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Convex Sets

Definition
For x , x ′ ∈ X it follows that λx + (1− λ)x ′ ∈ X for λ ∈ [0,1]

Examples
Empty set ∅, single point {x0}, the whole space Rn

Hyperplane: {x | a>x = b}, halfspaces {x | a>x ≤ b}
Euclidean balls: {x | ||x − xc ||2 ≤ r}
Positive semidefinite matrices: Sn

+ = {A ∈ Sn|A � 0} (Sn is
the set of symmetric n × n matrices)
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Convexity Preserving Set Operations

Convex Set C,D
Translation {x + b | x ∈ C}
Scaling {λx | x ∈ C}
Affine function {Ax + b | x ∈ C}
Intersection C ∩ D
Set sum C + D = {x + y | x ∈ C, y ∈ D}
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Convex Functions

dom f is convex, λ ∈ [0,1]
λf (x) + (1− λ)f (y) ≥ f (λx + (1− λ)y)

First-order condition: if f is differentiable,

f (y) ≥ f (x) +∇f (x)>(y − x)

Second-order condition: if f is twice differentiable,

∇2f (x) � 0

Strictly convex: ∇2f (x) � 0
Strongly convex: ∇2f (x) � dI with d > 0
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Convex Functions

Below-set of a convex function is convex:
f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)
hence λx + (1− λ)y ∈ X for x , y ∈ X
Convex functions don’t have local minima:
Proof by contradiction:
linear interpolation breaks local minimum condition
Convex Hull:
Conv(X ) = {x̄ | x̄ =

∑
αixi where αi ≥ 0 and

∑
αi = 1}

Convex hull of a set is always a convex set
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Convex Functions examples

Exponential. eax convex on R, any a ∈ R
Powers. xa convex on R++ when a ≥ 1 or a ≤ 0, and
concave for 0 ≤ a ≤ 1.
Powers of absolute value. |x |p for p ≥ 1, convex on R.
Logarithm. log x concave on R++.
Norms. Every norm on Rn is convex.
f (x) = max{x1, ..., xn} convex on Rn

Log-sum-exp. f (x) = log(ex1 + ...+ exn ) convex on Rn.
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Convexity Preserving Function Operations

Convex function f (x),g(x)

Nonnegative weighted sum: af (x) + bg(x)

Pointwise Maximum: f (x) = max{f1(x), ..., fm(x)}
Composition with affine function: f (Ax + b)

Composition with nondecreasing convex g: g(f (x))
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Gradient Descent

given a starting point x ∈ domf .
repeat

1. ∆x := −∇f (x)
2. Choose step size t via exact or backtracking line search.
3. update. x := x + t∆x .

Until stopping criterion is satisfied.

Key idea
Gradient points into descent direction
Locally gradient is good approximation of objective function

Gradient Descent with line search
Get descent direction
Unconstrained line search
Exponential convergence for strongly convex objective
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Convergence Analysis

Assume ∇f is L-Lipschitz continuous, then gradient
descent with fixed step size t ≤ 1/L has convergence rate
O(1/k)
i.e., to get f (x (k))− f (x∗) ≤ ε, need O(1/ε) iterations
Assume strong convexity holds for f , i.e., ∇2f (x) � dI and
∇f is L-Lipschitz continuous, then gradient descent with
fixed step size t ≤ 2/(d + L) has convergence rate O(ck ),
where c ∈ (0,1),
i.e., to get f (x (k))− f (x∗) ≤ ε, need O(log(1/ε)) iterations
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Newton’s method

Convex objective function f
Nonnegative second derivative

∂2
x f (x) � 0

Taylor expansion

f (x + δ) = f (x) + δ>∂x f (x) +
1
2
δ>∂2

x f (x)δ + O(δ3)

Minimize approximation & iterate til converged

x ← x − [∂2
x f (x)]−1∂x f (x)
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Two Convergence regimes
As slow as gradient descent outside the region where
Taylor expansion is good

||∂x f (x∗)− ∂x f (x)− 〈x∗ − x , ∂2
x f (x)〉|| ≤ γ||x∗ − x ||2

Quadratic convergence once the bound holds

||xn+1 − x∗|| ≤ γ||[∂2
x f (xn)]−1|| ||xn − x∗||2
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Constrained Optimization

Primal problem:

min
x∈Rn

f (x)

subject to hi(x) ≤ 0, i = 1, . . . ,m
lj(x) = 0, j = 1, . . . , r

Lagrangian:

L(x ,u, v) = f (x) +
m∑

i=1

uihi(x) +
r∑

j=1

vj lj(x)

where u ∈ Rm, v ∈ Rr , and u ≥ 0.
Lagrange dual function:

g(u, v) = min
x∈Rn

L(x ,u, v)
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Constrained Optimization

Dual problem:

max
u,v

g(u, v)

subject to u ≥ 0

Dual problem is a convex optimization problem, since g is
always concave (even if primal problem is not convex)
The primal and dual optimal values always satisfy weak
duality: f ∗ ≥ g∗

Slater’s condition: for convex primal, if there is an x such
that h1(x) < 0, ...,hm(x) < 0 and l1(x) = 0, ..., lr (x) = 0
then strong duality holds: f ∗ = g∗.
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KKT conditions

If x∗,u∗, v∗ are primal and dual solutions, with zero duality gap
(strong duality holds), then x∗,u∗, v∗ satisfy the KKT conditions:

stationarity: 0 ∈ ∂f (x) +
∑

ui∂hi(x) +
∑

vj∂lj(x)

complementary slackness: uihi(x) = 0 for all i
primal feasibility: hi(x) ≤ 0, lj(x) = 0 for all i , j
dual feasibility: ui ≥ 0 for all i

Proof: f (x∗) = g(u∗, v∗)

= min
x∈Rn

f (x) +
∑

u∗i hi(x) +
∑

v∗j lJ(x)

≤ f (x∗) +
∑

u∗i hi(x∗) +
∑

v∗j lj(x∗)

≤ f (x∗)

Hence all these inequalities are actually equalities
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Appendix For Further Reading

For Further Reading I

Boyd and Vandenberghe
Convex Optimization.
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