
Introduction to Machine Learning
5. Support Vector Classification

Alex Smola
Carnegie Mellon University

http://alex.smola.org/teaching/cmu2013-10-701
10-701

http://alex.smola.org/teaching/berkeley2012
http://alex.smola.org/teaching/berkeley2012

• Support Vector Classification
Large Margin Separation, optimization problem

• Properties
Support Vectors, kernel expansion

• Soft margin classifier
Dual problem, robustness

Outline

Support
Vector
Machines

http://maktoons.blogspot.com/2009/03/support-vector-machine.html

http://maktoons.blogspot.com/2009/03/support-vector-machine.html
http://maktoons.blogspot.com/2009/03/support-vector-machine.html

Linear Separator

Spam
Ham

Linear Separator

Spam
Ham

Linear Separator

Spam
Ham

Linear Separator

Spam
Ham

Linear Separator

Spam
Ham

Linear Separator

Spam
Ham

Linear Separator

Spam
Ham

Large Margin Classifier

hw, xi+ b  �1 hw, xi+ b � 1

f(x) = hw, xi+ b

linear function

Large Margin Classifier

hw, xi+ b = �1 hw, xi+ b = 1

hx+ � x�, wi
2 kwk =

1

2 kwk [[hx+, wi+ b]� [hx�, wi+ b]] =
1

kwk

margin

w

Large Margin Classifier

hw, xi+ b = �1 hw, xi+ b = 1

optimization problem

w

maximize

w,b

1

kwk subject to yi [hxi, wi+ b] � 1

Large Margin Classifier

hw, xi+ b = �1 hw, xi+ b = 1

optimization problem

w

minimize

w,b

1

2

kwk2 subject to yi [hxi, wi+ b] � 1

Dual Problem
• Primal optimization problem

• Lagrange function

Optimality in w, b is at saddle point with α
• Derivatives in w, b need to vanish

minimize

w,b

1

2

kwk2 subject to yi [hxi, wi+ b] � 1

L(w, b,↵) =
1

2
kwk2 �

X

i

↵i [yi [hxi, wi+ b]� 1]

constraint

Dual Problem
• Lagrange function

• Derivatives in w, b need to vanish

• Plugging terms back into L yields

L(w, b,↵) =
1

2
kwk2 �

X

i

↵i [yi [hxi, wi+ b]� 1]

@wL(w, b, a) = w �
X

i

↵iyixi = 0

@bL(w, b, a) =
X

i

↵iyi = 0

maximize

↵
� 1

2

X

i,j

↵i↵jyiyj hxi, xji+
X

i

↵i

subject to

X

i

↵iyi = 0 and ↵i � 0

w

Support Vector Machines
minimize

w,b

1

2

kwk2 subject to yi [hxi, wi+ b] � 1

maximize

↵
� 1

2

X

i,j

↵i↵jyiyj hxi, xji+
X

i

↵i

subject to

X

i

↵iyi = 0 and ↵i � 0

w =
X

i

yi↵ixi

w

Support Vectors
minimize

w,b

1

2

kwk2 subject to yi [hxi, wi+ b] � 1

w =
X

i

yi↵ixi

Karush Kuhn Tucker
Optimality condition

↵i [yi [hw, xii+ b]� 1] = 0

↵i = 0

↵i > 0 =) yi [hw, xii+ b] = 1

w

w =
X

i

yi↵ixi

Properties

• Weight vector w as weighted linear combination of instances
• Only points on margin matter (ignore the rest and get same solution)
• Only inner products matter

• Quadratic program
• We can replace the inner product by a kernel

• Keeps instances away from the margin

Example

Example

Why large margins?
• Maximum

robustness relative
to uncertainty

• Symmetry breaking
• Independent of

correctly classified
instances

• Easy to find for
easy problems

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

7.2 The Role of the Margin 201

∆x ∈ H is bounded in norm by some r > 0. Clearly, if we manage to separate the
training set with a margin ρ > r, we will correctly classify all test points: Since all
training points have a distance of at least ρ to the hyperplane, the test patterns
will still be on the correct side (Figure 7.3, cf. also [146]).

o

o

o

+

+

+

o
+

r

ρ

Figure 7.3 Two-dimensional toy example of a classification problem: Separate ‘o’ from
‘+’ using a hyperplane. Suppose that we add bounded noise to each pattern. If the optimal
margin hyperplane has margin ρ, and the noise is bounded by r < ρ, then the hyperplane
will correctly separate even the noisy patterns. Conversely, if we ran the perceptron
algorithm (which finds some separating hyperplane, but not necessarily the optimal one)
on the noisy data, then we would recover the optimal hyperplane in the limit r → ρ.

