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Regression



Regression Estimation
• Find function f minimizing regression error

• Compute empirical average

Overfitting as we minimize empirical error
• Add regularization for capacity control

R[f ] := E
x,y⇠p(x,y) [l(y, f(x))]

Remp[f ] :=
1

m

mX

i=1

l(yi, f(xi))

Rreg[f ] :=
1

m

mX

i=1

l(yi, f(xi)) + �⌦[f ]



Squared loss

l(y, f(x)) =
1

2
(y � f(x))2



l1 loss

l(y, f(x)) = |y � f(x)|



ε-insensitive Loss

l(y, f(x)) = max(0, |y � f(x)|� ✏)



Penalized least mean squares
• Optimization problem

• Solution
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• Optimization problem

• Representer Theorem (Kimeldorf & Wahba, 1971)

Penalized least mean squares
... now with kernels

minimize
w

1

2m

mX
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2
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Penalized least mean squares
... now with kernels

• Optimization problem

• Representer Theorem (Kimeldorf & Wahba, 1971)
• Optimal solution is in span of data
• Proof - risk term only depends on data via
• Regularization ensures that orthogonal part is 0

• Optimization problem in terms of w

solve for                            as linear system
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SVM Regression
(ϵ-insensitive loss)
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Figure 1.8 In SV regression, a tube with radius ε is fitted to the data. The trade-
off between model complexity and points lying outside of the tube (with positive slack
variables ξ) is determined by minimizing (1.48).

Note that the term ‖w‖2 is the same as in pattern recognition (cf. (1.41)); for
further details, cf. Chapter 9.

We can transform this into a constrained optimization problem by introducing
slack variables, akin to the soft margin case. In the present case, we need two types
of slack variable for the two cases f(xi) − yi > ε and yi − f(xi) > ε, respectively.
We denote them by ξ and ξ∗, respectively, and collectively refer to them as ξ(∗).
The optimization problem consists in finding

min
w∈H,ξ(∗)∈Rm,b∈R

τ(w, ξ, ξ∗) =
1

2
‖w‖2 + C

m
∑

i=1

(ξi + ξ∗i ) (1.48)

subject to f(xi)− yi ≤ ε+ ξi (1.49)

yi − f(xi) ≤ ε+ ξ∗i (1.50)

ξi, ξ
∗
i ≥ 0 (1.51)

for all i = 1, . . . ,m.
Note that according to (1.49) and (1.50), any error smaller than ε does not require

a nonzero ξi or ξ∗i and hence does not enter the objective function (1.48).
Generalization to kernel -based regression estimation is carried out in an analo-

gous manner to the case of pattern recognition. Introducing Lagrange multipliers,
one arrives at the following optimization problem: for C > 0, ε ≥ 0 chosen a priori,

max
α,α∗∈Rm

W (α,α∗) = −ε
m
∑

i=1

(α∗
i + αi) +

m
∑

i=1

(α∗
i − αi)yi

−1

2

m
∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)k(xi, xj), (1.52)

subject to 0 ≤ αi,α
∗
i ≤ C, i = 1, . . . ,m, and

m
∑

i=1

(αi − α∗
i ) = 0. (1.53)

don’t care about deviations within the tube



SVM Regression
(ϵ-insensitive loss)

• Optimization Problem (as constrained QP)

• Lagrange Function

minimize

w,b
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SVM Regression
(ϵ-insensitive loss)

• First order conditions

• Dual problem
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X
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Properties
• Ignores ‘typical’ instances with small error
• Only upper or lower bound active at any time
• QP in 2n variables as cheap as SVM problem
• Robustness with respect to outliers

• l1 loss yields same problem without epsilon
• Huber’s robust loss yields similar problem but 

with added quadratic penalty on coefficients



Regression example
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sinc x + 0.1sinc x - 0.1approximation

sinc x + 0.2sinc x - 0.2approximation

sinc x + 0.5sinc x - 0.5approximation

Figure 9.3 From top to
bottom: approximation of
the function sincx with
precisions ε = 0.1, 0.2,
and 0.5. The solid top and
dashed bottom lines indi-
cate the size of the ε-tube,
here drawn around the tar-
get function sincx. The
dotted line between them
is the regression function.
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Regression example
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Figure 9.4 Left to right: regression (solid line), datapoints (small dots) and SVs (big
dots) for an approximation of sincx (dotted line) with ε = 0.1, 0.2, and 0.5. Note the
decrease in the number of SVs.

redundant — even without these patterns in the training set, the SVM would have
constructed exactly the same function f . We might be tempted to use this property
as an efficient means of data compression, namely by storing only the support
patterns, from which the estimate can be reconstructed completely. Unfortunately,
this approach turns out not to work well in the case of noisy high-dimensional data,
since for moderate approximation quality, the number of SVs can be rather high
[555].

9.3 ν-SV Regression

The parameter ε of the ε-insensitive loss is useful if the desired accuracy of the
approximation can be specified beforehand. In some cases, however, we just want
the estimate to be as accurate as possible, without having to commit ourselves to
a specific level of accuracy a priori. We now describe a modification of the ε-SVR
algorithm, called ν-SVR, which automatically computes ε [466].

To estimate functions (9.2) from empirical data (9.3) we proceed as follows. At
each point xi, we allow an error ε. Everything above ε is captured in slack variables
ξ(∗)i , which are penalized in the objective function via a regularization constant
C, chosen a priori. The size of ε is traded off against model complexity and slack
variables via a constant ν ≥ 0:

min
w∈H,ξ(∗)∈Rm,ε,b∈R

τ(w, ξ(∗), ε) =
1

2
‖w‖2 + C ·

(

νε+
1

m

m
∑

i=1

(ξi + ξ∗i )

)

, (9.31)

subject to (〈w,xi〉+ b)− yi ≤ ε+ ξi, (9.32)

yi − (〈w,xi〉+ b) ≤ ε+ ξ∗i , (9.33)

ξ(∗)i ≥ 0, ε ≥ 0. (9.34)

For the constraints, we introduce multipliers α(∗)
i , η(∗)i ,β ≥ 0, and obtain the

Lagrangian,Primal Problem
ν-SVR

L(w, b,α(∗),β, ξ(∗), ε,η(∗)) = (9.35)

1

2
‖w‖2 + Cνε+

C

m

m
∑

i=1

(ξi + ξ∗i )− βε−
m
∑

i=1

(ηiξi + η∗i ξ
∗
i )

Support VectorsSupport VectorsSupport Vectors



Huber’s robust loss

quadratic

linear

l(y, f(x)) =

(
1
2 (y � f(x))

2
if |y � f(x)| < 1

|y � f(x)|� 1
2 otherwise

trimmed mean
estimatior



Novelty Detection



Basic Idea Novelty Detection

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 4

Data
Observations (xi)

generated from
some P(x), e.g.,
network usage
patterns
handwritten digits
alarm sensors
factory status

Task
Find unusual events,
clean database, dis-
tinguish typical ex-
amples.



