Linear Algebra Review

Leila Wehbe

January 29, 2013

<ロ> <部> <部> <き> <き> <

Table of contents

Metrics

Vector Spaces

Banach Spaces

Hilbert Space

Matrices

・ロト ・回ト ・ヨト ・ヨト

Metric

Given a space \mathcal{X} , then $d : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_0^+$ is a metric is for all \mathbf{x} , \mathbf{y} and \mathbf{z} in \mathcal{X} if:

・ロト ・回 ト ・ヨト ・ヨト

Metrics

Vector Spaces Banach Spaces Hilbert Space Matrices

Example of a metric

Euclidean Distance:

Given
$$\mathcal{X} = \mathbb{R}^n$$
, $d(\mathbf{x}, \mathbf{y}) := (\sum_{i=1}^n (x_i - y_i)^2)^{\frac{1}{2}}$

•
$$d(\mathbf{a}, \mathbf{b}) = 0$$
 is equivalent to $\mathbf{a} = \mathbf{b}$

$$\blacktriangleright d(\mathbf{a},\mathbf{b}) = d(\mathbf{b},\mathbf{a})$$

▶ $d(\mathbf{a}, \mathbf{b}) \leq d(\mathbf{a}, \mathbf{c}) + d(\mathbf{c}, \mathbf{b})$ (this is the triangle inequality)

A vector space is a space \mathcal{X} such that for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and for all $\alpha \in \mathbb{R}$:

- ▶ $\mathbf{x} + \mathbf{y} \in \mathcal{X}$
- $\blacktriangleright \alpha \mathbf{x} \in \mathcal{X}$

イロト イヨト イヨト イヨト

Examples of vector spaces

Real Numbers: given $x, y \in \mathbb{R}$, and $\alpha \in \mathbb{R}$:

▶
$$x + y \in \mathbb{R}$$

•
$$\alpha x \in \mathbb{R}$$

 \mathbb{R}^{n} : given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, and $\alpha \in \mathbb{R}$:

▶
$$\mathbf{x} + \mathbf{y} \in \mathbb{R}^n$$

• $\alpha \mathbf{x} \in \mathbb{R}^n$

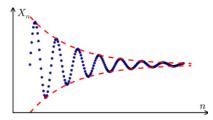
Examples of vector spaces

Polynomials: given
$$f(x) = \sum_{i=0}^{n} a_i x^i$$
 and $g(x) = \sum_{i=0}^{n} b_i x^i$, and $\alpha \in \mathbb{R}$:

・ロン ・四と ・ヨン ・ヨン

Cauchy Series

Given a space \mathcal{X} , a Cauchy series is a series $x_i \in \mathcal{X}$ for which for every $\epsilon > 0$ there exist an n_0 such that for all $m, n \ge n_0$, $d(\mathbf{x}_m, \mathbf{x}_n) \le \epsilon$



A (1) > (1) > (1)

A space \mathcal{X} is complete if the limit of every Cauchy series $\in \mathcal{X}$.

For example, (0,1) is not complete but [0,1] is.

The set \mathbb{Q} of rational numbers is not complete: you can construct a sequence that converges to $\sqrt{2}$ but $\sqrt{2}$ is not in \mathbb{Q} .

Norm

Given a vector space \mathcal{X} , a norm is a mapping $||.|| : \mathcal{X} \to \mathbb{R}_0^+$ that satisfies, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and for all $\alpha \in \mathbb{R}$:

•
$$||\mathbf{x}|| = 0$$
 if and only if $\mathbf{x} = 0$

$$||\alpha \mathbf{x}|| = |\alpha|||\mathbf{x}||$$

 $\blacktriangleright ||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}|| \text{ (triangle inequality)}$

A norm is also a metric: $d(\mathbf{x}, \mathbf{y}) := ||x - y||$

・ロン ・回と ・ヨン ・ヨン

Banach Space

A Banach Space is a complete vector space ${\mathcal X}$ together with a norm ||.||.

$$\ell_p^m$$
 Spaces: \mathbb{R}^m with the norm $||\mathbf{x}|| := \left(\sum_{i=1}^m |x_i|^p\right)^{\frac{1}{p}}$
 ℓ_p Spaces: These are subspaces of $\mathbb{R}^{\mathbb{N}}$ with $||\mathbf{x}|| := \left(\sum_{i=1}^\infty |x_i|^p\right)^{\frac{1}{p}}$
Function Spaces $L_p(\mathcal{X})$: Over \mathcal{X} , $||f|| := \left(\int_{\mathcal{X}} |f(x)|^p dx\right)^{\frac{1}{p}}$.