If we knew ρ beforehand, then this could actually be turned into an optimal
margin classifier training algorithm, as follows. If we use an r which is slightly
smaller than ρ, then even the patterns with added noise will be separable with a
nonzero margin. In this case, the standard perceptron algorithm can be shown to
converge.1

1. Rosenblatt’s perceptron algorithm [423] is one of the simplest conceivable iterative
procedures for computing a separating hyperplane. In its simplest form, it proceeds as
follows. We start with an arbitrary weight vector w0. At step n ∈ N, we consider the
training example (xn, yn). If it is classified correctly using the current weight vector (i.e.,
if sgn 〈xn,wn−1〉 = yn), we set wn := wn−1; otherwise, we set wn := wn−1+ηyixi (here,
η > 0 is a learning rate). We thus loop over all patterns repeatedly, until we can complete
one full pass through the training set without a single error. The resulting weight vector
will thus classify all points correctly. Novikoff [369] proved that this procedure terminates,
provided that the training set is separable with a nonzero margin.

Support
Vector
MachinesCLASSIFIERS

Large Margin Classifier

hw, xi+ b  �1 hw, xi+ b � 1

f(x) = hw, xi+ b

linear function

Large Margin Classifier

hw, xi+ b  �1 hw, xi+ b � 1

f(x) = hw, xi+ b

linear function

Large Margin Classifier

hw, xi+ b  �1 hw, xi+ b � 1

f(x) = hw, xi+ b

linear function
linear separator

is impossible

Large Margin Classifier

hw, xi+ b  �1 hw, xi+ b � 1

Theorem (Minsky & Papert)
Finding the minimum error separating hyperplane is NP hard

Large Margin Classifier

hw, xi+ b  �1 hw, xi+ b � 1

Theorem (Minsky & Papert)
Finding the minimum error separating hyperplane is NP hard

Large Margin Classifier

hw, xi+ b  �1 hw, xi+ b � 1

Theorem (Minsky & Papert)
Finding the minimum error separating hyperplane is NP hard

minimum error separator
is impossible

hw, xi+ b  �1 + ⇠

Adding slack variables

Convex optimization problem

hw, xi+ b � 1� ⇠

hw, xi+ b  �1 + ⇠

Adding slack variables

Convex optimization problem

hw, xi+ b � 1� ⇠

hw, xi+ b  �1 + ⇠

Adding slack variables

Convex optimization problem
minimize amount

of slack

hw, xi+ b � 1� ⇠

Intermezzo
Convex Programs for Dummies

• Primal optimization problem

• Lagrange function

• First order optimality conditions in x

• Solve for x and plug it back into L

(keep explicit constraints)

minimize

x

f(x) subject to c

i

(x)  0

L(x,↵) = f(x) +
X

i

↵ici(x)

@

x

L(x,↵) = @

x

f(x) +
X

i

↵

i

@

x

c

i

(x) = 0

maximize

↵
L(x(↵),↵)

hw, xi+ b  �1 + ⇠

Adding slack variables

Convex optimization problem

hw, xi+ b � 1� ⇠

hw, xi+ b  �1 + ⇠

Adding slack variables

Convex optimization problem

hw, xi+ b � 1� ⇠

hw, xi+ b  �1 + ⇠

Adding slack variables

Convex optimization problem
minimize amount

of slack

hw, xi+ b � 1� ⇠

Adding slack variables
• Hard margin problem

• With slack variables

Problem is always feasible. Proof:
 (also yields upper bound)

minimize

w,b

1

2

kwk2 subject to yi [hw, xii+ b] � 1

minimize

w,b

1

2

kwk2 + C

X

i

⇠i

subject to yi [hw, xii+ b] � 1� ⇠i and ⇠i � 0

w = 0 and b = 0 and ⇠i = 1

• Primal optimization problem

• Lagrange function

Optimality in w,b,ξ is at saddle point with α,η
• Derivatives in w,b,ξ need to vanish

