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Review: the concept of probability 

Sample space Ω – set of all possible outcomes 

Event E ∈ Ω – a subset of the sample space 

Probability measure – maps Ω to unit interval 

“How likely is that event E will occur?” 

Kolmogorov axioms 

P E ≥ 0 

P Ω = 1  

P 𝐸1 ∪ 𝐸2 ∪ ⋯ =  𝑃(𝐸𝑖)
∞
𝑖=1  
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Reasoning with events 

Venn Diagrams 

𝑃 𝐴 = 𝑉𝑜𝑙(𝐴)/𝑉𝑜𝑙 (Ω) 

Event union and intersection 

𝑃 𝐴  𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵  

Properties of event union/intersection 

Commutativity: 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴; 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴 

Associativity: 𝐴 ∪ 𝐵 ∪ C = (𝐴 ∪ 𝐵) ∪ C 

Distributivity: 𝐴 ∩ 𝐵 ∪ 𝐶 = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) 
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Reasoning with events 

DeMorgan’s Laws 

(𝐴 ∪ 𝐵)𝐶= 𝐴𝐶 ∩ 𝐵𝐶  

(𝐴 ∩ 𝐵)𝐶= 𝐴𝐶 ∪ 𝐵𝐶  

Proof for law #1 - by double containment 

(𝐴 ∪ 𝐵)𝐶⊆ 𝐴𝐶 ∩ 𝐵𝐶  

• … 

𝐴𝐶 ∩ 𝐵𝐶 ⊆ (𝐴 ∪ 𝐵)𝐶  

• … 
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Reasoning with events 

Disjoint (mutually exclusive) events 

𝑃 𝐴 ∩ 𝐵 = 0 

𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃(𝐵) 

examples:  

• 𝐴 and 𝐴𝐶 

• partitions 

NOT the same as independent events 

For instance, successive coin flips 

1/25/2013 6 Introduction to Probability Theory 

𝑆1 

𝑆2 

𝑆3 
𝑆4 𝑆5 

𝑆6 
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Partitions 

Partition 𝑆1 … 𝑆𝑛 

Events cover sample space 𝑆1 ∪ ⋯ ∪ 𝑆𝑛 = Ω 

Events are pairwise disjoint 𝑆𝑖 ∩ 𝑆𝑗 =  ∅ 

Event reconstruction 

𝑃 𝐴 =   𝑃(𝐴 ∩ 𝑆𝑛
𝑖=1 𝑖

) 

Boole’s inequality 

𝑃  𝐴𝑖
∞
𝑖=1 ≤  𝑃(𝐴𝑛

𝑖=1 𝑖
) 

Bayes’ Rule 

𝑃 𝑆𝑖|𝐴 =  
𝑃 𝐴 𝑆𝑖 𝑃(𝑆𝑖)

 𝑃 𝐴 𝑆𝑗 𝑃(𝑆𝑗)𝑛
𝑗=1

 

1/25/2013 7 Introduction to Probability Theory 



Carnegie Mellon University 10-701 Machine Learning Spring 2013 

Overview 

Introduction to Probability Theory 

Random Variables. Independent RVs 

Properties of Common Distributions 

Estimators. Unbiased estimators. Risk 

Conditional Probabilities/Independence 

Bayes Rule and Probabilistic Inference 

1/25/2013 8 Recitation 1: Statistics Intro 



Carnegie Mellon University 10-701 Machine Learning Spring 2013 

Random Variables 

Random variable – associates a value to 

the outcome of a randomized event 

Sample space 𝒳: possible values of rv 𝑋 

Example: event to random variable 
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Draw 2 numbers between 1 and 4. Let r.v. X be their sum. 

E 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44 

X(E) 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8 

Induced probability function on 𝒳. 

x 2 3 4 5 6 7 8 

P(X=x) 1

16
 

2

16
 

3

16
 

4

16
 

3

16
 

2

16
 

1

16
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Cumulative Distribution Functions 

𝐹𝑋 𝑥 = 𝑃 𝑋 ≤ 𝑥  ∀𝑥 ∈ 𝒳 

 

The CDF completely determines the 
probability distribution of an RV 

 

The function 𝐹 𝑥  is a CDF i.i.f 

lim
𝑥→−∞

𝐹 𝑥 = 0 and lim
𝑥→∞

𝐹 𝑥 = 1 

𝐹 𝑥  is a non-decreasing function of 𝑥 

𝐹 𝑥  is right continuous: ∀𝑥0   lim
𝑥→𝑥0
𝑥 > 𝑥0

𝐹 𝑥 = 𝐹(𝑥0) 
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Identically distributed RVs 

Two random variables 𝑋1and 𝑋2are identically 

distributed iif for all sets of values 𝐴 

 𝑃 𝑋1 ∈ 𝐴 = 𝑃 𝑋2 ∈ 𝐴  

 

So that means the variables are equal? 