・ロン ・四と ・ヨン ・ヨン

Dot Product

Given a vector space \mathcal{X} , a dot product is a mapping $\langle ., . \rangle : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ that satisfies, for all \mathbf{x}, \mathbf{y} and $\mathbf{z} \in \mathcal{X}$ and for all $\alpha \in \mathbb{R}$:

- Symmetry: $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$
- Linearity: $\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$
- Additivity: $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$

・ 同 ト ・ 三 ト ・ 三 ト

A Hilbert Space is a complete vector space ${\cal X}$ together with a dot product $\langle.\ ,\ .\rangle.$

The dot product automatically generates a norm: $||\mathbf{x}|| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$.

Hilbert spaces are special cases of Banach spaces.

イロン イヨン イヨン イヨン

Examples of Hilbert Spaces

Euclidean spaces and the standard dot product for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$: $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^m x_i y_i$

Function spaces $(L_2(\mathcal{X}))$: functions on \mathcal{X} with $f : \mathcal{X} \to \mathbb{C}$ for all $f, g \in \mathcal{F}$, with the dot product: $\langle f, g \rangle = \int_X \overline{f(x)}g(x)dx$

 ℓ_2 series of real numbers (infinite), $\in \mathbb{R}^N$: $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{\infty} x_i y_i$

・日本 ・ヨト ・ヨト

Matrices

A matrix $M \in \mathbb{R}^{m \times n}$ corresponds to a linear map from \mathbb{R}^m to \mathbb{R}^n .

A symmetric matrix $M \in \mathbb{R}^{m \times m}$ satisfies $M_{ij} = M_{ji}$.

An anti-symmetric matrix $M \in \mathbb{R}^{m \times m}$ satisfies $M_{ij} = -M_{ji}$.

Rank: Denote by I the image of \mathbb{R}^m under M. rank(M) is the smallest number of vectors that span I.

イロト イヨト イヨト イヨト

Matrices: orthogonality

A matrix $M \in \mathbb{R}^{m \times m}$ is orthogonal if $M^T M = \mathbf{I}$. This means $M^T = M^{-1}$.

An orthogonal matrix consists of mutually orthogonal rows and columns.

イロト イヨト イヨト イヨト

Matrix Norms

The norm of a linear operator between two Banach spaces \mathcal{X} and \mathcal{Y} : $||\mathcal{A}|| := \max_{x \in \mathcal{X}} \frac{||\mathcal{A}x||}{||x||}$

$$\begin{aligned} & ||\alpha A|| = \max_{\mathbf{x} \in \mathcal{X}} \frac{||\alpha Ax||}{||x||} = |\alpha|||A|| \\ & ||A + B|| = \max_{\mathbf{x} \in \mathcal{X}} \frac{||(A + B)x||}{||x||} \le \max_{x \in \mathcal{X}} \frac{||Ax||}{||x||} + \max_{x \in \mathcal{X}} \frac{||Bx||}{||x||} = \\ & ||A|| + ||B|| \\ & ||A|| = 0 \text{ implies } \max_{x \in \mathcal{X}} \frac{||Ax||}{||x||} \text{ and thus } A\mathbf{x} = 0 \text{ for all } \mathbf{x} \text{ , i.e.} \\ & A = 0. \end{aligned}$$

メロト メポト メヨト メヨト

Matrix Norms

Frobenius norm: (in analogy with vector norm) $||M||_{Frob}^2 = \sum_{i=1}^m \sum_{j=1}^m M_{ij}^2$

<ロ> (日) (日) (日) (日) (日)

Given M in $\mathbb{R}^{m \times m}$, then $\lambda \in \mathbb{R}$ is an eigenvalue and $\mathbf{x} \in \mathbb{R}^m$ is an eigenvector if: $M\mathbf{x} = \lambda \mathbf{x}$

・ロト ・回ト ・ヨト ・ヨト

Eigen Systems, symmetric matrices

For symmetric matrices all eigenvalues are real and the matrix is fully diagonalizable (i.e. *m* eigenvectors).