L(w, b,↵) =
1

2
kwk2 + C

X

i

⇠i �
X

i

↵i [yi [hxi, wi+ b] + ⇠i � 1]�
X

i

⌘i⇠i

Dual Problem

minimize

w,b

1

2

kwk2 + C

X

i

⇠i

subject to yi [hw, xii+ b] � 1� ⇠i and ⇠i � 0

Dual Problem
• Lagrange function

• Derivatives in w, b need to vanish

• Plugging terms back into L yields

L(w, b,↵) =
1

2
kwk2 + C

X

i

⇠i �
X

i

↵i [yi [hxi, wi+ b] + ⇠i � 1]�
X

i

⌘i⇠i

@wL(w, b, ⇠,↵, ⌘) = w �
X

i

↵iyixi = 0

@bL(w, b, ⇠,↵, ⌘) =
X

i

↵iyi = 0

@⇠iL(w, b, ⇠,↵, ⌘) = C � ↵i � ⌘i = 0

maximize

↵
� 1

2

X

i,j

↵i↵jyiyj hxi, xji+
X

i

↵i

subject to

X

i

↵iyi = 0 and ↵i 2 [0, C]

bound
influence

w

Karush Kuhn Tucker Conditions

w =
X

i

yi↵ixi

maximize

↵
� 1

2

X

i,j

↵i↵jyiyj hxi, xji+
X

i

↵i

subject to

X

i

↵iyi = 0 and ↵i 2 [0, C]

↵i = 0 =) yi [hw, xii+ b] � 1

0 < ↵i < C =) yi [hw, xii+ b] = 1

↵i = C =) yi [hw, xii+ b]  1

↵i [yi [hw, xii+ b] + ⇠i � 1] = 0

⌘i⇠i = 0

C=1

C=2

C=5

C=10

C=20

C=50

C=100

C=1

C=2

C=5

C=10

C=20

C=50

C=100

C=1

C=2

C=5

C=10

C=20

C=50

C=100

C=1

C=2

C=5

C=10

C=20

C=50

C=100

Solving the optimization problem
• Dual problem

• If problem is small enough (1000s of variables)
we can use off-the-shelf solver (CVXOPT,
CPLEX, OOQP, LOQO)

• For larger problem use fact that only SVs
matter and solve in blocks (active set method).

maximize

↵
� 1

2

X

i,j

↵i↵jyiyj hxi, xji+
X

i

↵i

subject to

X

i

↵iyi = 0 and ↵i 2 [0, C]

Nonlinear
Separation

• Linear soft margin problem

• Dual problem

• Support vector expansion

The Kernel Trick

f(x) =
X

i

↵iyi hxi, xi+ b

maximize

↵
� 1

2

X

i,j

↵i↵jyiyj hxi, xji+
X

i

↵i

subject to

X

i

↵iyi = 0 and ↵i 2 [0, C]

minimize

w,b

1

2

kwk2 + C

X

i

⇠i

subject to yi [hw, xii+ b] � 1� ⇠i and ⇠i � 0

f(x) =
X

i

↵iyik(xi, x) + b

maximize

↵
� 1

2

X

i,j

↵i↵jyiyjk(xi, xj) +

X

i

↵i

subject to

X

i

↵iyi = 0 and ↵i 2 [0, C]

