Linear Algebra Review

Leila Wehbe

January 29, 2013

Table of contents

Metrics

Vector Spaces

Banach Spaces

Hilbert Space

Matrices

Metric

Given a space \mathcal{X}, then $d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{0}^{+}$is a metric is for all \mathbf{x}, \mathbf{y} and \mathbf{z} in \mathcal{X} if:

- $d(\mathbf{x}, \mathbf{y})=0$ is equivalent to $\mathbf{x}=\mathbf{y}$
- $d(\mathbf{x}, \mathbf{y})=d(\mathbf{y}, \mathbf{x})$
- $d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{z})+d(\mathbf{z}, \mathbf{y})$

Example of a metric

Euclidean Distance:

Given $\mathcal{X}=\mathbb{R}^{n}, d(\mathbf{x}, \mathbf{y}):=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{\frac{1}{2}}$

- $d(\mathbf{a}, \mathbf{b})=0$ is equivalent to $\mathbf{a}=\mathbf{b}$
- $d(\mathbf{a}, \mathbf{b})=d(\mathbf{b}, \mathbf{a})$
- $d(\mathbf{a}, \mathbf{b}) \leq d(\mathbf{a}, \mathbf{c})+d(\mathbf{c}, \mathbf{b})$ (this is the triangle inequality)

Vector Space

A vector space is a space \mathcal{X} such that for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and for all $\alpha \in \mathbb{R}$:

- $\mathbf{x}+\mathbf{y} \in \mathcal{X}$
- $\alpha \mathbf{x} \in \mathcal{X}$

Examples of vector spaces

Real Numbers: given $x, y \in \mathbb{R}$, and $\alpha \in \mathbb{R}$:

- $x+y \in \mathbb{R}$
- $\alpha x \in \mathbb{R}$
$\mathbb{R}^{\mathbf{n}}$: given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, and $\alpha \in \mathbb{R}$:
- $\mathbf{x}+\mathbf{y} \in \mathbb{R}^{n}$
- $\alpha \mathbf{x} \in \mathbb{R}^{n}$

Examples of vector spaces

Polynomials: given $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ and $g(x)=\sum_{i=0}^{n} b_{i} x^{i}$, and $\alpha \in \mathbb{R}$:

- $f(x)+g(x)=\sum_{i=0}^{n}\left(a_{i}+b_{i}\right) x^{i}$, i.e. polynomial of order n
- $\alpha f(x)=\sum_{i=0}^{n} \alpha a_{i} x^{i}$, i.e. polynomial of order n

Cauchy Series

Given a space \mathcal{X}, a Cauchy series is a series $x_{i} \in \mathcal{X}$ for which for every $\epsilon>0$ there exist an n_{0} such that for all $m, n \geq n_{0}$, $d\left(\mathbf{x}_{m}, \mathbf{x}_{n}\right) \leq \epsilon$

Completeness

A space \mathcal{X} is complete if the limit of every Cauchy series $\in \mathcal{X}$.

For example, $(0,1)$ is not complete but $[0,1]$ is.
The set \mathbb{Q} of rational numbers is not complete: you can construct a sequence that converges to $\sqrt{2}$ but $\sqrt{2}$ is not in \mathbb{Q}.

Norm

Given a vector space \mathcal{X}, a norm is a mapping $\|\|:. \mathcal{X} \rightarrow \mathbb{R}_{0}^{+}$that satisfies, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and for all $\alpha \in \mathbb{R}$:

- $\|\mathbf{x}\|=0$ if and only if $\mathbf{x}=0$
- $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$
- $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$ (triangle inequality)

A norm is also a metric: $d(\mathbf{x}, \mathbf{y}):=\|x-y\|$

Banach Space

A Banach Space is a complete vector space \mathcal{X} together with a norm ||.||.
ℓ_{p}^{m} Spaces: \mathbb{R}^{m} with the norm $\|\mathbf{x}\|:=\left(\sum_{i=1}^{m}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$
ℓ_{p} Spaces: These are subspaces of $\mathbb{R}^{\mathbb{N}}$ with $\|\mathbf{x}\|:=\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$
Function Spaces $L_{p}(\mathcal{X}):$ Over $\mathcal{X},\|f\|:=\left(\int_{\mathcal{X}}|f(x)|^{p} d x\right)^{\frac{1}{p}}$.

