloaspot.com

The University of Toledo will hold a ground-breaking celebration to kick-off the UT Athletics Complex and
Savage Hall renovation project on Wednesday, December 12th at Savage Hall.

To read the rest of this story, go here:
http Jtoledo. scout.comd2/7 08390, hitml

A e (I
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ultitask Learning

From: bat<kilian@gmail.com: r
Subject: hey whats up check this meds place out
Date: April 6 2009 10:50:13 PM PDT
To: Kilian Weinberger
Reply-To: bat <kilian@gmail.com=

Your friend (kilian @gmail.com) has sent you a link to the following Scout.com story:
Savage Hall Ground-Breaking Celebration

Get Vicodin, Valium, Xanax, Viagra, Oxycontin, and much more. Absolutely No Prescription Bequired.

Owver Night Shipping! Why should you be risking dealing with shady people. Check us out today!
ittp Henkinste 32 + 3.bloaspot.com

The University of Toledo will hold a ground-breaking celebration to kick-off the UT Athletics Complex and
Savage Hall renovation project on Wednesday, December 12th at Savage Hall.

To read the rest of this story, go here:
http Jtoledo. scout.comd2/7 08390, hitml

4 e (S

. 0: not-
1: spam! 0: quality 1: donut? spa:! ?

LS

— -

educated misinformed confused malicious silent
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Multitask Learning
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Collaborative Classification

Primal representation

f(x,u) = (o(x),w) + (¢(x), wy) = (P(x) @ (1 D ey),w)
Kernel representation
k((x,u), (2 u') = k(x, 2")[1 4+ dy 0]

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...

Problem - dimensionality is 10'3. That is 40TB of space , S
Carnegie Mellon University
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Collaborative Classification

email (1 + eyser)

W T eyser

Primal representation

f(x,u) = (o(x),w) + (¢(x), wy) = (P(x) @ (1 D ey),w)
Kernel representation
k((x,u), (2 u') = k(x, 2")[1 4+ dy 0]

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...

Problem - dimensionality is 10'3. That is 40TB of space , S
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Hash Kernels

*in the old days
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Hash Kernels

iInstance: dictionary:

Hey,

please mentio
subtly during
your talk that
people should
use Yahoo*
search more
often.
Thanks,

task/user
(=barney):

L sparse *in the old days
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Hash Kernels

iInstance: dictionary:
hash
Hey, L
4 function:

please mentiop 2

subtly during L

your talk that L

people should 3

use Yahoo*

search more

often. 2

Thanks, 1

sparse

task/user
(=barney): L sparse *in the old days
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Hash Kernels

instance:
Hey,
{-]I ]}
please mentio h(‘mention’) 1
subtly during s(m_b)
your talk that
people should -
use Yahoo
search more
often. h(‘mention_barney’) s(m) 2
Thanks, =
taSk/USGr. Similar to count hash
(=barney): (Charikar, Chen, Farrach-Colton, 2003)
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Advantages of hashing
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Advantages of hashing

* No dictionary!
e Content drift is no problem i

* All memory used for classification

* Finite memory guarantee (via online learning)
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Advantages of hashing

* No dictionary!
e Content drift is no problem i

* All memory used for classification

* Finite memory guarantee (via online learning)
* No Memory needed for projection. (vs LSH)
* Implicit mapping into high dimensional space!

* |t is sparsity preserving! (vs LSH)
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Approximate Orthogonality

We can do multi-task learning!

Carnegie Mellon University



Guarantees

For a random hash function the inner product vanishes with
high probability via
2
Pr{|(wy, hy(z))] > €} < 2e~C€™

We can use this for multitask learning

Direct sum in Sum in
Hilbert Space Hash Space

The hashed inner product is unbiased
Proof: take expectation over random signs

The variance is O(1/n)
Proof: brute force expansion

Restricted isometry property (Kumar, Sarlos, Dasgupta 2010)

Carnegie Mellon University



Spam classification results

1.20

1.00 -

0.80

0.60 - =#—global-hashed
0.68 0.67

=&-personalized

0.40
e==haseline

0.20

0.00

spam miss-rate (relative to baseline)

18 20 22 24 26
b bits in hash-table

N=20M, U=400K
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Lazy users ...

number of users

1000000

100000

10000

1000

100

10

1

Labeled emails per user

o
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" YINIAR
N O O NN OO A < NO MW" OO AN DN H 00 <
A N MO 1NN O N OO -1 O T N OO0 O 1 (N <
™ ™= = ™ = == = = N AN

number of labels

A

— 00 I~
O 00
AN AN N

370
523
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Results by user group
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Results by user group

1.4
M) labeled emails:
= 1.2
Q ——[0
S N RN 0]
e 1°- — ™ = —=-[1]
o .
¢ 0.8 =4=[2,3]
5
© e
v 0.6 4,7]
E 0a —#=[8,15]
. ~0-[16,31]
(7]
g 02 32,64]
g 0 I I l ! | 64,00)
73

18 20 22 24 26 ==haseline
b bits in hash-table
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Results by user group

1.4
M) labeled emails:
= 1.2
g N =—[0]
(¢°]
o 1 - =5 .
o —-[1]
¢ 0.8 =4=[2,3]
5
L) O
v 0.6 4,7]
:a; 04 —#=[8,15]
. ~0-[16,31]
(7]
g 0.2 32,64]
g 0 I I l | | 64,00)
>

18 20 22 24 26 ==h3aseline
b bits in hash-table
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Estimation details

* Works best with stochastic gradient descent
(or any other primal space method)

* Never instantiate hash map explicitly

* Random rfr%)n%lzu)’lgbé@ée:sz; totn (lTatency)
e Multiclass classification - joint hash
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Approximate Matches

e General idea

ZZ ) for lw —w'| <6

wexr w ex’

. Simpllf'cahon
* Weigh by mismatch amount |w-w'|
* Map into fragments: dog -> (*og, d*g, do*)

* Hash fragments and weigh them based on
mismatch amount

e Exponential in amount of mismatch
But not in alphabet size
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Memory access patterns

e Cache size is a few MBs

Very fast random memory access

e RAM (DDRS3 or better) is GBs

* Fast sequential memory access (burst read)

 CPU caches memory read from RAM

* Random memory access is very slow

* CPU caches memory read from RAM

‘ s

vector

hashed sequence
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Speeding up access

Key idea - bound the range of h{i,j) for i=‘| to n access h('zl)

Linear offset
bad collisions in i

h(i,j) = h(i) +J

Sum of hash functions . . .
bad collisions in j h(i,7) = h(i) + R (j)

Optimal Golomb Ruler (Langford) h(i,§) = h(i) + OGR(j)
NP hard in general |

Feistel Network / Cryptography (new) h(i, 7) = h(i) + crypt(j]7)
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