• Linear soft margin problem

• Dual problem

• Support vector expansion

minimize

w,b

1

2

kwk2 + C

X

i

⇠i

subject to yi [hw,�(xi)i+ b] � 1� ⇠i and ⇠i � 0

The Kernel Trick

C=1

C=2

C=5

C=10

C=20

C=50

C=100

C=1

C=2

C=5

C=10

C=20

C=50

C=100

C=1

C=2

C=5

C=10

C=20

C=50

C=100

C=1

C=2

C=5

C=10

C=20

C=50

C=100

And now with a narrower kernel

And now with a very wide kernel

Nonlinear separation

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

226 Pattern Recognition

Figure 7.10 2D toy example of a binary classification problem solved using a soft margin
SVC. In all cases, a Gaussian kernel (7.27) is used. From left to right, we decrease the
kernel width. Note that for a large width, the decision boundary is almost linear, and
the data set cannot be separated without error (see text). Solid lines represent decision
boundaries; dotted lines depict the edge of the margin (where (7.34) becomes an equality
with ξi = 0).

was used, but the kernel width c was varied. For large values of c, the classifier is
almost linear, and it cannot separate the data set without errors. For a small width
(right), the data set is practically memorized. For an intermediate width (middle),
a trade-off is made between allowing some training errors and using a “simple”
decision boundary.

In practice, both the kernel parameters and the value of C (or ν) are often chosenParameter Choice
using cross validation. To this end, we first split the data set into p parts of equal
size, say, p = 10. We then perform ten training runs. Each time, we leave out one of
the ten parts and use it as an independent test set for optimizing the parameters.
In the simplest case, we choose the parameters which work best, on average over
the ten runs. It is common practice, however, to then train on the full training
set, using these average parameters. There are some problems with this. First, it
amounts to optimizing the parameters on the same set as the one used for training,
which can lead to overfitting. Second, the optimal parameter settings for data sets
of size m and 9

10m, respectively, do not usually coincide. Typically, the smaller set
will requrie a slightly stronger regularization. This could mean a wider Gaussian
kernel, a smaller polynomial degree, a smaller C, or a larger ν. Even worse, it is
theoretically possible that there is a so-called phase transition (e.g., [376]) in the
learning curve between the two sample sizes. This means that the generalization
error as a function of the sample size could change dramatically between 9

10m and
m. Having said all this, practicioners often do not care about these theoretical
precautions, and use the unchanged parameters with excellent results. For further
detail, see Section 12.3.

In some cases, one can try to avoid the whole procedure by using an educated
guess. Below, we list several methods.

Use parameter setting that have worked well for similar problems. Here, some
care has to be exercised in the scaling of kernel parameters. For instance, when
using an RBF kernel, c must be rescaled to ensure that ‖xi − xj‖2/c typically lies

• Increasing C allows for more nonlinearities
• Decreases number of errors
• SV boundary need not be contiguous
• Kernel width adjusts function class

Risk and Loss

Loss function point of view
• Constrained quadratic program

• Risk minimization setting

Follows from finding minimal slack variable for
given (w,b) pair.

minimize

w,b

1

2

kwk2 + C

X

i

⇠i

subject to yi [hw, xii+ b] � 1� ⇠i and ⇠i � 0

minimize

w,b

1

2

kwk2 + C

X

i

max [0, 1� yi [hw, xii+ b]]

empirical risk

Soft margin as proxy for binary
• Soft margin loss
• Binary loss

max(0, 1� yf(x))

{yf(x) < 0}

convex upper
bound

binary loss
function margin

More loss functions

• Logistic
• Huberized loss

• Soft margin

8
><

>:

0 if f(x) > 1
1
2 (1� f(x))2 if f(x) 2 [0, 1]
1
2 � f(x) if f(x) < 0

max(0, 1� f(x))

(asymptotically)
linear

(asymptotically) 0

log

h
1 + e�f(x)

i

Risk minimization view
• Find function f minimizing classification error

• Compute empirical average

• Minimization is nonconvex
• Overfitting as we minimize empirical error

• Compute convex upper bound on the loss
• Add regularization for capacity control

R[f] := E
x,y⇠p(x,y) [{yf(x) > 0}]

Remp[f] :=
1

m

mX

i=1

{yif(xi) > 0}

Rreg[f] :=
1

m

mX

i=1

max(0, 1� yif(xi)) + �⌦[f]

regularization

how to control ƛ

Summary
• Support Vector Classification

Large Margin Separation, optimization
problem

• Properties
Support Vectors, kernel expansion

• Soft margin classifier
Dual problem, robustness