ApplicationsApplications

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 5

Network Intrusion Detection
Detect whether someone is trying to hack the network,
downloading tons of MP3s, or doing anything else un-
usual on the network.

Jet Engine Failure Detection
You can’t destroy jet engines just to see how they fail.

Database Cleaning
We want to find out whether someone stored bogus in-
formation in a database (typos, etc.), mislabelled digits,
ugly digits, bad photographs in an electronic album.

Fraud Detection
Credit Cards, Telephone Bills, Medical Records

Self calibrating alarm devices
Car alarms (adjusts itself to where the car is parked),
home alarm (furniture, temperature, windows, etc.)



Novelty Detection via Density EstimationNovelty Detection via Densities

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 6

Key Idea
Novel data is one that we don’t see frequently.
It must lie in low density regions.

Step 1: Estimate density
Observations x

1

, . . . , xm

Density estimate via Parzen windows
Step 2: Thresholding the density

Sort data according to density and use it for rejection
Practical implementation: compute

p(xi) =

1

m

X

j

k(xi, xj) for all i

and sort according to magnitude.
Pick smallest p(xi) as novel points.



Order Statistics of DensitiesOrder Statistic of Densities
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Typical DataTypical Data

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 8



OutliersOutliers

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 9



A better wayA better way . . .

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 10

Problems
We do not care about estimating the density properly
in regions of high density (waste of capacity).
We only care about the relative density for threshold-
ing purposes.
We want to eliminate a certain fraction of observations
and tune our estimator specifically for this fraction.

Solution
Areas of low density can be approximated as the level
set of an auxiliary function. No need to estimate p(x)

directly — use proxy of p(x).
Specifically: find f (x) such that x is novel if f (x) 
c where c is some constant, i.e. f (x) describes the
amount of novelty.



• Exponential Family for density estimation

• MAP estimation

Problems with density estimation
Density Estimation

Alexander J. Smola: Exponential Families and Kernels, Page 4

Maximum a Posteriori

minimize

✓

mX

i=1

g(✓) � h�(xi), ✓i +

1

2�2
k✓k2

Advantages
Convex optimization problem
Concentration of measure

Problems
Normalization g(✓) may be painful to compute
For density estimation we need no normalized p(x|✓)

No need to perform particularly well in high density
regions

p(x|✓) = exp (h�(x), ✓i � g(✓))

minimize
✓

X

i

g(✓)� h�(xi), ✓i+
1

2�2
k✓k2



ThresholdingNovelty Detection

Alexander J. Smola: Exponential Families and Kernels, Page 5



Optimization ProblemNovelty Detection

Alexander J. Smola: Exponential Families and Kernels, Page 6

Optimization Problem

MAP
mX

i=1

� log p(xi|✓) +

1

2�2
k✓k2

Novelty
mX

i=1

max

✓
� log

p(xi|✓)

exp(⇢ � g(✓))

, 0

◆
+

1

2

k✓k2

mX

i=1

max(⇢ � h�(xi), ✓i, 0) +

1

2

k✓k2

Advantages
No normalization g(✓) needed
No need to perform particularly well in high density
regions (estimator focuses on low-density regions)
Quadratic program



Maximum Distance HyperplaneMaximum Distance Hyperplane

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 11

Idea Find hyperplane, given by f (x) = hw, xi + b = 0 that
has maximum distance from origin yet is still closer to
the origin than the observations.

Hard Margin

minimize 1

2

kwk2

subject to hw, xii � 1

Soft Margin

minimize 1

2

kwk2

+ C
mX

i=1

⇠i

subject to hw, xii � 1 � ⇠i

⇠i � 0



Optimization ProblemDual Problem

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 12

Primal Problem
minimize 1

2

kwk2

+ C
mX

i=1

⇠i

subject to hw, xii � 1 + ⇠i � 0 and ⇠i � 0

Lagrange Function L

Subtract constraints, multiplied by Lagrange multipli-
ers (↵i and ⌘i), from Primal Objective Function.
Lagrange function L has saddlepoint at optimum.

L =

1

2

kwk2

+ C

mX

i=1

⇠i�
mX

i=1

↵i (hw, xii � 1 + ⇠i)�
mX

i=1

⌘i⇠i

subject to ↵i, ⌘i � 0.



Dual ProblemDual Problem

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 13

Optimality Conditions

@wL = w �
mX

i=1

↵ixi = 0 =) w =

mX

i=1

↵ixi

@⇠iL = C � ↵i � ⌘i = 0 =) ↵i 2 [0, C]

Now substitute the optimality conditions back into L.
Dual Problem

minimize 1

2

mX

i=1

↵i↵jhxi, xji �
mX

i=1

↵i

subject to ↵i 2 [0, C]

All this is only possible due to the convexity of the
primal problem.



Minimum enclosing ball
• Observations on 

surface of ball
• Find minimum 

enclosing ball
• Equivalent to 

single class SVM
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x

Figure 8.3 For RBF kernels, which depend only on x− x′, k(x, x) is constant, and the
mapped data points thus lie on a hypersphere in feature space. In this case, finding the
smallest sphere enclosing the data is equivalent to maximizing the margin of separation
from the origin (cf. Figure 8.2).

8.4 Optimization

•3 The previous section formulated quadratic programs (QPs) for computing regions
that capture a certain fraction of the data. These constrained optimization problems
can be solved via an off-the-shelf QP package (cf. Chapter 6). In the present section,
however, we describe an algorithm which takes advantage of the precise form of the
QPs [459], which is an adaptation of the SMO (Sequential Minimal Optimization)
algorithm [392]. Although most of the material on implementations is in Chapter 10,
we will spend a few minutes to describe the single class algorithm here. Further
information on SMO in general can be found in Section 10.5; additional information
on single-class SVM implementations, and specifically on variants which work in
an online setting, can be found in Section 10.6.3.

The SMO algorithm has been reported to work well in C-SV classification, to
which the structure of the present optimization problem, which uses ν instead of
C, is quite similar. The dual problem has only one equality constraint (8.15), just
as the dual of C-SV classification (7.37).4

The strategy of SMO is to break up the constrained minimization of (8.13) into
the smallest optimization steps possible. Note that it is not possible to modify
variables αi individually without violating the sum constraint (8.15). We therefore
resort to optimizing over pairs of variables.

