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Bias Variance Trade-off   
!   Intuition: 

!   If the model is too simple, the solution is biased and does not 
fit the data 

!   If the model is too complex then it is very sensitive to small 
changes in the data  
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Bias 

!  If you sample a dataset D multiple times 
you expect to learn a different h(x) 

!  Expected hypothesis is ED[h(x)] 
!  Bias: difference between the truth and 

what you expect to learn 
!    
 
!  Decreases with more complex models 
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Variance 

!  Variance: difference between what you 
learn from a particular dataset and what 
you expect to learn 
!    
 
 
!  Decreases with simpler models 
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variance =
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[(h(x)� h̄(x))2]}p(x)dx

h̄(x) = ED[h(x)]
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Bias-Variance Tradeoff 

!  The choice of hypothesis class 
introduces a learning bias 
!  More complex class: less bias and more 

variance. 
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Training error 

!  Given a dataset 
!  Chose a loss function (L2 for regression 

for example) 

!  Training set error: 
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errortrain =
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Training error as a function of 
complexity 
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Prediction error 

!  Training error is not necessary a good 
measure 

!  We care about the error over all inputs 
points: 
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Prediction error as a function of 
complexity 

2/12/13 8 Recitation 1: Statistics Intro 



Carnegie Mellon University 10-701 Machine Learning Spring 2013 

Prediction error 

!  Training error is not necessary a good 
measure 

!  We care about the error over all inputs 
points: 

 
!  Training error is an optimistically biased 

estimate of prediction error. You 
optimized with respect to training set. 
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Train-test   

!  In practice: 
!  Randomly divide the dataset into test and 

train. 

!  Use training data to optimize parameters. 

!  Test error: 
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errortest =
1

Ntest

NtestX
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⇣
I(yi 6= h(xi))
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Test error as a function of 
complexity 
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Overfitting 

! Overfitting happens when we obtain a 
model h when there exist another 
solution h’ such that: 
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[errortrain(h) < errortrain(h
0)] ^ [errortrue(h) > errortrue(h

0)]
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Error as a function of data size for 
fixed complexity 
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Careful 

!  Test set only unbiased if never ever do 
any learning on it (including parameter 
selection!). 
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