All eigenvectors with different eigenvalues are mutually orthogonal: Proof, for two eigenvectors \mathbf{x} and \mathbf{x}' with respective eigenvalues λ and λ' : $\lambda \mathbf{x}^T \mathbf{x}' = (M\mathbf{x})^T \mathbf{x} = \mathbf{x}^T (M^T \mathbf{x}') = \mathbf{x}^T (M \mathbf{x}') = \lambda' \mathbf{x}^T \mathbf{x}'$ so $\lambda' = \lambda$ or $\mathbf{x}^T \mathbf{x} = 0$.

We can decompose $M = O^T \Lambda O$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Eigen Systems, symmetric matrices

We also have the operator norm:

$$||M||^{2} = \max_{x \in \mathbb{R}^{m}} \frac{||Mx||^{2}}{||x||^{2}}$$

$$= \max_{x \in \mathbb{R}^{m} and ||x||=1} ||Mx||^{2}$$

$$= \max_{x \in \mathbb{R}^{m} and ||x||=1} \mathbf{x}^{T} M^{T} M \mathbf{x}$$

$$= \max_{x \in \mathbb{R}^{m} and ||x||=1} \mathbf{x}^{T} O \Lambda O^{T} O \Lambda O^{T} \mathbf{x}$$

$$= \max_{x \in \mathbb{R}^{m} and ||x'||=1} \mathbf{x}^{T} \Lambda^{2} \mathbf{x}^{\prime}$$

$$= \max_{i \in [m]} \lambda_{i}^{2}$$

Э

Eigen Systems, symmetric matrices

Frobenius norm:

$$||M||_{Frob}^{2} = tr(MM^{T}) = tr(O\Lambda O^{T} O\Lambda O^{T})$$
$$= tr(\Lambda O^{T} O\Lambda O^{T} O) = tr(\Lambda^{2}) = \sum_{i=1}^{m} \lambda_{i}^{2}$$

イロン イヨン イヨン イヨン

Matrices: Invariants

Trace:
$$tr(M) = \sum_{i=1}^{m} M_{ii}$$
.
 $tr(AB) = tr(BA)$.
For symmetric matrices:
 $tr(M) = tr(O^{T} \Lambda O) = tr(\Lambda OO^{T}) = tr(\Lambda) = \sum_{i=1}^{m} \lambda_{i}$

Determinant: $det(M) = \prod_{i=1}^{m} \lambda_i$

・ロン ・四と ・ヨン ・ヨン

Positive Matrices

A Positive Definite Matrix is a matrix $M \in \mathbb{R}^{m \times m}$ for which for all $\mathbf{x} \in \mathbb{R}^m$:

$$\mathbf{x}^{\mathsf{T}} M \mathbf{x} > 0$$
 if $\mathbf{x} \neq 0$

This matrix has only positive eigenvalues: $\mathbf{x}^T M \mathbf{x} = \lambda \mathbf{x}^T \mathbf{x} = \lambda ||\mathbf{x}|| > 0$ Induced norm: $||\mathbf{x}||_M^2 = \mathbf{x}^T M \mathbf{x}$

Singular Value Decomposition

Want to find similar thing for arbitrary matrix $M \in \mathbb{R}^{m \times n}$ where $m \ge n$:

 $M = U \Lambda O$

 $U \in \mathbb{R}^{m \times n}, \ U^T U = \mathbf{I}$ $O \in \mathbb{R}^{n \times n}, \ O^T O = \mathbf{I}$ $\Lambda = diag(\lambda_1, \lambda_2, ... \lambda_n)$

(1日) (三) (三)