3. Bernhard: alex can you cut what’s totally redundant, and insert quotes to the
implementation chapter? for convenience, i would tend to leave most of it here.
4. The ν-SV classification algorithm (7.47), on the other hand, has two equality con-
straints. Therefore, is not directly amenable to a SMO approach, unless we remove the
equality constraint arising from the offset b, as done in [93].



Adaptive thresholdsThe ⌫-Trick

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 14

Problem
Depending on C, the number of novel points will vary.
We would like to specify the fraction ⌫ beforehand.

Solution
Use hyperplane separating data from the origin

H := {x|hw, xi = ⇢}
where the threshold ⇢ is adaptive.

Intuition
Let the hyperplane shift by shifting ⇢
Adjust it such that the ’right’ number of observations is
considered novel.
Do this automatically



Optimization ProblemThe ⌫-Trick

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 15

Primal Problem

minimize 1

2

kwk2

+

mX

i=1

⇠i �m⌫⇢

where hw, xii � ⇢ + ⇠i � 0

⇠i � 0

Dual Problem

minimize 1

2

mX

i=1

↵i↵jhxi, xji

where ↵i 2 [0, 1] and
mX

i=1

↵i = ⌫m.

Similar to SV classification problem, use standard opti-
mizer for it.



The ν-property theorem
• Optimization problem

• Solution satisfies
• At most a fraction of ν points are novel
• At most a fraction of (1-ν) points aren’t novel
• Fraction of points on boundary vanishes for 

large m (for non-pathological kernels)

minimize

w

1

2

kwk2 +
mX

i=1

⇠i �m⌫⇢

subject to hw, xii � ⇢� ⇠i and ⇠i � 0



Proof
• Move boundary at optimality

• For smaller threshold m- points on wrong side 
of margin contribute

• For larger threshold m+ points not on ‘good’
side of margin yield

• Combining inequalities

• Margin set of measure 0

Maximum Distance Hyperplane

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 11

Idea Find hyperplane, given by f (x) = hw, xi + b = 0 that
has maximum distance from origin yet is still closer to
the origin than the observations.

Hard Margin

minimize 1

2

kwk2

subject to hw, xii � 1

Soft Margin

minimize 1

2

kwk2

+ C
mX

i=1

⇠i

subject to hw, xii � 1 � ⇠i

⇠i � 0

�(m� � ⌫m)  0

�(m+ � ⌫m) � 0

m�
m

 ⌫  m+

m



Toy example
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Proposition 8.3 (ν-Property) Assume the solution of (8.6),(8.7) satisfies ρ != 0.
The following statements hold:
(i) ν is an upper bound on the fraction of outliers.
(ii) ν is a lower bound on the fraction of SVs.
(iii) Suppose the data (8.32) were generated independently from a distribution P(x)
which does not contain discrete components. Suppose, moreover, that the kernel
is analytic and non-constant. With probability 1, asymptotically, ν equals both the
fraction of SVs and the fraction of outliers.

The proof can be found in [459]. The result also applies to the soft margin ball
algorithm of [524], provided that it is stated in the ν-parameterization given in
(8.17). Figure 8.5 displays a 2-D toy example, illustrating how the choice of ν and
the kernel width influence the solution.

ν, width c 0.5, 0.5 0.5, 0.5 0.1, 0.5 0.5, 0.1

frac. SVs/OLs 0.54, 0.43 0.59, 0.47 0.24, 0.03 0.65, 0.38

margin ρ/‖w‖ 0.84 0.70 0.62 0.48

Figure 8.5 First two pictures: A single-class SVM applied to two toy problems; ν =
c = 0.5, domain: [−1, 1]2. Note how in both cases, at least a fraction 1− ν of all examples
is in the estimated region (cf. table). The large value of ν causes the additional data
points in the upper left corner to have almost no influence on the decision function. For
smaller values of ν, such as 0.1 (third picture), these points can no longer be ignored.
Alternatively, we can force the algorithm to take these ‘outliers’ (OLs) into account by
changing the kernel width (8.5): in the fourth picture, using c = 0.1, ν = 0.5, the data are
effectively analyzed on a different length scale, which leads the algorithm to consider the
outliers as meaningful points.

Proposition 8.4 (Resistance) Local movements of outliers parallel to w do not
change the hyperplane.Resistance

Proof (Proposition 8.4) Suppose xo is an outlier, for which ξo > 0; hence by
the KKT conditions (Chapter 6) αo = 1/(νm). Transforming it into x′

o := xo+δ ·w,
where |δ| < ξo/‖w‖, leads to a slack which is still nonzero, ξ′o > 0, hence we still have
αo = 1/(νm). Therefore, α′ = α is still feasible, as is the primal solution (w′, ξ′, ρ′).
Here, we use ξ′i = (1 + δ · αo)ξi for i != o, w′ = (1 + δ · αo)w, and ρ′ as computed
from (8.16). Finally, the KKT conditions are still satisfied, as α′

o = 1/(νm) still
holds. Thus (Chapter 6), α remains the optimal solution.

threshold and smoothness requirements



Novelty detection for OCRUSPS Digits

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 16

Better estimates since we only optimize in low density
regions.
Specifically tuned for small number of outliers.
Only estimates of a level-set.
For ⌫ = 1 we get the Parzen-windows estimator back.



Classification with the ν-trick
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216 Pattern Recognition

Figure 7.9 Toy problem (task: separate circles from disks) solved using ν-SV classifi-
cation, with parameter values ranging from ν = 0.1 (top left) to ν = 0.8 (bottom right).
The larger we make ν, the more points are allowed to lie inside the margin (depicted by
dotted lines). Results are shown for a Gaussian kernel, k(x, x′) = exp(−‖x− x′‖2).

Table 7.1 Fractions of errors and SVs, along with the margins of class separation, for
the toy example in Figure 7.9.
Note that ν upper bounds the fraction of errors and lower bounds the fraction of SVs,
and that increasing ν, i.e., allowing more errors, increases the margin.

ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

fraction of errors 0.00 0.07 0.25 0.32 0.39 0.50 0.61 0.71

fraction of SVs 0.29 0.36 0.43 0.46 0.57 0.68 0.79 0.86

margin ρ/‖w‖ 0.005 0.018 0.115 0.156 0.364 0.419 0.461 0.546

slightly more complicated. We consider the Lagrangian

L(w, ξ, b, ρ,α,β, δ) =
1

2
‖w‖2 − νρ+ 1

m

m
∑

i=1

ξi

−
m
∑

i=1

(αi(yi(〈xi,w〉+ b)− ρ+ ξi) + βiξi)− δρ, (7.44)

using multipliers αi,βi, δ ≥ 0. This function has to be mimimized with respect to
the primal variables w, ξ, b, ρ, and maximized with respect to the dual variables
α,β, δ. To eliminate the former, we compute the corresponding partial derivatives
and set them to 0, obtaining the following conditions:

w =
m
∑

i=1

αiyixi, (7.45)

changing kernel width and threshold
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Selecting Variables



• Optimization Problem

• Support Vector classification
• Support Vector regression
• Novelty detection

• Solving it
• Off the shelf solvers for small problems
• Solve sequence of subproblems
• Optimization in primal space (the w space)

Constrained Quadratic Program

minimize

↵

1

2

↵>Q↵+ l>↵ subject to C↵+ b  0



Convex problem



Subproblems
• Original optimization problem

• Key Idea - solve subproblems one at a time and 
decompose into active and fixed set

• Subproblem is again a convex problem
• Updating subproblems is cheap

↵ = (↵a,↵f )

minimize

↵

1

2

↵>Q↵+ l>↵ subject to C↵+ b  0

minimize

↵

1

2

↵>
a Qaa↵a + [la +Qaf↵f ]

> ↵a

subject to Ca↵a + [b+ Cf↵f ]  0







w

w =
X

i

yi↵ixi

↵i = 0 =) yi [hw, xii+ b] � 1

0 < ↵i < C =) yi [hw, xii+ b] = 1

↵i = C =) yi [hw, xii+ b]  1

↵i [yi [hw, xii+ b] + ⇠i � 1] = 0

⌘i⇠i = 0

Picking observations

• Most violated margin condition
• Points on the boundary
• Points with nonzero Lagrange multiplier that are correct



Selecting variables
• Incrementally increase (chunking)
• Select promising subset of actives (SVMLight)
• Select pairs of variables (SMO)



1.2 Exploiting the Storage Hierarchy
StreamSVM takes advantage of the di↵erent characteris-

tics inherent in the storage hierarchy of modern computers.
That is, while hard disks excel at storing large amounts of
data, they have typically mediocre data transfer rates and
are outright slow at random access operations. Compared
to that, main memory comes at a hundredfold premium in
terms of space but o↵ers two to three orders of magnitude
faster data transfer rates. CPU caches are yet faster again.
Similar considerations hold for solid state drives, PCI inter-
connects, and graphics subsystems.

This suggests that algorithms which require streaming
through data from disk should take advantage of the data
they already have in main memory while waiting for more
data to arrive from disk. Obviously, the same rationale ap-
plies to a sequence of storage systems with di↵erent capac-
ity/bandwidth characteristics. To make things somewhat
more explicit we list a range of such systems below:

System Capacity Bandwidth IOPs
Disk 3TB 150MB/s 102

SSD 256GB 500MB/s 5 · 104
RAM 16GB 30GB/s 108

Cache 16MB 100GB/s 109

In the present paper we focus on two parts of this hierarchy
— disk and memory (see Figure 1). This already a↵ords
quite dramatic improvements in terms of speed relative to
sequential algorithms. In a nutshell our algorithm does the
following:

Iterate over the data in main memory while stream-
ing data from disk. Evict primarily examples
from main memory that are “uninformative”.

A naive approach which takes, e.g. stochastic gradient de-
scent steps based on the importance of examples would likely
run afoul of data weighting problems — informative exam-
ples need not have extended statistical weight but rather
only a higher influence on the choice of objective function.
One way of dealing with this issue is to resort to dual up-
dates. That is, we consider the dual optimization problem
to SVMs (and related problems) and judiciously update the
associated Lagrange multipliers. This leads to the following
algorithm:

Reader
while not converged do

read example (x, y) from disk
if bu↵er full then evict random (x0

, y

0) from memory
insert new (x, y) into ring bu↵er in memory

end while

Trainer
while not converged do

randomly pick example (x, y) from memory
update dual parameter ↵
update weight vector w
if deemed to be uninformative then evict (x, y) from
memory

end while

1.3 Enterprise Scale Solvers
To place our research in perspective note that industrial

datasets regularly exceed the capacities o↵ered by single
computers in terms of both storage and computation. This
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Figure 1: Basic data flow diagram of the optimiza-
tion algorithm. A reader keeps on filling the main
memory from disk while the optimization thread(s)
perform updates on the data available in RAM. Both
threads operate asynchronously.

means that distributed inference techniques are required.
Unfortunately, large server centers often come with rather
severe restrictions on reliability, inter-machine latency, com-
munication trees, delays, etc. such that it is desirable to find
algorithms which compute estimates using a bare minimum
of communication. Note that not all estimation problems are
amenable to e�cient high-latency scenarios. For instance,
latent variable models typically require excellent communi-
cation and great care needs to be taken to obtain fast esti-
mates [2, 32]. A common attribute of these models is that
they have a large degree of symmetry and non-convexity in
their parametrization.
Fortunately much of what is commonly known as gener-

alized linear models can be addressed with convex solvers.
That is, the estimation problems can be decomposed e�-
ciently into parts which are guaranteed to yield very similar
solutions. In statistical learning terminology this is known
as stability of the solution space and there exists a rich body
of research [7, 36, 9, 16] extolling the desirable theoretical
properties of convexly penalized estimation problems. It is
therefore natural to take advantage of these properties in
terms of implementations. For instance, [40] show that it is
possible to perform stochastic gradient descent on individ-
ual processors independently, using random sub-samples of
the data and to average the parameter estimates afterwards
and simultaneously reaping the benefits of parallelization.
Note that in previous work [25] suggested a similar averag-
ing strategy, however their theoretical analysis only showed
that averaging does not hurt, rather than actually accelerate
convergence. It is in the spirit of [40] that we approach the
problem of estimation:

1. Decompose (possibly with oversampling) the data for
several machines.

2. Solve the estimation problem per machine as e�ciently
as possible.

3. Average the solutions between machines to obtain a
final estimate.

Much work in the analysis of [40] was invested into proving
that the stochastic gradient descent solutions on subsets are
su�ciently independent for averaging to be actually benefi-
cial. If we treat the optimization step as a standard batch
problem this obstacle disappears. In this case we can appeal
directly to the asymptotic analysis of [26] to see that averag-
ing is beneficial: in particular, [26] show that the parameter
distribution of a penalized empirical risk minimizer w⇤|X,Y

conditioned on some data X,Y is asymptotically normal.
This means that if we obtain such estimates based on vari-

Being smart about hardware
• Data flow from disk to CPU

• IO speeds 
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In the present paper we focus on two parts of this hierarchy
— disk and memory (see Figure 1). This already a↵ords
quite dramatic improvements in terms of speed relative to
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ples need not have extended statistical weight but rather
only a higher influence on the choice of objective function.
One way of dealing with this issue is to resort to dual up-
dates. That is, we consider the dual optimization problem
to SVMs (and related problems) and judiciously update the
associated Lagrange multipliers. This leads to the following
algorithm:

