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• Perceptron
• Hebbian learning & biology
• Algorithm
• Convergence analysis

• Features and preprocessing
• Nonlinear separation
• Perceptron in feature space

• Kernels
• Kernel trick
• Properties
• Examples
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Perceptron

Frank Rosenblatt



early theories
of the brain



Biology and Learning
• Basic Idea

• Good behavior should be rewarded, bad behavior 
punished (or not rewarded). This improves system fitness.

• Killing a sabertooth tiger should be rewarded ...
• Correlated events should be combined.
• Pavlov’s salivating dog.

• Training mechanisms
• Behavioral modification of individuals (learning)

Successful behavior is rewarded (e.g. food). 
• Hard-coded behavior in the genes (instinct)

The wrongly coded animal does not reproduce.



Neurons
• Soma (CPU)

Cell body - combines signals
• Dendrite (input bus)

Combines the inputs from 
several other nerve cells

• Synapse (interface)
Interface and parameter store between neurons

• Axon (cable)
May be up to 1m long and will transport the 
activation signal to neurons at different locations



Neurons

f(x) =
X

i

wixi = hw, xi

x1 x2 x3 xn. . .

output

w1 wn

synaptic
weights



Perceptron
• Weighted linear

combination
• Nonlinear

decision function
• Linear offset (bias)

• Linear separating hyperplanes
(spam/ham, novel/typical, click/no click)

• Learning
Estimating the parameters w and b

x1 x2 x3 xn. . .

output

w1 wn

synaptic
weights

f(x) = � (hw, xi+ b)



Perceptron

Spam
Ham



The Perceptron

• Nothing happens if classified correctly
• Weight vector is linear combination
• Classifier is linear combination of

inner products 

initialize w = 0 and b = 0

repeat
if yi [hw, xii+ b]  0 then
w  w + yixi and b b+ yi

end if
until all classified correctly

w =
X

i2I

yixi

f(x) =
X

i2I

yi hxi, xi+ b



Convergence Theorem
• If there exists some          with unit length and

then the perceptron converges to a linear 
separator after a number of steps bounded by

• Dimensionality independent
• Order independent (i.e. also worst case)
• Scales with ‘difficulty’ of problem

(w⇤, b⇤)

yi [hxi, w
⇤i+ b

⇤
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ProofProof, Part I
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Starting Point
We start from w1 = 0 and b1 = 0.

Step 1: Bound on the increase of alignment
Denote by w

i

the value of w at step i (analogously b

i

).

Alignment: h(w
i

, b

i

), (w

⇤
, b

⇤
)i

For error in observation (x

i

, y
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) we get

h(w
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⇤
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, b
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, b

⇤
)i + ⇢

� j⇢.

Alignment increases with number of errors.



ProofProof, Part II
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Step 2: Cauchy-Schwartz for the Dot Product
h(w

j+1, bj+1) · (w

⇤
, b

⇤
)i  k(w

j+1, bj+1)k k(w⇤
, b

⇤
)k

=

p
1 + (b

⇤
)

2k(w
j+1, bj+1)k

Step 3: Upper Bound on k(w
j

, b

j

)k
If we make a mistake we have

k(w
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= k(w
j

, b

j

) + y

i
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, b
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, 1)k2

 j(R

2
+ 1).

Step 4: Combination of first three steps

j⇢ 
p

1 + (b

⇤
)

2k(w
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p
j(R

2
+ 1)((b

⇤
)

2
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Solving for j proves the theorem.



Consequences
• Only need to store errors.

This gives a compression bound for perceptron.
• Stochastic gradient descent on hinge loss

• Fails with noisy data
l(xi, yi, w, b) = max (0, 1� yi [hw, xii+ b])

do NOT train your 
avatar with perceptrons

Black & White



Hardness
margin vs. size

hard easy



























Concepts & version space
• Realizable concepts

• Some function exists that can separate data and is included in the 
concept space

• For perceptron - data is linearly separable
• Unrealizable concept

• Data not separable
• We don’t have a suitable function class (often hard to distinguish)



Minimum error separation

• XOR - not linearly separable
• Nonlinear separation is trivial
• Caveat (Minsky & Papert)

Finding the minimum error linear separator 
is NP hard (this killed Neural Networks in the 70s).



