Introduction to Convex Optimization

Xuezhi Wang

Computer Science Department
Carnegie Mellon University

10701-recitation, Jan 29
Outline

1. Convexity
 - Convex Sets
 - Convex Functions

2. Unconstrained Convex Optimization
 - First-order Methods
 - Newton’s Method

3. Constrained Optimization
 - Primal and dual problems
 - KKT conditions
Convex Sets

- **Definition**
 For $x, x' \in X$ it follows that $\lambda x + (1 - \lambda)x' \in X$ for $\lambda \in [0, 1]$

- **Examples**
 - Empty set \emptyset, single point $\{x_0\}$, the whole space \mathbb{R}^n
 - Hyperplane: $\{x \mid a^\top x = b\}$, halfspaces $\{x \mid a^\top x \leq b\}$
 - Euclidean balls: $\{x \mid \|x - x_c\|_2 \leq r\}$
 - Positive semidefinite matrices: $\mathbf{S}^n_+ = \{A \in \mathbf{S}^n \mid A \succeq 0\}$ (\mathbf{S}^n is the set of symmetric $n \times n$ matrices)
Convexity Preserving Set Operations

Convex Set C, D

- Translation $\{x + b \mid x \in C\}$
- Scaling $\{\lambda x \mid x \in C\}$
- Affine function $\{Ax + b \mid x \in C\}$
- Intersection $C \cap D$
- Set sum $C + D = \{x + y \mid x \in C, y \in D\}$
Outline

1. Convexity
 - Convex Sets
 - Convex Functions

2. Unconstrained Convex Optimization
 - First-order Methods
 - Newton’s Method

3. Constrained Optimization
 - Primal and dual problems
 - KKT conditions
Convex Functions

- **First-order condition**: if f is differentiable,
 \[f(y) \geq f(x) + \nabla f(x)^\top (y - x) \]

- **Second-order condition**: if f is twice differentiable,
 \[\nabla^2 f(x) \succeq 0 \]

- **Strictly convex**: $\nabla^2 f(x) \succ 0$
- **Strongly convex**: $\nabla^2 f(x) \succeq dl$ with $d > 0$

\[\text{dom } f \text{ is convex, } \lambda \in [0, 1] \]
\[\lambda f(x) + (1 - \lambda)f(y) \geq f(\lambda x + (1 - \lambda)y) \]
Convex Functions

- **Below-set of a convex function** is convex:
 \[f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) \]
 hence \(\lambda x + (1 - \lambda)y \in X \) for \(x, y \in X \)

- **Convex functions don’t have local minima**:
 Proof by contradiction:
 linear interpolation breaks local minimum condition

- **Convex Hull**:
 \[Conv(X) = \{ \bar{x} | \bar{x} = \sum \alpha_i x_i \text{ where } \alpha_i \geq 0 \text{ and } \sum \alpha_i = 1 \} \]
 Convex hull of a set is always a convex set
Convex Functions examples

- Exponential. \(e^{ax} \) convex on \(\mathbb{R} \), any \(a \in \mathbb{R} \)
- Powers. \(x^a \) convex on \(\mathbb{R}^{++} \) when \(a \geq 1 \) or \(a \leq 0 \), and concave for \(0 \leq a \leq 1 \).
- Powers of absolute value. \(|x|^p \) for \(p \geq 1 \), convex on \(\mathbb{R} \).
- Logarithm. \(\log x \) concave on \(\mathbb{R}^{++} \).
- Norms. Every norm on \(\mathbb{R}^n \) is convex.
- \(f(x) = \max\{x_1, \ldots, x_n\} \) convex on \(\mathbb{R}^n \)
- Log-sum-exp. \(f(x) = \log(e^{x_1} + \cdots + e^{x_n}) \) convex on \(\mathbb{R}^n \).
Convex function $f(x), g(x)$

- Nonnegative weighted sum: $af(x) + bg(x)$
- Pointwise Maximum: $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$
- Composition with affine function: $f(Ax + b)$
- Composition with nondecreasing convex g: $g(f(x))$
Outline

1. Convexity
 - Convex Sets
 - Convex Functions

2. Unconstrained Convex Optimization
 - First-order Methods
 - Newton’s Method

3. Constrained Optimization
 - Primal and dual problems
 - KKT conditions
Gradient Descent

Given a starting point $x \in \text{dom} f$.

repeat
1. $\Delta x := -\nabla f(x)$
2. Choose step size t via exact or backtracking line search.
3. Update $x := x + t\Delta x$.

Until stopping criterion is satisfied.

- **Key idea**
 - Gradient points into descent direction
 - Locally gradient is a good approximation of objective function

- **Gradient Descent with line search**
 - Get descent direction
 - Unconstrained line search
 - Exponential convergence for strongly convex objective
Assume ∇f is L-Lipschitz continuous, then gradient descent with fixed step size $t \leq 1/L$ has convergence rate $O(1/k)$

i.e., to get $f(x^{(k)}) - f(x^*) \leq \epsilon$, need $O(1/\epsilon)$ iterations

Assume strong convexity holds for f, i.e., $\nabla^2 f(x) \succeq dl$ and ∇f is L-Lipschitz continuous, then gradient descent with fixed step size $t \leq 2/(d + L)$ has convergence rate $O(c^k)$, where $c \in (0, 1)$,

i.e., to get $f(x^{(k)}) - f(x^*) \leq \epsilon$, need $O(\log(1/\epsilon))$ iterations
Outline

1 Convexity
 - Convex Sets
 - Convex Functions

2 Unconstrained Convex Optimization
 - First-order Methods
 - Newton’s Method

3 Constrained Optimization
 - Primal and dual problems
 - KKT conditions
Newton’s method

- Convex objective function f
- Nonnegative second derivative
 \[\partial_x^2 f(x) \succeq 0 \]
- Taylor expansion
 \[f(x + \delta) = f(x) + \delta^\top \partial_x f(x) + \frac{1}{2} \delta^\top \partial_x^2 f(x) \delta + O(\delta^3) \]
- Minimize approximation & iterate til converged
 \[x \leftarrow x - [\partial_x^2 f(x)]^{-1} \partial_x f(x) \]
Two Convergence regimes

- As slow as gradient descent outside the region where Taylor expansion is good

\[\| \partial_x f(x^*) - \partial_x f(x) - \langle x^* - x, \partial^2_x f(x) \rangle \| \leq \gamma \| x^* - x \|^2 \]

- Quadratic convergence once the bound holds

\[\| x_{n+1} - x^* \| \leq \gamma \| [\partial^2_x f(x_n)]^{-1} \| \| x_n - x^* \|^2 \]
Outline

1. Convexity
 - Convex Sets
 - Convex Functions

2. Unconstrained Convex Optimization
 - First-order Methods
 - Newton’s Method

3. Constrained Optimization
 - Primal and dual problems
 - KKT conditions
Constrained Optimization

Primal problem:

\[
\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad f(x) \\
\text{subject to} & \quad h_i(x) \leq 0, \ i = 1, \ldots, m \\
& \quad l_j(x) = 0, \ j = 1, \ldots, r
\end{align*}
\]

Lagrangian:

\[
L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j l_j(x)
\]

where \(u \in \mathbb{R}^m \), \(v \in \mathbb{R}^r \), and \(u \geq 0 \).

Lagrange dual function:

\[
g(u, v) = \min_{x \in \mathbb{R}^n} L(x, u, v)
\]
Constrained Optimization

Dual problem:

\[
\max_{u, v} g(u, v)
\]

subject to \(u \geq 0 \)

- Dual problem is a convex optimization problem, since \(g \) is always concave (even if primal problem is not convex)
- The primal and dual optimal values always satisfy weak duality: \(f^* \geq g^* \)
- **Slater’s condition**: for convex primal, if there is an \(x \) such that \(h_1(x) < 0, \ldots, h_m(x) < 0 \) and \(l_1(x) = 0, \ldots, l_r(x) = 0 \) then strong duality holds: \(f^* = g^* \).
Outline

1. Convexity
 - Convex Sets
 - Convex Functions

2. Unconstrained Convex Optimization
 - First-order Methods
 - Newton’s Method

3. Constrained Optimization
 - Primal and dual problems
 - KKT conditions
If x^*, u^*, v^* are primal and dual solutions, with zero duality gap (strong duality holds), then x^*, u^*, v^* satisfy the KKT conditions:

- **stationarity**: $0 \in \partial f(x) + \sum u_i \partial h_i(x) + \sum v_j \partial l_j(x)$
- **complementary slackness**: $u_i h_i(x) = 0$ for all i
- **primal feasibility**: $h_i(x) \leq 0, l_j(x) = 0$ for all i, j
- **dual feasibility**: $u_i \geq 0$ for all i

Proof:

$$f(x^*) = g(u^*, v^*)$$

$$= \min_{x \in \mathbb{R}^n} f(x) + \sum u_i^* h_i(x) + \sum v_j^* l_j(x)$$

$$\leq f(x^*) + \sum u_i^* h_i(x^*) + \sum v_j^* l_j(x^*)$$

$$\leq f(x^*)$$

Hence all these inequalities are actually equalities.
Boyd and Vandenberghe
Convex Optimization.