Introduction to Convex Optimization

Xuezhi Wang

Computer Science Department Carnegie Mellon University

10701-recitation, Jan 29

Introduction to Convex Optimization

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Outline

- Convex Sets
- Convex Functions
- 2 Unconstrained Convex Optimization
 - First-order Methods
 - Newton's Method
- Constrained Optimization
 - Primal and dual problems
 - KKT conditions

★ ■ ▶ ★ ■ ▶ ■ ■ ■ の Q @

Outline

Convexity

- Convex Sets
- Convex Functions
- 2 Unconstrained Convex Optimization
 - First-order Methods
 - Newton's Method
- 3 Constrained Optimization
 - Primal and dual problems
 - KKT conditions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Convex Sets

Convex Sets

Convex Sets Convex Functions

Definition

For $x, x' \in X$ it follows that $\lambda x + (1 - \lambda)x' \in X$ for $\lambda \in [0, 1]$

- Examples
 - Empty set \emptyset , single point $\{x_0\}$, the whole space \mathbb{R}^n
 - Hyperplane: $\{x \mid a^{\top}x = b\}$, halfspaces $\{x \mid a^{\top}x \le b\}$
 - Euclidean balls: $\{x \mid ||x x_c||_2 \le r\}$
 - Positive semidefinite matrices: Sⁿ₊ = {A ∈ Sⁿ | A ≥ 0} (Sⁿ is the set of symmetric n × n matrices)

Convex Sets Convex Functions

Convexity Preserving Set Operations

Convex Set C, D

- Translation $\{x + b \mid x \in C\}$
- Scaling $\{\lambda x \mid x \in C\}$
- Affine function $\{Ax + b \mid x \in C\}$
- Intersection $C \cap D$
- Set sum $C + D = \{x + y \mid x \in C, y \in D\}$

Outline

1 Convexity

- Convex Sets
- Convex Functions
- 2 Unconstrained Convex Optimization
 - First-order Methods
 - Newton's Method
- 3 Constrained Optimization
 - Primal and dual problems
 - KKT conditions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Convex Functions

Convex Sets Convex Functions

Convex Functions

dom f is convex,
$$\lambda \in [0, 1]$$

 $\lambda f(x) + (1 - \lambda)f(y) \ge f(\lambda x + (1 - \lambda)y)$

• First-order condition: if f is differentiable,

$$f(y) \geq f(x) + \nabla f(x)^{\top}(y-x)$$

• Second-order condition: if f is twice differentiable,

 $\nabla^2 f(x) \succeq 0$

Strictly convex: ∇²f(x) ≻ 0
 Strongly convex: ∇²f(x) ≥ dl with d > 0

■ ▶ ▲ ■ ▶ ■ ■ ● ● ●

Convex Sets Convex Functions

Convex Functions

- Below-set of a convex function is convex: $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$ hence $\lambda x + (1 - \lambda)y \in X$ for $x, y \in X$
- Convex functions don't have local minima: Proof by contradiction: linear interpolation breaks local minimum condition

• Convex Hull:

 $Conv(X) = \{ \bar{x} \mid \bar{x} = \sum \alpha_i x_i \text{ where } \alpha_i \ge 0 \text{ and } \sum \alpha_i = 1 \}$ Convex hull of a set is always a convex set

Convex Sets Convex Functions

Convex Functions examples

- Exponential. e^{ax} convex on \mathbb{R} , any $a \in \mathbb{R}$
- Powers. x^a convex on \mathbb{R}_{++} when $a \ge 1$ or $a \le 0$, and concave for $0 \le a \le 1$.
- Powers of absolute value. $|x|^p$ for $p \ge 1$, convex on \mathbb{R} .
- Logarithm. log x concave on \mathbb{R}_{++} .
- Norms. Every norm on \mathbb{R}^n is convex.
- $f(x) = \max\{x_1, ..., x_n\}$ convex on \mathbb{R}^n
- Log-sum-exp. $f(x) = \log(e^{x_1} + ... + e^{x_n})$ convex on \mathbb{R}^n .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Convex Sets Convex Functions

Convexity Preserving Function Operations

Convex function f(x), g(x)

- Nonnegative weighted sum: af(x) + bg(x)
- Pointwise Maximum: $f(x) = \max\{f_1(x), ..., f_m(x)\}$
- Composition with affine function: f(Ax + b)
- Composition with nondecreasing convex g: g(f(x))

First-order Methods Newton's Method

Outline

Convexity

- Convex Sets
- Convex Functions
- 2 Unconstrained Convex Optimization
 - First-order Methods
 - Newton's Method
- 3 Constrained Optimization
 - Primal and dual problems
 - KKT conditions

First-order Methods Newton's Method

Gradient Descent

given a starting point $x \in \text{dom} f$.

repeat

- 1. $\Delta x := -\nabla f(x)$
- 2. Choose step size t via exact or backtracking line search.
- 3. update. $x := x + t\Delta x$.

Until stopping criterion is satisfied.