Nonlinearity & 
Preprocessing



• Regression
We got nonlinear functions by preprocessing

• Perceptron
• Map data into feature space
• Solve problem in this space
• Query replace        by               for code

• Feature Perceptron
• Solution in span of 

Nonlinear Features

x ! �(x)

hx, x0i h�(x),�(x0)i

�(xi)



Quadratic Features

• Separating surfaces are
Circles, hyperbolae, parabolae



Constructing Features
(very naive OCR system)

Constructing Features
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Idea
Construct features manually. E.g. for OCR we could use



Feature Engineering
for Spam Filtering

• bag of words
• pairs of words
• date & time
• recipient path
• IP number
• sender
• encoding
• links
• ... secret sauce ...
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More feature engineering
• Two Interlocking Spirals

Transform the data into a radial and angular part

• Handwritten Japanese Character Recognition 
• Break down the images into strokes and recognize it
• Lookup based on stroke order 

• Medical Diagnosis
• Physician’s comments
• Blood status / ECG / height / weight / temperature ...
• Medical knowledge

• Preprocessing
• Zero mean, unit variance to fix scale issue (e.g. weight vs. income)
• Probability integral transform (inverse CDF) as alternative

(x1, x2) = (r sin�, r cos�)



The Perceptron on features

• Nothing happens if classified correctly
• Weight vector is linear combination
• Classifier is linear combination of

inner products 

Perceptron on Features
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argument: X := {x1, . . . , xm

} ⇢ X (data)
Y := {y1, . . . , ym

} ⇢ {±1} (labels)
function (w, b) = Perceptron(X, Y, ⌘)

initialize w, b = 0

repeat
Pick (x

i

, y

i

) from data
if y

i

(w · �(x

i

) + b)  0 then
w

0
= w + y

i

�(x

i

)

b

0
= b + y

i

until y

i

(w · �(x

i

) + b) > 0 for all i

end

Important detail
w =

X

j

y

j

�(x

j

) and hence f (x) =

P
j

y

j

(�(x

j

) · �(x)) + b

w =
X

i2I

yi�(xi)

f(x) =
X

i2I

yi h�(xi),�(x)i+ b



Problems
• Problems

• Need domain expert (e.g. Chinese OCR)
• Often expensive to compute
• Difficult to transfer engineering knowledge

• Shotgun Solution
• Compute many features
• Hope that this contains good ones
• Do this efficiently



Kernels

Grace Wahba



Solving XOR

• XOR not linearly separable
• Mapping into 3 dimensions makes it easily solvable

(x1, x2) (x1, x2, x1x2)



Quadratic FeaturesPolynomial Features
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Quadratic Features in R2

�(x) :=

⇣
x

2
1,
p

2x1x2, x
2
2

⌘

Dot Product
h�(x), �(x

0
)i =

D⇣
x

2
1,
p

2x1x2, x
2
2

⌘
,

⇣
x

0
1
2
,

p
2x

0
1x

0
2, x

0
2
2
⌘E

= hx, x

0i2.
Insight
Trick works for any polynomials of order d via hx, x

0id.





Computational EfficiencyKernels
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Problem
Extracting features can sometimes be very costly.
Example: second order features in 1000 dimensions.
This leads to 5005 numbers. For higher order polyno-
mial features much worse.

Solution
Don’t compute the features, try to compute dot products
implicitly. For some features this works . . .

Definition
A kernel function k : X ⇥ X ! R is a symmetric function
in its arguments for which the following property holds

k(x, x

0
) = h�(x), �(x

0
)i for some feature map �.

If k(x, x

0
) is much cheaper to compute than �(x) . . .

5 · 105



The Kernel Perceptron

• Nothing happens if classified correctly
• Weight vector is linear combination
• Classifier is linear combination of inner products 

w =
X

i2I

yi�(xi)

Kernel Perceptron
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argument: X := {x1, . . . , xm

} ⇢ X (data)
Y := {y1, . . . , ym

} ⇢ {±1} (labels)
function f = Perceptron(X, Y, ⌘)

initialize f = 0

repeat
Pick (x

i

, y

i

) from data
if y

i

f (x

i

)  0 then
f (·) f (·) + y

i

k(x

i

, ·) + y

i

until y

i

f (x

i

) > 0 for all i

end

Important detail
w =

X

j

y

j

�(x

j

) and hence f (x) =

P
j

y

j

k(x

j

, x) + b.

f(x) =
X

i2I

yi h�(xi),�(x)i+ b =
X

i2I

yik(xi, x) + b



Polynomial KernelsPolynomial Kernels in Rn
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Idea
We want to extend k(x, x

0
) = hx, x

0i2 to

k(x, x

0
) = (hx, x

0i + c)

d where c > 0 and d 2 N.

