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LIBSVM 
http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

Multiple interfaces and extensions 
Java, Matlab, Python, R, C# 

DO NOT use in the homework, though. 
We want you to learn what’s under the hood & how 
you can tweak it to make it awesome 

DO play with the applet  
If you’re running Debian: 
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>   apt-get install libsvm 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Happy 2-class Problem 
Q: Just how easy is this? 
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Happy 2-class Problem 
Q: Just how easy is this? 
A: Piece of cake! 
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Happy 2-class Problem 
Q: What happens when I add points? 
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Happy 2-class Problem 
Q: What happens when I add points? 
A: Within the cvx hull of existing ones (same class): NOTHING 
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Happy 2-class Problem 
Q: What happens when I add points? 
A: Outside of cvx hull, boundary changes to maintain margin. 
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Still Happy 3-class  Problem 
Q: What happens when we change kernels? 
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Still Happy 3-class  Problem 
Q: What happens when we change kernels? 
A: This. [Polinomial] 
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Still Happy 3-class  Problem 
Q: What happens when we change kernels? 
A: This. [Gaussian] 
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Still Happy 3-class  Problem 
Q: What happens when we change kernels? 
A: This. [Sigmoid] 
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3-Class Problem 
Q: This is what a linear kernel does. What happens if I change it? 
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3-Class Problem 
Q: This is what a linear kernel does. What happens if I change it? 
A: Polynomial. Doesn’t solve the problem. 
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3-Class Problem 
Q: This is what a linear kernel does. What happens if I change it? 
A: Gaussian. OK! 
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3-Class Problem 
Q: This is what a linear kernel does. What happens if I change it? 
A: Sigmoid. (Weird, huh?) 
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Gaussian Kernel 
Q: What makes it different? 
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Gaussian Kernel 
Q: What makes it different? 
A: The capability of its basis function to ‘focus’ on one point. 
LIBSVM Parameters: -t 2 -c 100 -g 2000 
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Gaussian Kernel 
Q: What makes it different? 
A: The capability of its basis function to ‘focus’ on one point. 
LIBSVM Parameters: -t 2 -c 100 -g 500 
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Gaussian Kernel 
Q: What makes it different? 
A: The capability of its basis function to ‘focus’ on one point. 
LIBSVM Parameters: -t 2 -c 100 -g 50 
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Gaussian Kernel 
Q: What makes it different? 
A: The capability of its basis function to ‘focus’ on one point. 
LIBSVM Parameters: -t 2 -c 100 –g 7 
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Gaussian Kernel 
Q: What makes it different? 
A: The capability of its basis function to ‘focus’ on one point. 
LIBSVM Parameters: -t 2 -c 100 -g 5 
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Get correct 
parameter 
through 
cross-
validation! 
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Careful how you cross-validate 

2/12/2013 22 Recitation 4: Examples 



Carnegie Mellon University 10-701 Machine Learning Spring 2013 

Happy 2-class problem 
Q: How does the penalty C influence the border? 
A: It doesn’t. 
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Happy 2-class problem 
Q: How does the penalty C influence the border? 
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Unhappy 2-class problem 
Q: How does the penalty C influence the border? 
A: For high C, you get low tolerance for outliers (high sensitivity) 
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Unhappy 2-class problem 
Q: How does the penalty C influence the border? 
A: For low C, you get high tolerance for outliers (high robustness) 
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Conclusions 

Convex hulls dictate borders for non-
overlapping classes 
Type of kernel has HUGE impact 

Pick depending on application. 

Kernel parameters matter 
Get correct value through cross-validation 

Slack penalty influences robustness 
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