Reader
while not converged do

read example (x, y) from disk
if bu↵er full then evict random (x0
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insert new (x, y) into ring bu↵er in memory

end while

Trainer
while not converged do

randomly pick example (x, y) from memory
update dual parameter ↵
update weight vector w
if deemed to be uninformative then evict (x, y) from
memory

end while
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To place our research in perspective note that industrial
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Figure 1: Basic data flow diagram of the optimiza-
tion algorithm. A reader keeps on filling the main
memory from disk while the optimization thread(s)
perform updates on the data available in RAM. Both
threads operate asynchronously.

means that distributed inference techniques are required.
Unfortunately, large server centers often come with rather
severe restrictions on reliability, inter-machine latency, com-
munication trees, delays, etc. such that it is desirable to find
algorithms which compute estimates using a bare minimum
of communication. Note that not all estimation problems are
amenable to e�cient high-latency scenarios. For instance,
latent variable models typically require excellent communi-
cation and great care needs to be taken to obtain fast esti-
mates [2, 32]. A common attribute of these models is that
they have a large degree of symmetry and non-convexity in
their parametrization.
Fortunately much of what is commonly known as gener-

alized linear models can be addressed with convex solvers.
That is, the estimation problems can be decomposed e�-
ciently into parts which are guaranteed to yield very similar
solutions. In statistical learning terminology this is known
as stability of the solution space and there exists a rich body
of research [7, 36, 9, 16] extolling the desirable theoretical
properties of convexly penalized estimation problems. It is
therefore natural to take advantage of these properties in
terms of implementations. For instance, [40] show that it is
possible to perform stochastic gradient descent on individ-
ual processors independently, using random sub-samples of
the data and to average the parameter estimates afterwards
and simultaneously reaping the benefits of parallelization.
Note that in previous work [25] suggested a similar averag-
ing strategy, however their theoretical analysis only showed
that averaging does not hurt, rather than actually accelerate
convergence. It is in the spirit of [40] that we approach the
problem of estimation:

1. Decompose (possibly with oversampling) the data for
several machines.

2. Solve the estimation problem per machine as e�ciently
as possible.

3. Average the solutions between machines to obtain a
final estimate.

Much work in the analysis of [40] was invested into proving
that the stochastic gradient descent solutions on subsets are
su�ciently independent for averaging to be actually benefi-
cial. If we treat the optimization step as a standard batch
problem this obstacle disappears. In this case we can appeal
directly to the asymptotic analysis of [26] to see that averag-
ing is beneficial: in particular, [26] show that the parameter
distribution of a penalized empirical risk minimizer w⇤|X,Y

conditioned on some data X,Y is asymptotically normal.
This means that if we obtain such estimates based on vari-
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associated Lagrange multipliers. This leads to the following
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Runtime Example
(Matsushima, Vishwanathan, Smola, 2012)
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Figure 2: Relative function value di↵erence vs wall
clock time on the dna dataset for various values of C
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Figure 3: Top three figures: Relative function value
vs wall clock time on the kddb, ocr, and webspam-

t datasets for C = 1.0. The bottom figure: The red
solid curve is the relative function value vs wall clock
time and the blue dashed curve is the gap vs wall
clock time on the dna dataset expanded using the
“WD d = 8 explicit” feature with C = 1.0.
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Primal Space Methods



Gradient Descent
• Assume we can optimize

in feature space directly
• Minimize regularized risk

• Compute gradient
and update 

• This fails in narrow canyons
• Wasteful if we have lots of similar data
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As usual ‖·‖ is the Euclidean norm. For small γ the linear contribution in the Taylor
expansion will be dominant, hence for some γ > 0 we have f(xn − γgn) < f(xn).
It can be shown (see e.g. [315]) that after a (possibly infinite) number of steps,
gradient descent (see Algorithm 6.3) will converge.

Algorithm 6.3 Gradient Descent

Require: x0, Precision ε
n = 0
repeat

Compute g = f ′(xn)
Perform line search on f(xn − γg) for optimal γ.
xn+1 = xn − γg
n = n+ 1

until ‖f ′(xn)‖ ≤ ε
Output: xn

Problems of
Convergence In spite of this, the performance of gradient descent is far from optimal. Depend-

ing on the shape of the landscape of values of f , gradient descent may take a long
time to converge. Figure 6.6 shows two examples of possible convergence behavior
of the gradient descent algorithm.

Figure 6.6 Left: Gradient descent takes a long time to converge, since the landscape
of values of f forms a long and narrow valley, causing the algorithm to zig-zag along the
walls of the valley. Right: due to the homogeneous structure of the minimum, the algorithm
converges after very few iterations. Note that in both cases, the next direction of descent
is orthogonal to the previous one, since line search provides the optimal step length.

6.2.3 Convergence Properties of Gradient Descent

Let us analyze the convergence properties of Algorithm 6.3 in more detail. To keep
matters simple, we assume that f is a quadratic function, i.e.

f(x) =
1

2
(x− x∗)"K(x− x∗) + c0, (6.18)

R[w] =
1

m

mX

i=1

l(xi, yi, w) +
�

2
kwk2

g = @wR[w]

w  w � �g



Stochastic gradient descent
• Empirical risk as expectation

• Stochastic gradient descent (pick random x,y)

• Often we require that parameters are restricted 
to some convex set X, hence we project on it

1

m

mX

i=1

l (yi � h�(xi), wi) = Ei⇠{1,..m} [l (yi � h�(xi), wi)]

wt+1  wt � ⌘t@w (yt, h�(xt), wti)

w

t+1  ⇡

x

[w
t

� ⌘

t

@

w

(y
t

, h�(x
t

), w
t

i)]

here ⇡

X

(w) = argmin
x2X

kx� wk



Some applications
• Classification

• Soft margin loss 
• Logistic loss 

• Regression
• Quadratic loss
• l1 loss
• Huber’s loss

• Novelty detection
... and many more

l(x, y, w) = max(0, 1� y hw,�(x)i)

l(x, y, w) = log (1 + exp (�y hw,�(x)i))

l(x, y, w) = (y � hw,�(x)i)2

l(x, y, w) = |y � hw,�(x)i|

l(x, y, w) =

(
1

2�2 (y � hw,�(x)i)2 if |y � hw,�(x)i|  �

1
� |y � hw,�(x)i|� 1

2 if |y � hw,�(x)i| > �

l(x,w) = max(0, 1� hw,�(x)i)



Convergence in Expectation

• Proof
Show that parameters converge to minimum

E
✓̄

⇥
l(✓̄)

