Stochastic Gradient Descent 10701 Recitations 3

Mu Li

Computer Science Department Cargenie Mellon University

February 5, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The problem

 A typical machine learning problem has a penalty/regularizer + loss form

$$\min_{w} F(w) = g(w) + \frac{1}{n} \sum_{i=1}^{n} f(w; y_i, x_i),$$

 $x_i, w \in \mathbb{R}^p$, $y_i \in \mathbb{R}$, both g and f are convex

- Today we only consider differentiable f, and let g = 0 for simplicity
- ► For example, let f(w; y_i, x_i) = -log p(y_i|x_i, w), we are trying to maximize the log likelihood, which is

$$\max_{w} \frac{1}{n} \sum_{i=1}^{n} \log p(y_i | x_i, w)$$

Gradient Descent

• choose initial $w^{(0)}$, repeat

$$w^{(t+1)} = w^{(t)} - \eta_t \cdot \nabla F(w^{(t)})$$

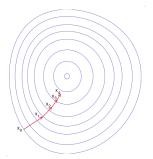
until stop

• η_t is the learning rate, and

$$\nabla F(w^{(t)}) = \frac{1}{n} \sum_{i} \nabla_{w} f(w^{(t)}; y_i, x_i)$$

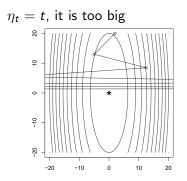
► How to stop?
$$||w^{(t+1)} - w^{(t)}|| \le \epsilon$$
 or $||\nabla F(w^{(t)})|| \le \epsilon$

Two dimensional example:

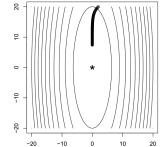


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Learning rate matters



too small η_t , after 100 iterations



・ロト ・四ト ・ヨト ・ヨト

- 2

Backtracking line search

Adaptively choose the learning rate

- choose a parameter $0 < \beta < 1$
- start with $\eta = 1$, repeat $t = 0, 1, \dots$

while

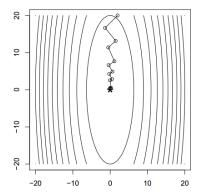
$$L(w^{(t)} - \eta \nabla L(w^{(t)})) > L(w^{(t)}) - \frac{\eta}{2} \|\nabla L(w^{(t)})\|^2$$

update
$$\eta = \beta \eta$$

 $w^{(t+1)} = w^{(t)} - \eta \nabla L(w^{(t)})$

Backtracking line search

A typical choice $\beta = 0.8$, converged after 13 iterations:



(日)、

æ

Stochastic Gradient Descent

We name ¹/_n ∑_i f(w; y_i, x_i) the empirical loss, the thing we hope to minimize is the expected loss

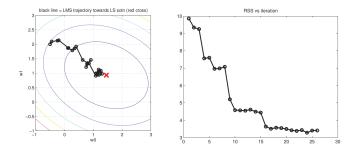
$$f(w) = \mathbb{E}_{y_i, x_i} f(w; y_i, x_i)$$

Suppose we receive an infinite stream of samples (y_t, x_t) from the distribution, one way to optimize the objective is

$$w^{(t+1)} = w^{(t)} - \eta_t \nabla_w f(w^{(t)}; y_t, x_t)$$

- On practice, we simulate the stream by randomly pick up (y_t, x_t) from the samples we have
- Comparing the average gradient of GD $\frac{1}{n} \sum_{i} \nabla_{w} f(w^{(t)}; y_{i}, x_{i})$

More about SGD



- the objective does not always decrease for each step
- comparing to GD, SGD needs more steps, but each step is cheaper
- mini-batch, say pick up 100 samples and do average, may accelerate the convergence

Relation to Perceptron

Recall Perceptron: initialize w, repeat

$$w = w + egin{cases} y_i x_i & ext{if } y_i \langle w, x_i
angle < 0 \ 0 & ext{otherwise} \end{cases}$$

Fix learning rate $\eta = 1$, let $f(w; y, x) = \max(0, -y_i \langle w, x_i \rangle)$, then

$$\nabla_w f(w; y, x) = \begin{cases} -y_i x_i & \text{if } y_i \langle w, x_i \rangle < 0\\ 0 & \text{otherwise} \end{cases}$$

we derive Perceptron from SGD

Question?