Dot Product

Given a vector space \mathcal{X}, a dot product is a mapping $\langle.,\rangle:. \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ that satisfies, for all \mathbf{x}, \mathbf{y} and $\mathbf{z} \in \mathcal{X}$ and for all $\alpha \in \mathbb{R}$:

- Symmetry: $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$
- Linearity: $\langle\mathbf{x}, \alpha \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$
- Additivity: $\langle\mathbf{x}, \mathbf{y}+\mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{z}\rangle$

Hilbert Space

A Hilbert Space is a complete vector space \mathcal{X} together with a dot product $\langle.$, . \rangle.

The dot product automatically generates a norm: $\|\mathbf{x}\|:=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$.
Hilbert spaces are special cases of Banach spaces.

Examples of Hilbert Spaces

Euclidean spaces and the standard dot product for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{m}$:
$\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{m} x_{i} y_{i}$
Function spaces $\left(L_{2}(\mathcal{X})\right)$: functions on \mathcal{X} with $f: \mathcal{X} \rightarrow \mathbb{C}$ for all $f, g \in \mathcal{F}$, with the dot product: $\langle f, g\rangle=\int_{X} \overline{f(x)} g(x) d x$
ℓ_{2} series of real numbers (infinite), $\in \mathbb{R}^{N}$:
$\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{\infty} x_{i} y_{i}$

Matrices

A matrix $M \in \mathbb{R}^{m \times n}$ corresponds to a linear map from \mathbb{R}^{m} to \mathbb{R}^{n}.
A symmetric matrix $M \in \mathbb{R}^{m \times m}$ satisfies $M_{i j}=M_{j i}$.
An anti-symmetric matrix $M \in \mathbb{R}^{m \times m}$ satisfies $M_{i j}=-M_{j i}$.
Rank: Denote by I the image of \mathbb{R}^{m} under M. $\operatorname{rank}(M)$ is the smallest number of vectors that span I.

Matrices: orthogonality

A matrix $M \in \mathbb{R}^{m \times m}$ is orthogonal if $M^{T} M=\mathbf{I}$. This means $M^{T}=M^{-1}$.

An orthogonal matrix consists of mutually orthogonal rows and columns.

Matrix Norms

The norm of a linear operator between two Banach spaces \mathcal{X} and \mathcal{Y} :

$$
\|A\|:=\max _{x \in \mathcal{X}} \frac{\|A x\|}{\|x\|}
$$

- $\|\alpha A\|=\max _{\mathbf{x} \in \mathcal{X}} \frac{\|\alpha A x\|}{\|x\|}=|\alpha\|\mid\| A \|$
- $\|A+B\|=\max _{x \in \mathcal{X}} \frac{\|(A+B) x\|}{\|x\|} \leq \max _{x \in \mathcal{X}} \frac{\|A x\|}{\|x\|}+\max _{x \in \mathcal{X}} \frac{\|B x\|}{\|x\|}=$ $\|A\|+\|B\|$
- $\|A\|=0$ implies $\max _{x \in \mathcal{X}} \frac{\|A x\|}{\|x\|}$ and thus $A \mathbf{x}=0$ for all \mathbf{x}, i.e. $A=0$.

Matrix Norms

Frobenius norm: (in analogy with vector norm)
$\|M\|_{\text {Frob }}^{2}=\sum_{i=1}^{m} \sum_{j=1}^{m} M_{i j}^{2}$

Eigen Systems

Given M in $\mathbb{R}^{m \times m}$, then $\lambda \in \mathbb{R}$ is an eigenvalue and $\mathbf{x} \in \mathbb{R}^{m}$ is an eigenvector if:
$M \mathbf{x}=\lambda \mathbf{x}$

Eigen Systems, symmetric matrices

For symmetric matrices all eigenvalues are real and the matrix is fully diagonalizable (i.e. m eigenvectors).