Prove that such a kernel corresponds to a dot product.
Proof strategy
Simple and straightforward: compute the explicit sum
given by the kernel, i.e.

k(x, x

0
) = (hx, x

0i + c)

d

=

mX

i=0

✓
d

i

◆
(hx, x

0i)i cd�i

Individual terms (hx, x

0i)i are dot products for some �

i

(x).



Kernel Conditions
Are all k(x, x

0
) good Kernels?
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Computability
We have to be able to compute k(x, x

0
) efficiently (much

cheaper than dot products themselves).
“Nice and Useful” Functions
The features themselves have to be useful for the learn-
ing problem at hand. Quite often this means smooth
functions.

Symmetry
Obviously k(x, x

0
) = k(x

0
, x) due to the symmetry of the

dot product h�(x), �(x

0
)i = h�(x

0
), �(x)i.

Dot Product in Feature Space
Is there always a � such that k really is a dot product?



Mercer’s Theorem
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The Theorem
For any symmetric function k : X ⇥ X ! R which is
square integrable in X⇥ X and which satisfies

Z

X⇥X

k(x, x

0
)f (x)f (x

0
)dxdx

0 � 0 for all f 2 L2(X)

there exist �
i

: X ! R and numbers �

i

� 0 where
k(x, x

0
) =

X

i

�

i

�

i

(x)�

i

(x

0
) for all x, x

0 2 X.

Interpretation
Double integral is the continuous version of a vector-
matrix-vector multiplication. For positive semidefinite
matrices we haveX

i

X

j

k(x

i

, x

j

)↵

i

↵

j

� 0

Mercer’s Theorem



PropertiesProperties of the Kernel
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Distance in Feature Space
Distance between points in feature space via

d(x, x

0
)

2
:=k�(x) � �(x

0
)k2

=h�(x), �(x)i � 2h�(x), �(x

0
)i + h�(x

0
), �(x

0
)i

=k(x, x) + k(x

0
, x

0
) � 2k(x, x)

Kernel Matrix
To compare observations we compute dot products, so
we study the matrix K given by

K

ij

= h�(x

i

), �(x

j

)i = k(x

i

, x

j

)

where x

i

are the training patterns.
Similarity Measure
The entries K

ij

tell us the overlap between �(x

i

) and
�(x

j

), so k(x

i

, x

j

) is a similarity measure.



PropertiesProperties of the Kernel Matrix
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K is Positive Semidefinite
Claim: ↵

>
K↵ � 0 for all ↵ 2 Rm and all kernel matrices

K 2 Rm⇥m. Proof:
mX

i,j

↵

i

↵

j

K

ij

=

mX

i,j

↵

i

↵

j

h�(x

i

), �(x

j

)i

=

*
mX

i

↵

i

�(x

i

),

mX

j

↵

j

�(x

j

)

+
=

�����

mX

i=1

↵

i

�(x

i

)

�����

2

Kernel Expansion
If w is given by a linear combination of �(x

i

) we get

hw, �(x)i =

*
mX

i=1

↵

i

�(x

i

), �(x)

+
=

mX

i=1

↵

i

k(x

i

, x).



A CounterexampleA Counterexample
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A Candidate for a Kernel

k(x, x

0
) =

⇢
1 if kx� x

0k  1

0 otherwise
This is symmetric and gives us some information about
the proximity of points, yet it is not a proper kernel . . .

Kernel Matrix
We use three points, x1 = 1, x2 = 2, x3 = 3 and compute
the resulting “kernelmatrix” K. This yields

K =

2

4
1 1 0

1 1 1

0 1 1

3

5 and eigenvalues (

p
2�1)

�1
, 1 and (1�

p
2).

as eigensystem. Hence k is not a kernel.



ExamplesSome Good Kernels
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Examples of kernels k(x, x

0
)

Linear hx, x

0i
Laplacian RBF exp (��kx � x

0k)
Gaussian RBF exp

�
��kx � x

0k2
�

Polynomial (hx, x

0i + ci)d , c � 0, d 2 N
B-Spline B2n+1(x � x

0
)

Cond. Expectation E

c

[p(x|c)p(x

0|c)]
Simple trick for checking Mercer’s condition
Compute the Fourier transform of the kernel and check
that it is nonnegative.



Linear KernelLinear Kernel
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Laplacian KernelLaplacian Kernel
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Gaussian KernelGaussian Kernel
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Polynomial of order 3Polynomial (Order 3)
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B3 Spline Kernel
B

3

-Spline Kernel
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