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Metric

Given a space X , then d : X × X → R+
0 is a metric is for all x, y

and z in X if:

I d(x, y) = 0 is equivalent to x = y

I d(x, y) = d(y, x)

I d(x, y) ≤ d(x, z) + d(z, y)
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Example of a metric

Euclidean Distance:

Given X = Rn, d(x, y) := (
n∑

i=1
(xi − yi )

2)
1
2

I d(a,b) = 0 is equivalent to a = b

I d(a,b) = d(b, a)

I d(a,b) ≤ d(a, c) + d(c,b) (this is the triangle inequality)
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Vector Space

A vector space is a space X such that for all x, y ∈ X and for all
α ∈ R:

I x + y ∈ X
I αx ∈ X
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Examples of vector spaces

Real Numbers: given x , y ∈ R, and α ∈ R:

I x + y ∈ R
I αx ∈ R

Rn : given x, y ∈ Rn, and α ∈ R:

I x + y ∈ Rn

I αx ∈ Rn
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Examples of vector spaces

Polynomials: given f (x) =
n∑

i=0
aix

i and g(x) =
n∑

i=0
bix

i , and

α ∈ R:

I f (x) + g(x) =
n∑

i=0
(ai + bi )x

i , i.e. polynomial of order n

I αf (x) =
n∑

i=0
αai x

i , i.e. polynomial of order n
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Cauchy Series

Given a space X , a Cauchy series is a series xi ∈ X for which for
every ε > 0 there exist an n0 such that for all m, n ≥ n0,
d(xm, xn) ≤ ε

Leila Wehbe Linear Algebra Review



Metrics
Vector Spaces

Banach Spaces
Hilbert Space

Matrices

Completeness

A space X is complete if the limit of every Cauchy series ∈ X .

For example, (0, 1) is not complete but [0, 1] is.

The set Q of rational numbers is not complete: you can construct
a sequence that converges to

√
2 but

√
2 is not in Q.
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Norm

Given a vector space X , a norm is a mapping ||.|| : X → R+
0 that

satisfies, for all x, y ∈ X and for all α ∈ R:

I ||x|| = 0 if and only if x = 0

I ||αx|| = |α|||x||
I ||x + y|| ≤ ||x||+ ||y|| (triangle inequality)

A norm is also a metric: d(x, y) := ||x − y ||
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Banach Space

A Banach Space is a complete vector space X together with a
norm ||.||.

`mp Spaces: Rm with the norm ||x|| :=

(
m∑
i=1
|xi |p

) 1
p

`p Spaces: These are subspaces of RN with ||x|| :=

( ∞∑
i=1
|xi |p

) 1
p

Function Spaces Lp(X ): Over X , ||f || :=
(∫
X |f (x)|pdx

) 1
p .
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Dot Product

Given a vector space X , a dot product is a mapping
〈. , .〉 : X ×X → R that satisfies, for all x, y and z ∈ X and for all
α ∈ R:

I Symmetry: 〈x, y〉 = 〈y, x〉
I Linearity: 〈x, αy〉 = α〈x, y〉
I Additivity: 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉
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Hilbert Space

A Hilbert Space is a complete vector space X together with a dot
product 〈. , .〉.

The dot product automatically generates a norm: ||x|| :=
√
〈x, x〉.

Hilbert spaces are special cases of Banach spaces.
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Examples of Hilbert Spaces

Euclidean spaces and the standard dot product for x, y ∈ Rm:

〈x, y〉 =
m∑
i=1

xiyi

Function spaces (L2(X )): functions on X with f : X → C for all
f , g ∈ F , with the dot product: 〈f , g〉 =

∫
X f (x)g(x)dx

`2 series of real numbers (infinite), ∈ RN :

〈x, y〉 =
∞∑
i=1

xiyi
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Matrices

A matrix M ∈ Rm×n corresponds to a linear map from Rm to Rn.

A symmetric matrix M ∈ Rm×m satisfies Mij = Mji .

An anti-symmetric matrix M ∈ Rm×m satisfies Mij = −Mji .

Rank: Denote by I the image of Rm under M. rank(M) is the
smallest number of vectors that span I .
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Matrices: orthogonality

A matrix M ∈ Rm×m is orthogonal if MTM = I. This means
MT = M−1.

An orthogonal matrix consists of mutually orthogonal rows and
columns.
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Matrix Norms

The norm of a linear operator between two Banach spaces X and
Y:
||A|| := max

x∈X
||Ax ||
||x ||

I ||αA|| = max
x∈X

||αAx ||
||x || = |α|||A||

I ||A + B|| = max
x∈X

||(A+B)x ||
||x || ≤ max

x∈X
||Ax ||
||x || + max

x∈X
||Bx ||
||x || =

||A||+ ||B||
I ||A|| = 0 implies max

x∈X
||Ax ||
||x || and thus Ax = 0 for all x , i.e.

A = 0.
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Matrix Norms

Frobenius norm: (in analogy with vector norm)

||M||2Frob =
m∑
i=1

m∑
j=1

M2
ij
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Eigen Systems

Given M in Rm×m, then λ ∈ R is an eigenvalue and x ∈ Rm is an
eigenvector if:
Mx = λx
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Eigen Systems, symmetric matrices

For symmetric matrices all eigenvalues are real and the matrix is
fully diagonalizable (i.e. m eigenvectors).

All eigenvectors with different eigenvalues are mutually orthogonal:
Proof, for two eigenvectors x and x′ with respective eigenvalues λ
and λ′:
λxTx′ = (Mx)Tx = xT (MTx′) = xT (Mx′) = λ′xTx′ so λ′ = λ or
xTx = 0.

We can decompose M = OTΛO.
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Eigen Systems, symmetric matrices

We also have the operator norm:

||M||2 = max
x∈Rm

||Mx ||2

||x ||2

= max
x∈Rmand ||x ||=1

||Mx ||2

= max
x∈Rmand ||x ||=1

xTMTMx

= max
x∈Rmand ||x ||=1

xTOΛOTOΛOTx

= max
x∈Rmand ||x ′||=1

x′
T

Λ2x′

= max
i∈[m]

λ2i
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Eigen Systems, symmetric matrices

Frobenius norm:

||M||2Frob = tr(MMT ) = tr(OΛOTOΛOT )

= tr(ΛOTOΛOTO) = tr(Λ2) =
m∑
i=1

λ2i
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Matrices: Invariants

Trace: tr(M) =
m∑
i=1

Mii .

tr(AB) = tr(BA).
For symmetric matrices:

tr(M) = tr(OTΛO) = tr(ΛOOT ) = tr(Λ) =
m∑
i=1

λi

Determinant:

det(M) =
m∏
i=1

λi
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Positive Matrices

A Positive Definite Matrix is a matrix M ∈ Rm×m for which for all
x ∈ Rm:

xTMx > 0 if x 6= 0

This matrix has only positive eigenvalues:
xTMx = λxTx = λ||x|| > 0
Induced norm: ||x||2M = xTMx
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Singular Value Decomposition

Want to find similar thing for arbitrary matrix M ∈ Rm×n where
m ≥ n:

M = UΛO

U ∈ Rm×n, UTU = I
O ∈ Rn×n, OTO = I
Λ = diag(λ1, λ2, ...λn)
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