- Key idea
 - Gradient points into descent direction
 - Locally gradient is good approximation of objective function
- Gradient Descent with line search
 - Get descent direction
 - Unconstrained line search
 - Exponential convergence for strongly convex objective

First-order Methods Newton's Method

Convergence Analysis

Assume ∇f is L-Lipschitz continuous, then gradient descent with fixed step size t ≤ 1/L has convergence rate O(1/k)

i.e., to get $f(x^{(k)}) - f(x^*) \le \epsilon$, need $O(1/\epsilon)$ iterations

Assume strong convexity holds for *f*, i.e., ∇²*f*(*x*) ≥ *dI* and ∇*f* is *L*-Lipschitz continuous, then gradient descent with fixed step size *t* ≤ 2/(*d* + *L*) has convergence rate *O*(*c^k*), where *c* ∈ (0, 1), i.e., to get *f*(*x*^(k)) − *f*(*x*^{*}) ≤ *ε*, need *O*(log(1/*ε*)) iterations

・ロト (周) (E) (E) (E) (E)

First-order Methods Newton's Method

Outline

Convexity

- Convex Sets
- Convex Functions

2 Unconstrained Convex Optimization

- First-order Methods
- Newton's Method

3 Constrained Optimization

- Primal and dual problems
- KKT conditions

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

First-order Methods Newton's Method

Newton's method

- Convex objective function f
- Nonnegative second derivative

$$\partial_x^2 f(x) \succeq 0$$

Taylor expansion

$$f(x+\delta) = f(x) + \delta^{\top} \partial_x f(x) + \frac{1}{2} \delta^{\top} \partial_x^2 f(x) \delta + O(\delta^3)$$

• Minimize approximation & iterate til converged

$$x \leftarrow x - [\partial_x^2 f(x)]^{-1} \partial_x f(x)$$

First-order Methods Newton's Method

Convergence Analysis

- Two Convergence regimes
 - As slow as gradient descent outside the region where Taylor expansion is good

$$||\partial_x f(x^*) - \partial_x f(x) - \langle x^* - x, \partial_x^2 f(x) \rangle|| \le \gamma ||x^* - x||^2$$

Quadratic convergence once the bound holds

$$||x_{n+1} - x^*|| \le \gamma ||[\partial_x^2 f(x_n)]^{-1}|| ||x_n - x^*||^2$$

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Primal and dual problems KKT conditions

Outline

Convexity

- Convex Sets
- Convex Functions
- 2 Unconstrained Convex Optimization
 - First-order Methods
 - Newton's Method
- Constrained Optimization
 - Primal and dual problems
 - KKT conditions

Primal and dual problems KKT conditions

Constrained Optimization

Primal problem:

$$\min_{x \in \mathbb{R}^n} f(x)$$

subject to $h_i(x) \le 0, i = 1, \dots, m$
 $l_j(x) = 0, j = 1, \dots, r$

Lagrangian:

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j l_j(x)$$

where $u \in \mathbb{R}^m$, $v \in \mathbb{R}^r$, and $u \ge 0$. Lagrange dual function:

$$g(u,v)=\min_{x\in\mathbb{R}^n}L(x,u,v)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Primal and dual problems KKT conditions

Constrained Optimization

Dual problem:

 $\max_{u,v} g(u,v)$
subject to $u \ge 0$

- Dual problem is a convex optimization problem, since *g* is always concave (even if primal problem is not convex)
- The primal and dual optimal values always satisfy weak duality: *f*^{*} ≥ *g*^{*}
- Slater's condition: for convex primal, if there is an x such that $h_1(x) < 0, ..., h_m(x) < 0$ and $l_1(x) = 0, ..., l_r(x) = 0$ then strong duality holds: $f^* = g^*$.

・ロト (周) (E) (E) (E) (E)

Primal and dual problems KKT conditions

Outline

Convexity

- Convex Sets
- Convex Functions
- 2 Unconstrained Convex Optimization
 - First-order Methods
 - Newton's Method
- Constrained Optimization
 Primal and dual problems
 - KKT conditions

Introduction to Convex Optimization

Primal and dual problems KKT conditions

KKT conditions

If x^* , u^* , v^* are primal and dual solutions, with zero duality gap (strong duality holds), then x^* , u^* , v^* satisfy the KKT conditions:

- stationarity: $0 \in \partial f(x) + \sum u_i \partial h_i(x) + \sum v_j \partial l_j(x)$
- complementary slackness: $u_i h_i(x) = 0$ for all *i*
- primal feasibility: $h_i(x) \le 0, l_j(x) = 0$ for all i, j
- dual feasibility: $u_i \ge 0$ for all i

Proof:
$$f(x^*) = g(u^*, v^*)$$

 $= \min_{x \in \mathbb{R}^n} f(x) + \sum u_i^* h_i(x) + \sum v_j^* l_j(x)$
 $\leq f(x^*) + \sum u_i^* h_i(x^*) + \sum v_j^* l_j(x^*)$
 $\leq f(x^*)$

Hence all these inequalities are actually equalities

212 DQC

For Further Reading I

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □