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Convex Functions

Convex Sets

@ Definition
For x, x’ € X it follows that Ax + (1 — A\)x’ € X for A € [0,1]
@ Examples
e Empty set 0, single point {xp}, the whole space R"

Hyperplane: {x | a" x = b}, halfspaces {x | a' x < b}
Euclidean balls: {x | ||x — x¢||2 < r}

Positive semidefinite matrices: 8" = {A< S"|A = 0} (S" is
the set of symmetric n x n matrices)
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Convex Functions

Convexity Preserving Set Operations

Convex Set C, D
@ Translation {x + b | x € C}
@ Scaling {\x | x € C}
@ Affine function {Ax + b | x € C}
@ Intersection CN D
@ SetsumC+D={x+y|xeC,yec D}
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Convex Functions

\ /A dom fis convex, A € [0,1]
— M) + (1= Nf(y) = FOx + (1 = A)y)
@ First-order condition: if f is differentiable,
f(y) = f(x) + VI(x)" (y = x)
@ Second-order condition: if f is twice differentiable,
V2f(x) = 0

@ Strictly convex: V2f(x) = 0
Strongly convex: V2f(x) = dl with d > 0
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Convex Functions

Convex Functions

@ Below-set of a convex function is convex:
fOX + (1= N)y) < M(x)+ (1 = Nf(y)
hence Ax + (1 — Ay € Xforx,y € X
@ Convex functions don’t have local minima:
Proof by contradiction:
linear interpolation breaks local minimum condition
@ Convex Hull:
Conv(X)={x|x=> ajx;wherea;>0and > «o;j=1}
Convex hull of a set is always a convex set
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Convex Functions examples

@ Exponential. e#* convex on R, any a € R

Powers. x2 convex on R, whena>1ora<0, and
concave for0 < a < 1.

Powers of absolute value. |x|P for p > 1, convex on R.
Logarithm. log x concave on R ;.

Norms. Every norm on R" is convex.

f(x) = max{xy, ..., Xn} convex on R"

Log-sum-exp. f(x) = log(e* + ... + €*") convex on R".
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Convex Functions

Convexity Preserving Function Operations

Convex function f(x), g(x)
@ Nonnegative weighted sum: af(x) + bg(x)
@ Pointwise Maximum: f(x) = max{fi(x), ..., fm(x)}
@ Composition with affine function: f(Ax + b)
@ Composition with nondecreasing convex g: g(f(x))
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First-order Methods
Newton’s Method

Unconstrained Convex Optimization

Gradient Descent

given a starting point x € domf.

repeat
1. Ax := —VIf(x)
2. Choose step size t via exact or backtracking line search.
3. update. x := x + tAx.

Until stopping criterion is satisfied.

@ Key idea

e Gradient points into descent direction

o Locally gradient is good approximation of objective function
@ Gradient Descent with line search

o Get descent direction
e Unconstrained line search
e Exponential convergence for strongly convex objective
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First-order Methods

Unconstrained Convex Optimization iy

Convergence Analysis

@ Assume Vfis L-Lipschitz continuous, then gradient
descent with fixed step size t < 1/L has convergence rate
O(1/k)

i.e., to get f(x(K)) — f(x*) < ¢, need O(1/e) iterations

@ Assume strong convexity holds for 7, i.e., V2f(x) = dl and
Vfis L-Lipschitz continuous, then gradient descent with
fixed step size t < 2/(d + L) has convergence rate O(c),
where ¢ € (0,1),

i.e., to get f(x(K)) — f(x*) < ¢, need O(log(1/e)) iterations
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Unconstrained Convex Optimization Newton's Method

Newton’s method

@ Convex objective function f
@ Nonnegative second derivative

D2f(x) = 0

@ Taylor expansion

1
f(x +8) = f(x) + 8" dxf(x) + §5Ta§f(x)5 + 0(8%)
@ Minimize approximation & iterate til converged

X — x — [02f(x)] 1 0xf(x)
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Unconstrained Convex Optimization Newton's Method

Convergence Analysis

@ Two Convergence regimes

o As slow as gradient descent outside the region where
Taylor expansion is good

105 F(x*) = BxF(x) — {x™ = X, BZF(x))[| < 7l[x* — x][?
e Quadratic convergence once the bound holds

Xt = x| < AOFF(xa)] I 160 — x*[2
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Primal and dual problems

Constrained Optimization KKT conditions

Constrained Optimization

Primal problem:
foin )
subjectto hi(x) <0,i=1,...,m
i(x)=0,j=1,...,r

Lagrangian:

L(x,u,v) = f(x Zu, x)+Zvj

where u ¢ R™ v ¢ R",and u > 0.
Lagrange dual function:

g(u,v) = ;21'1?" L(x,u,v)
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Constrained Optimization

Dual problem:
max g(u, v)

subjecttou >0

@ Dual problem is a convex optimization problem, since g is
always concave (even if primal problem is not convex)

@ The primal and dual optimal values always satisfy weak
duality: f* > g*

@ Slater’s condition: for convex primal, if there is an x such
that h1(x) <0, ...,hm(x) <0and 1(x) =0,...(x) =0
then strong duality holds: f* = g*.

Introduction to Convex Optimization



Primal and dual problems

Constrained Optimization KKT conditions

Outline

Q Constrained Optimization

@ KKT conditions

Introduction to Convex Optimization



Primal and dual problems

Constrained Optimization KKT conditions

KKT conditions

If x*, u*, v* are primal and dual solutions, with zero duality gap
(strong duality holds), then x*, u*, v* satisfy the KKT conditions:

o stationarity: 0 € 9f(x) + >° uiohi(x) + >° v;oli(x)
@ complementary slackness: u;h;(x) = 0 for all /
@ primal feasibility: h;(x) <0, /(x) =0 forall /,j

@ dual feasibility: u; > 0 for all i

Proof: f(x*) = g(u*, v*)
= min f(x () + > urhi(x) + > vil(x)
<FX) + D urhi(x) + ) v (x)

< f(x*)

Hence all these inequalities are actually equalities
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Appendix For Further Reading

For Further Reading |

¥ Boyd and Vandenberghe
Convex Optimization.
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