⇤
� l

⇤ 
R

2 + L

2
P

T�1
t=0 ⌘

2
t

2
P

T�1
t=0 ⌘

t

where

l(✓) = E(x,y) [l(y, h�(x), ✓i)] and l

⇤ = inf
✓2X

l(✓) and ✓̄ =

P
T�1
t=0 ✓

t

⌘

tP
T�1
t=0 ⌘

t

expected loss parameter average

✓⇤ 2 argmin
✓2X

l(✓) and set rt := k✓⇤ � ✓tk

from Nesterov and Vial

initial loss



Proof

• Summing over inequality for t proves claim
• This yields randomized algorithm for 

minimizing objective functions (try log times 
and pick the best / or average median trick)

r2t+1 = k⇡X [✓t � ⌘tgt]� ✓⇤k2

 k✓t � ⌘tgt � ✓⇤k2

= r2t + ⌘2t kgtk
2 � 2⌘t h✓t � ✓⇤, gti

hence E
⇥
r2t+1 � r2t

⇤
 ⌘2tL

2 + 2⌘t [l
⇤ �E[l(✓t)]]

 ⌘2tL
2 + 2⌘t

⇥
l⇤ �E[l(✓̄)]

⇤ by convexityby convexity



Rates
• Guarantee

• If we know R, L, T pick constant learning rate

• If we don’t know T pick 
This costs us an additional log term

E✓̄

⇥
l(✓̄)

⇤
� l⇤ 

R2 + L2
PT�1

t=0 ⌘2t
2
PT�1

t=0 ⌘t

⌘ =
R

L
p
T

and hence E✓̄[l(✓̄)]� l⇤  R[1 + 1/T ]L

2
p
T

<
LRp
T

⌘t = O(t�
1
2 )

E✓̄[l(
¯✓)]� l⇤ = O

✓
log Tp

T

◆



Strong Convexity

• Use this to bound the expected deviation

• Exponentially decaying averaging

and plugging this into the discrepancy yields

li(✓
0) � li(✓) + h@✓li(✓), ✓0 � ✓i+ 1

2
� k✓ � ✓0k2

r2t+1  r2t + ⌘2t kgtk
2 � 2⌘t h✓t � ✓⇤, gti

 r2t + ⌘2tL
2 � 2⌘t [lt(✓t)� lt(✓

⇤)]� 2�⌘tr
2
k

hence E[r2t+1]  (1� �ht)E[r2t ]� 2⌘t [E [l(✓t)]� l⇤]

✓̄ =
1� �

1� �T

T�1X

t=0

�T�1�t✓t

l(¯✓)� l⇤  2L2

�T
log

"
1 +

�RT
1
2

2L

#
for ⌘ =

2

�T
log

"
1 +

�RT
1
2

2L

#



More variants
• Adversarial guarantees

has low regret (average instantaneous cost) for 
arbitrary orders (useful for game theory)
• Ratliff, Bagnell, Zinkevich          

         learning rate
• Shalev-Shwartz, Srebro, Singer (Pegasos)

         learning rate (but need constants)
• Bartlett, Rakhlin, Hazan

(add strong convexity penalty)

✓

t+1  ⇡

x

[✓
t

� ⌘

t

@

✓

(y
t

, h�(x
t

), ✓
t

i)]

O(t�
1
2 )

O(t�1)



Regularization



Problems with KernelsProblems with Kernels

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 3

Myth
Support Vectors work because they map data into a
high-dimensional feature space.

And your statistician (Bellmann) told you . . .
The higher the dimensionality, the more data you need

Example: Density Estimation
Assuming data in [0, 1]

m, 1000 observations in [0, 1] give
you on average 100 instances per bin (using binsize 0.1

m)
but only 1

100 instances in [0, 1]

5.
Worrying Fact
Some kernels map into an infinite-dimensional space,
e.g., k(x, x

0
) = exp(� 1

2�2kx � x

0k2
)

Encouraging Fact
SVMs work well in practice . . .



Solving the MysterySolving the Mystery

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 4

The Truth is in the Margins
Maybe the maximum margin requirement is what saves
us when finding a classifier, i.e., we minimize kwk2.

Risk Functional
Rewrite the optimization problems in a unified form

Rreg[f ] =

mX

i=1

c(x

i

, y

i

, f(x

i

)) + ⌦[f ]

c(x, y, f (x)) is a loss function and ⌦[f ] is a regularizer.
⌦[f ] =

�

2kwk
2 for linear functions.

For classification c(x, y, f (x)) = max(0, 1� yf (x)).
For regression c(x, y, f (x)) = max(0, |y � f (x)|� ✏).



Typical SVM lossTypical SVM Loss Functions

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 5

Soft Margin Loss "-insensitive Loss



Soft Margin LossSoft Margin Loss

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 6

Original Optimization Problem

minimize
w,⇠

1

2

kwk2
+ C

mX

i=1

⇠

i

subject to y

i

f (x

i

) � 1� ⇠

i

and ⇠

i

� 0 for all 1  i  m

Regularization Functional

minimize
w

�

2

kwk2
+

mX

i=1

max(0, 1� y

i

f (x

i

))

For fixed f , clearly ⇠

i

� max(0, 1� y

i

f (x

i

)).
For ⇠ > max(0, 1 � y

i

f (x

i

)) we can decrease it such
that the bound is matched and improve the objective
function.
Both methods are equivalent.



Why Regularization?Why Regularization?

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 7

What we really wanted . . .
Find some f (x) such that the expected loss
E[c(x, y, f (x))] is small.

What we ended up doing . . .
Find some f (x) such that the empirical average of the
expected loss Eemp[c(x, y, f (x))] is small.

Eemp[c(x, y, f (x))] =

1

m

mX

i=1

c(x

i

, y

i

, f(x

i

))

However, just minimizing the empirical average does not
guarantee anything for the expected loss (overfitting).

Safeguard against overfitting
We need to constrain the class of functions f 2 F some-
how. Adding ⌦[f ] as a penalty does exactly that.



Some regularization ideasSome Regularization Terms

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 8

Small Derivatives
We want to have a function f which is smooth on the
entire domain. In this case we could use

⌦[f ] =

Z

X

k@
x

f (x)k2
dx = h@

x

f, @

x

fi.

Small Function Values
If we have no further knowledge about the domain X,
minimizing kfk2 might be sensible, i.e.,

⌦[f ] = kfk2
= hf, fi.

Splines
Here we want to find f such that both kfk2 and k@2

x

fk2

are small. Hence we can minimize
⌦[f ] = kfk2

+ k@2
x

fk2
= h(f, @

2
x

f ), (f, @

2
x

f )i



RegularizationRegularization

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 9

Regularization Operators
We map f into some Pf , which is small for desirable f

and large otherwise, and minimize
⌦[f ] = kPfk2

= hPf, Pfi.
For all previous examples we can find such a P .