NO. 

Example: Let’s toss a coin 3 times and let 𝑋𝐻 and 𝑋𝐹 

represent the number of heads/tails respectively 

They have the same distribution but 𝑋𝐻 = 1 − 𝑋𝐹 
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Discrete  vs. Continuous RVs 
Step CDF  

𝒳 is discrete 

Probability mass 

𝑓𝑋 𝑥 = 𝑃 𝑋 = 𝑥   ∀𝑥  

Continuous CDF 

𝒳 is continuous 

Probability density 

𝐹𝑋 𝑥 =  𝑓𝑋 𝑡 𝑑𝑡
𝑥

−∞
  ∀𝑥 
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Interval Probabilities 

Obtained by integrating the area under the curve 

 

 
𝑃 𝑥1 ≤ 𝑋 ≤ 𝑥2 = 

 𝑓𝑥 𝑥 𝑑𝑥
𝑥2

𝑥1
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This explains why P(X=x) = 0 for continuous distributions! 

𝑃 𝑋 = 𝑥 ≤ lim
𝜖→0
𝜖 >0

[𝐹𝑥 𝑥 − 𝐹𝑥(𝑥 − 𝜖)]  = 0 

𝑥1 𝑥2 
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Moments 

Expectations 

The expected value of a function 𝑔 depending on a r.v. X~𝑃 is 

defined as 𝐸𝑔 𝑋 =   𝑔(𝑥)𝑃 𝑥 𝑑𝑥 

nth moment of a probability distribution 

𝜇𝑛 =  𝑥𝑛𝑃 𝑥 𝑑𝑥 

mean 𝜇 = 𝜇1 

nth central moment 

𝜇𝑛′ =   𝑥 − 𝜇 𝑛𝑃 𝑥 𝑑𝑥 

Variance 𝜎2 = 𝜇2′ 

1/25/2013 14 Random Variables 



Carnegie Mellon University 10-701 Machine Learning Spring 2013 

Multivariate Distributions 

Example 

Uniformly draw 𝑋 and 𝑌 from the set {1,2,3}2 

𝑊 = 𝑋 + 𝑌; 𝑉 = |𝑋 − 𝑌| 

Joint  
𝑃 𝑋, 𝑌 ∈ 𝐴 =   𝑓(𝑥, 𝑦)(𝑥,𝑦)𝜖𝐴  

Marginal 

𝑓𝑌 𝑦 =  𝑓(𝑥, 𝑦)𝑥  

For independent RVs: 

𝑓 𝑥1, … , 𝑥𝑛 = 𝑓𝑋1
𝑥1 … 𝑓𝑋𝑛

(𝑥𝑛) 
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0 1 2 PW 

2 1/9 0 0 1/9 

3 0 2/9 0 2/9 

4 1/9 0 2/9 3/9 

5 0 2/9 0 2/9 

6 1/9 0 0 1/9 

PV 3/9 4/9 2/9 1 

W  V 
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Bernoulli 

𝑋 =  
1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝
0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝

  0 ≤ 𝑝 ≤ 1 

Mean and Variance 

𝐸𝑋 = 1𝑝 + 0 1 − 𝑝 = 𝑝 

𝑉𝑎𝑟𝑋 = 1 − 𝑝2 𝑝 + 0 − 𝑝2 1 − 𝑝 = 𝑝(1 − 𝑝)  

MLE: sample mean 

Connections to other distributions: 

If 𝑋1 … 𝑋𝑛~ 𝐵𝑒𝑟𝑛(𝑝) then Y =  𝑋𝑖
𝑛
𝑖=1  is Binomial(n, p) 

Geometric distribution – the number of Bernoulli trials 

needed to get one success 
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Binomial 

𝑃 𝑋 = 𝑥; 𝑛, 𝑝 =  
𝑛
𝑥

𝑝𝑥(1 − 𝑝)𝑛−𝑥 

Mean and Variance 

𝐸𝑋 =   𝑥
𝑛
𝑥

𝑝𝑥(1 − 𝑝)𝑛−𝑥𝑛
𝑥=0 = … = 𝑛𝑝 

𝑉𝑎𝑟𝑋 = 𝑛𝑝(1 − 𝑝)  

NOTE:  

 

Sum of Bin is Bin 

Conditionals on Bin are Bin 
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𝑽𝒂𝒓𝑿 = 𝑬𝑿𝟐 − (𝑬𝑿)𝟐 
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Properties of the Normal Distribution 

Operations on normally-distributed variables 

𝑋1, 𝑋2~ 𝑁𝑜𝑟𝑚 0,1 , then 𝑋1 ± 𝑋2~𝑁(0,2) 

𝑋1/𝑋2 ~ 𝐶𝑎𝑢𝑐ℎ𝑦(0,1) 

𝑋1~ 𝑁𝑜𝑟𝑚 𝜇1, 𝜎1
2 , 𝑋2~ 𝑁𝑜𝑟𝑚 𝜇2, 𝜎2

2  and 𝑋1 ⊥ 𝑋2 

then 𝑍 = 𝑋1 + 𝑋2~ 𝑁𝑜𝑟𝑚 𝜇1 + 𝜇2, 𝜎1
2 + 𝜎2

2  

 

If 𝑋 , 𝑌 ~ 𝑁
𝜇𝑥

𝜇𝑦
,

𝜎𝑋
2 𝜌𝜎𝑋𝜎𝑌

𝜌𝜎𝑋𝜎𝑌 𝜎𝑌
2 , then 

𝑋 + 𝑌 is still normally distributed, the mean is the sum of the means 

and the variance is 

𝜎𝑋+𝑌
2 = 𝜎𝑋

2 + 𝜎𝑌
2 + 2𝜌𝜎𝑋𝜎𝑌, where 𝜌 is the correlation 
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Estimating Distribution Parameters 

Let 𝑋1 … 𝑋𝑛 be a sample from a distribution 

parameterized by 𝜃 

How can we estimate 

The mean of the distribution? 

Possible estimator: 
1

𝑛
 𝑋𝑖

𝑛
𝑖=1  

The median of the distribution? 

Possible estimator: 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋1 … 𝑋𝑛)  

The variance of the distribution? 

Possible estimator: 
1

𝑛
 (𝑋𝑖 − 𝑋 )2𝑛

𝑖=1  
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Bias-Variance Tradeoff 

When estimating a quantity 𝜃, we evaluate the 
performance of an estimator by computing its 
risk – expected value of a loss function 

R 𝜃, 𝜃 = 𝐸 𝐿(𝜃, 𝜃 ), where 𝐿 could be 

• Mean Squared Error Loss 

• 0/1 Loss 

• Hinge Loss (used for SVMs) 

Bias-Variance Decomposition: 𝑌 = 𝑓 𝑥 + 𝜀 
𝐸𝑟𝑟 𝑥 = 𝐸 𝑓 𝑥 − 𝑓 𝑥 2  

             = (𝐸 𝑓 𝑥 − 𝑓(𝑥))2+𝐸 𝑓 𝑥 − 𝐸 𝑓 𝑥
2

+ 𝜎𝜀
2 
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Bias Variance 
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Review: Conditionals 

Conditional Variables 

𝑃 𝑋 𝑌 =
𝑃(𝑋,𝑌)

𝑃(𝑌)
       note X;Y is a different r.v. 

Conditional Independence       𝑋 ⊥ 𝑌 |𝑍 

X and Y are cond. independent given Z iif 

𝑃 𝑋, 𝑌 𝑍 = 𝑃 𝑋 𝑍 𝑃 𝑌 𝑍  

Properties of Conditional Independence 

Symmetry  𝑋 ⊥ 𝑌 |𝑍 ⟺ 𝑌 ⊥ 𝑋 |𝑍 

Decomposition  𝑋 ⊥ 𝑌, 𝑊 𝑍 ⇒ 𝑋 ⊥ 𝑌 𝑍 

Weak Union 𝑋 ⊥ 𝑌, 𝑊 𝑍 ⇒ 𝑋 ⊥ 𝑌 𝑍, 𝑊 

Contraction (𝑋 ⊥ 𝑊 𝑍, 𝑌) , 𝑋 ⊥ 𝑌 𝑍 ⇒ 𝑋 ⊥ 𝑌, 𝑊 𝑍 
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Can you 

prove 

these? 
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Priors and Posteriors 

We’ve so far introduced the likelihood function 

𝑃 𝐷𝑎𝑡𝑎 𝜃) - the likelihood of the data given the 

parameter of the distribution 

𝜃𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑃 𝐷𝑎𝑡𝑎 𝜃) 

What if not all values of 𝜃 are equally likely? 