All eigenvectors with different eigenvalues are mutually orthogonal: Proof, for two eigenvectors \mathbf{x} and \mathbf{x}^{\prime} with respective eigenvalues λ and λ^{\prime} :
$\lambda \mathbf{x}^{T} \mathbf{x}^{\prime}=(M \mathbf{x})^{T} \mathbf{x}=\mathbf{x}^{T}\left(M^{T} \mathbf{x}^{\prime}\right)=\mathbf{x}^{T}\left(M \mathbf{x}^{\prime}\right)=\lambda^{\prime} \mathbf{x}^{T} \mathbf{x}^{\prime}$ so $\lambda^{\prime}=\lambda$ or $\mathbf{x}^{\top} \mathbf{x}=0$.

We can decompose $M=O^{T} \wedge O$.

Eigen Systems, symmetric matrices

We also have the operator norm:

$$
\begin{aligned}
\|M\|^{2} & =\max _{x \in \mathbb{R}^{m}} \frac{\|M x\|^{2}}{\|x\|^{2}} \\
& =\max _{x \in \mathbb{R}^{m} \operatorname{and}\|x\|=1}\|M x\|^{2} \\
& =\max _{x \in \mathbb{R}^{m} a n d\|x\|=1} \mathbf{x}^{T} M^{T} M \mathbf{x} \\
& =\max _{x \in \mathbb{R}^{m} a n d\|x\|=1} \mathbf{x}^{T} O \wedge O^{T} O \wedge O^{T} \mathbf{x} \\
& =\max _{x \in \mathbb{R}^{m} a n d\left\|x^{\prime}\right\|=1} \mathbf{x}^{\prime T} \Lambda^{2} \mathbf{x}^{\prime} \\
& =\max _{i \in[m]} \lambda_{i}^{2}
\end{aligned}
$$

Eigen Systems, symmetric matrices

Frobenius norm:

$$
\begin{aligned}
\|M\|_{\text {Frob }}^{2} & =\operatorname{tr}\left(M M^{T}\right)=\operatorname{tr}\left(O \wedge O^{T} O \wedge O^{T}\right) \\
& =\operatorname{tr}\left(\Lambda O^{T} O \wedge O^{T} O\right)=\operatorname{tr}\left(\Lambda^{2}\right)=\sum_{i=1}^{m} \lambda_{i}^{2}
\end{aligned}
$$

Matrices: Invariants

Trace: $\operatorname{tr}(M)=\sum_{i=1}^{m} M_{i i}$.
$\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
For symmetric matrices:
$\operatorname{tr}(M)=\operatorname{tr}\left(O^{T} \wedge O\right)=\operatorname{tr}\left(\Lambda O O^{T}\right)=\operatorname{tr}(\Lambda)=\sum_{i=1}^{m} \lambda_{i}$
Determinant:
$\operatorname{det}(M)=\prod_{i=1}^{m} \lambda_{i}$

Positive Matrices

A Positive Definite Matrix is a matrix $M \in \mathbb{R}^{m \times m}$ for which for all $\mathbf{x} \in \mathbb{R}^{m}$:
$\mathbf{x}^{\top} M \mathbf{x}>0$ if $\mathbf{x} \neq 0$
This matrix has only positive eigenvalues:
$\mathbf{x}^{T} \mathbf{M} \mathbf{x}=\lambda \mathbf{x}^{T} \mathbf{x}=\lambda\|\mathbf{x}\|>0$
Induced norm: $\|\mathbf{x}\|_{M}^{2}=\mathbf{x}^{\top} M \mathbf{x}$

Singular Value Decomposition

Want to find similar thing for arbitrary matrix $M \in \mathbb{R}^{m \times n}$ where $m \geq n$:
$M=U \wedge O$
$U \in \mathbb{R}^{m \times n}, U^{T} U=\mathbf{I}$
$O \in \mathbb{R}^{n \times n}, O^{T} O=\mathbf{I}$
$\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}\right)$