Function Expansion for Regularization Operator
Using a linear function expansion of f in terms of some
f

i

, that is for f (x) =

X

i

↵

i

f

i

(x) we can compute

⌦[f ] =

*
P

X

i

↵

i

f

i

(x), P

X

j

↵

j

f

i

(x)

+
=

X

i,j

↵

i

↵

j

hPf

i

, Pf

j

i.



Regularization and KernelsRegularization and Kernels

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 10

Regularization for ⌦[f ] =

1
2kwk2

w =

X

i

↵

i

�(x

i

) =) kwk2
=

X

i,j

↵

i

↵

j

k(x

i

, x

j

)

This looks very similar to hPf

i

, Pf

j

i.
Key Idea
So if we could find a P and k such that

k(x, x

0
) = hPk(x, ·), Pk(x

0
, ·)i

we could show that using a kernel means that we are
minimizing the empirical risk plus a regularization term.

Solution: Greens Functions
A sufficient condition is that k is the Greens Function of
P

⇤
P , that is hP ⇤

Pk(x, ·), f(·)i = f (x).
One can show that this is necessary and sufficient.



Building KernelsBuilding Kernels

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 11

Kernels from Regularization Operators:
Given an operator P

⇤
P , we can find k by solving the self

consistency equation
hPk(x, ·), Pk(x

0
, ·)i = k

>
(x, ·)(P ⇤

P )k(x

0
, ·) = k(x, x

0
)

and take f to be the span of all k(x, ·).
So we can find k for a given measure of smoothness.

Regularization Operators from Kernels:
Given a kernel k, we can find some P

⇤
P for which the

self consistency equation is satisfied.
So we can find a measure of smoothness for a given k.



Spectrum and KernelsSpectrum and Kernels

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 12

Effective Function Class
Keeping ⌦[f ] small means that f (x) cannot take on arbi-
trary function values. Hence we study the function class
F

C

=

⇢
f

����
1

2

hPf, Pfi  C

�

Example
For f =

X

i

↵

i

k(x

i

, x) this implies 1

2

↵

>
K↵  C.

Kernel Matrix

K =


5 2

2 1

� Coefficients Function Values



Fourier RegularizationFourier Regularization

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 13

Goal
Find measure of smoothness that depends on the fre-
quency properties of f and not on the position of f .

A Hint: Rewriting kfk2
+ k@

x

fk2

Notation: ˜

f (!) is the Fourier transform of f .

kfk2
+ k@

x

fk2
=

Z
|f (x)|2 + |@

x

f (x)|2dx

=

Z
| ˜

f (!)|2 + !

2| ˜

f (!)|2d!

=

Z | ˜

f (!)|2

p(!)

d! where p(!) =

1

1 + !

2
.

Idea
Generalize to arbitrary p(!), i.e. ⌦[f ] :=

1

2

Z | ˆ

f (!)|2

p(!)

d!



Greens FunctionThe Greens Function

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 14

Theorem
For regularization functionals ⌦[f ] :=

1

2

Z | ˆ

f (!)|2

p(!)

d! the
self-consistency condition

hPk(x, ·), Pk(x

0
, ·)i = k

>
(x, ·)(P ⇤

P )k(x

0
, ·) = k(x, x

0
)

is satisfied if k has p(!) as its Fourier transform, i.e.,

k(x, x

0
) =

Z
exp(�ih!, (x � x

0
)i)p(!)d!

Consequences
small p(!) correspond to high penalty (regularization).
⌦[f ] is translation invariant, that is ⌦[f (·)] = ⌦[f (·�x)].



ExamplesExamples
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Laplacian Kernel
k(x, x

0
) = exp(�kx� x

0k)
p(!) / (1 + k!k2

)

�1

Gaussian Kernel
k(x, x

0
) = e

�1
2�

�2kx�x

0k2

p(!) / e

�1
2�

2k!k2

Fourier transform of k shows regularization properties.
The more rapidly p(!) decays, the more high frequencies
are filtered out.



Rules of thumbRules of Thumb

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 16

Fourier transform is sufficient to check whether k(x, x

0
)

satisfies Mercer’s condition: only check if ˜

k(!) � 0.
Example: k(x, x

0
) = sinc(x� x

0
).

˜

k(!) = �[�⇡,⇡](!), hence k is a proper kernel.
Width of kernel often more important than type of kernel
(short range decay properties matter).
Convenient way of incorporating prior knowledge, e.g.:
for speech data we could use the autocorrelation func-
tion.
Sum of derivatives becomes polynomial in Fourier
space.



Polynomial KernelsPolynomial Kernels

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 17

Functional Form
k(x, x

0
) = (hx, x

0i)

Series Expansion
Polynomial kernels admit an expansion in terms of Leg-
endre polynomials (LN

n

: order n in RN).

k(x, x

0
) =

1X

n=0

b

n

L

n

(hx, x

0i)

Consequence:
L

n

(and their rotations) form an orthonormal basis on the
unit sphere, P

⇤
P is rotation invariant, and P

⇤
P is diago-

nal with respect to L

n

. In other words
(P

⇤
P )L

n

(hx, ·i) = b

�1
n

L

n

(hx, ·i)



Polynomial KernelsPolynomial Kernels II

Alexander J. Smola: An Introduction to Support Vectors and Regularization, Page 18

Decay properties of b

n

determine smoothness of func-
tions specified by k(hx, x

0i).
For N !1 all terms of LN

n

but xn vanish, hence a Taylor
series k(x, x

0
) =

P
i

a

i

hx, x

0ii gives a good guess.
Inhomogeneous Polynomial

k(x, x

0
) = (hx, x

0i + 1)

p

a

n

=

✓
p

n

◆
if n  p

Vovk’s Real Polynomial

k(x, x

0
) =

1� hx, x

0ip

1� (hx, x

0i)
a

n

= 1 if n < p



Mini SummarySummary
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Regularized Risk Functional
From Optimization Problems to Loss Functions
Regularization
Safeguard against Overfitting

Regularization and Kernels
Examples of Regularizers
Regularization Operators
Greens Functions and Self Consistency Condition

Fourier Regularization
Translation Invariant Regularizers
Regularization in Fourier Space
Kernel is inverse Fourier Transformation of Weight

Polynomial Kernels and Series Expansions



Text Analysis
(string kernels)



String Kernel (pre)History



The Kernel Perspective
• Design a kernel implementing good features

• Many variants
• Bag of words (AT&T labs 1995, e.g. Vapnik)
• Matching substrings (Haussler, Watkins 1998)
• Spectrum kernel (Leslie, Eskin, Noble, 2000)
• Suffix tree (Vishwanathan, Smola, 2003)
• Suffix array (Teo, Vishwanathan, 2006)
• Rational kernels (Mohri, Cortes, Haffner, 2004 ...)