𝜃 itself is distributed according to the prior 𝑃𝜃 

Apply Bayes rule 

• 𝑃 𝜃 𝐷𝑎𝑡𝑎) =  
𝑃 𝐷𝑎𝑡𝑎 𝜃)𝑃(𝜃)

𝑃(𝐷𝑎𝑡𝑎)
 

• 𝜃𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑃(𝜃|𝐷𝑎𝑡𝑎) =  𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑃 𝐷𝑎𝑡𝑎 𝜃)𝑃(𝜃) 
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Conjugate Priors 

If the posterior distributions 𝑃 𝜃 𝐷𝑎𝑡𝑎) are in the same family as the 

prior prob. distribution 𝑃𝜃, then the prior and the posterior are called 

conjugate distributions and 𝑃𝜃  is called conjugate prior 

Some examples 

1/25/2013 27 Bayes Rule 

Likelihood Conjugate Prior 

Bernoulli/Binomial Beta 

Poisson Gamma 

(MV) Normal with known (co)variance Normal 

Exponential Gamma 

Multinomial Dirichlet 

How to compute the parameters of the Posterior? I’ll send a 

derivation 
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Probabilistic Inference 

1/25/2013 28 Probabilistic Inference 

Problem: You’re planning a weekend biking trip with your best 

friend, Min. Alas, your path to outdoor leisure is strewn with many 

hurdles. If it happens to rain, your chances of biking reduce to half 

not counting other factors. Independent of this, Min might be able 

to bring a tent, the lack of which will only matter if you notice the 

symptoms of a flu before the trip. Finally, the trip won’t happen if 

your advisor is unhappy with your weekly progress report. 
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Probabilistic Inference 
Problem: You’re planning a weekend biking trip with your best 

friend, Min. Your path to outdoor leisure is strewn with many 

hurdles. If it happens to rain, your chances of biking reduce to half 

not counting other factors. Independent of this, Min might be able 

to bring a tent, the lack of which will only matter if you notice the 

symptoms of a flu before the trip. Finally, the trip won’t happen if 

your advisor is unhappy with your weekly progress report. 

Variables: 

O – the outdoor trip happens 

A – advisor is happy 

R – it rains that day 

T – you have a tent 

F – you show flu symptoms 
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Probabilistic Inference 
Problem: You’re planning a weekend biking trip with your best 

friend, Min. Alas, your path to outdoor leisure is strewn with many 

hurdles. If it happens to rain, your chances of biking reduce to half 

not counting other factors. Independent of this, Min might be able 

to bring a tent, the lack of which will only matter if you notice the 

symptoms of a flu before the trip. Finally, the trip won’t happen if 

your advisor is unhappy with your weekly progress report. 

Variables: 

O – the outdoor trip happens 

A – advisor is happy 

R – it rains that day 

T – you have a tent 

F – you show flu symptoms 

1/25/2013 30 Probabilistic Inference 

A 

O 

F 

R 

T 
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Probabilistic Inference 
How many parameters determine this model? 

P(A|O) => 1 parameter 

P(R|O) => 1 parameter 

P(F, T|O) => 3 parameters 

In this problem, the values are given; 

Otherwise, we would have had to estimate them  

Variables: 

O – the outdoor trip happens 

A – advisor is happy 

R – it rains that day 

T – you have a tent 

F – you show flu symptoms 
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A 

O 

F 

R 

T 
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Probabilistic Inference 

The weather forecast is optimistic, the chances of rain are 20%. 

You’ve barely slacked off this week so your advisor is probably 

happy, let’s give it an 80%.  Luckily, you don’t seem to have the flu. 

What are the chances that the trip will happen? 

 

 Think of how you would do this. 

 Hint #1: do the variables F and T 

 influence the result in this case? 

 Hint #2: use the fact that the  

 combinations of values for A and R 

 represent a partition and use one 

 of the partition formulas we learned 
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A 

O 

F 

R 

T 
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