k(x, x0) = h⇥(x),⇥(x0)i and f(x) = h⇥(x), wi =
X

i

�ik(xi, x)



Bag of words
• At least since 1995 known in AT&T labs

(to be or not to be)    (be:2, or:1, not:1, to:2)

• Joachims 1998: Use sparse vectors
• Haffner 2001: Inverted index for faster training
• Lots of work on feature weighting (TF/IDF)
• Variants of it deployed in many spam filters

k(x, x0) =
X

w

nw(x)nw(x
0) and f(x) =

X

w

�wnw(x
0)



Substring (mis)matching
• Watkins 1998+99 (dynamic alignment, etc)
• Haussler 1999 (convolution kernels)

• In general O(x x’) runtime
(e.g. Cristianini, Shawe-Taylor, Lodhi, 2001)

• Dynamic programming solution for pair-HMM

k(x, x0) =
X

w2x

X

w

02x

0

�(w,w0)

B

1
�

1��

�
1��

�

1��

�

�

1��

1��

1

END

AB

START

A



Spectrum Kernel
• Leslie, Eskin, Noble & coworkers, 2002
• Key idea is to focus on features directly

• Linear time operation to get features
• Limited amount of mismatch 

(exponential in number of missed chars)
• Explicit feature construction

(good & fast for DNA sequences)



Suffix Tree Kernel
• Vishwanathan & Smola, 2003 (O(x + x’) time)
• Mismatch-free kernel + arbitrary weights

• Linear time construction
(Ukkonen, 1995)

• Find matches for second
string in linear time
(Chang & Lawler, 1994)

• Precompute weights on path

k(x, x0) =
X

w

�wnw(x)nw(x
0)



Are we done?
• Large vocabulary size
• Need to build dictionary
• Approximate matches are still a problem
• Suffix tree/array is storage inefficient (40-60x)
• Realtime computation 
• Memory constraints (keep in RAM)
• Difficult to implement



Multitask Learning



Classifier ClassifierClassifier Classifier

Multitask Learning



1: donut?
0: not-
spam!1: spam! ?

maliciouseducated misinformed confused silent

0: quality 

Classifier ClassifierClassifier Classifier

Multitask Learning



Classifier

maliciouseducated misinformed confused silent

Classifier ClassifierClassifier Classifier

Multitask Learning



Classifier Classifier Classifier Classifier Classifier

maliciouseducated misinformed confused silent

Global
Classifier

Multitask Learning



Collaborative Classification

• Primal representation

Kernel representation

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
• Problem - dimensionality is 1013. That is 40TB of space

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

k((x, u), (x�, u�)) = k(x, x�)[1 + �u,u� ]



Collaborative Classification

email

w
wuser

• Primal representation

Kernel representation

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
• Problem - dimensionality is 1013. That is 40TB of space

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

k((x, u), (x�, u�)) = k(x, x�)[1 + �u,u� ]



Collaborative Classification

email

w
wuser

email (1 + euser)

w + euser 

• Primal representation

Kernel representation

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
• Problem - dimensionality is 1013. That is 40TB of space

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

k((x, u), (x�, u�)) = k(x, x�)[1 + �u,u� ]



Hashing



*in the old days

Hash Kernels



Hey,

please mention 
subtly during 
your talk that 
people should 
use Yahoo* 
search more 
often. 
Thanks,  

instance: dictionary:

1

2

1

 

 
1

task/user
(=barney):

sparse *in the old days

Hash Kernels



Hey,

please mention 
subtly during 
your talk that 
people should 
use Yahoo* 
search more 
often. 
Thanks,  

instance: dictionary:

1

2

1

 

 
1

task/user
(=barney):

sparse

1

3

2
1

Rm

hash
function:

h()

sparse

*in the old days

Hash Kernels



Hey,

please mention 
subtly during 
your talk that 
people should 
use Yahoo 
search more 
often. 
Thanks,  

instance:

task/user
(=barney):

⇥xi � RN�(U+1)

1

3

2
-1

h()

h(‘mention’)

h(‘mention_barney’)

s(m_b)

s(m)

{-1, 1}

Similar to count hash
(Charikar, Chen, Farrach-Colton, 2003)

Hash Kernels



Advantages of hashing



Advantages of hashing
• No dictionary!

• Content drift is no problem
• All memory used for classification 
• Finite memory guarantee (via online learning)
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Advantages of hashing
• No dictionary!

• Content drift is no problem
• All memory used for classification 
• Finite memory guarantee (via online learning)

• No Memory needed for projection. (vs LSH)
• Implicit mapping into high dimensional space!
• It is sparsity preserving! (vs LSH)



Approximate Orthogonality

Rsmall

We can do multi-task learning!

�()
h()

Rlarge
Rsmall



Guarantees
• For a random hash function the inner product vanishes with 

high probability via

• We can use this for multitask learning

• The hashed inner product is unbiased
Proof: take expectation over random signs

• The variance is O(1/n)
Proof: brute force expansion

• Restricted isometry property (Kumar, Sarlos, Dasgupta 2010)

Pr{|⌅wv, hu(x)⇧| > �} � 2e�C�2m

Direct sum in 
Hilbert Space

Sum in 
Hash Space



Spam classification results
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Lazy users ...
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Results by user group
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Estimation details
• Works best with stochastic gradient descent

(or any other primal space method)
• Never instantiate hash map explicitly

• Random memory access pattern (latency)
• Multiclass classification - joint hash

f(x) = hw,�(x)i =
X

s

w[h(s)]ns(x)



Approximate Matches
• General idea

• Simplification
• Weigh by mismatch amount |w-w’|
• Map into fragments: dog -> (*og, d*g, do*)
• Hash fragments and weigh them based on 

mismatch amount
• Exponential in amount of mismatch

But not in alphabet size

k(x, x0
) =

X

w2x

X

w

02x

0

⇥(w,w0
) for |w � w0| ⇥ �



• Cache size is a few MBs
Very fast random memory access

• RAM (DDR3 or better) is GBs
• Fast sequential memory access (burst read)
• CPU caches memory read from RAM
• Random memory access is very slow
• CPU caches memory read from RAM

Memory access patterns

vector

hashed sequence



Speeding up access
• Key idea - bound the range of h(i,j) 
• Linear offset

bad collisions in i
• Sum of hash functions

bad collisions in j
• Optimal Golomb Ruler (Langford)

NP hard in general
• Feistel Network / Cryptography (new)

for j=1 to n access h(i,j)

h(i, j) = h(i) + j

h(i, j) = h(i) + h0(j)

h(i, j) = h(i) + OGR(j)

h(i, j) = h(i) + crypt(j|i)


