# Introduction to Machine Learning CMU-10701

19. Clustering and EM

Barnabás Póczos





### Contents

- □ Clustering
  - ■K-means
  - ☐ Mixture of Gaussians
- Expectation Maximization
- Variational Methods

Many of these slides are taken from

- Aarti Singh,
- Eric Xing,
- Carlos Guetrin

# Clustering

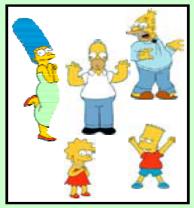
## What is clustering?

#### Clustering:

The process of grouping a set of objects into classes of similar objects

- –high intra-class similarity
- –low inter-class similarity
- -It is the commonest form of unsupervised learning

### Clustering is subjective



Simpson's Family



School Employees



Females



Males

# What is Similarity?



Hard to define! But we know it when we see it

The real meaning of similarity is a philosophical question. We will take a more pragmatic approach: think in terms of a **distance** (rather than similarity) between random variables.

### The K- means Clustering Problem

# K-means Clustering Problem

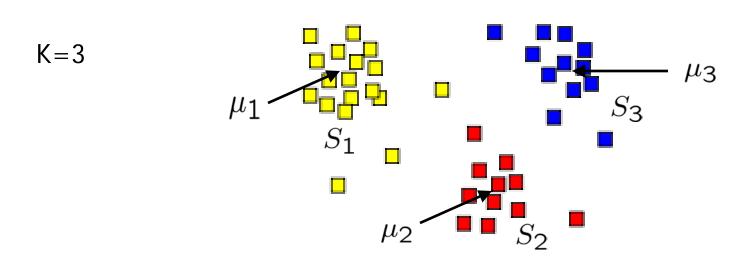
Given a set of observations  $(x_1, x_2, \dots, x_n)$ , where  $x_i \in \mathbb{R}^d$ 

#### K-means clustering problem:

Partition the *n* observations into *K* sets  $(K \le n)$  **S** =  $\{S_1, S_2, ..., S_K\}$  such that the sets minimize the within-cluster sum of squares:

$$\arg\min_{\mathbf{S}} \sum_{i=1}^{K} \sum_{\mathbf{x}_j \in S_i} \left\| \mathbf{x}_j - \boldsymbol{\mu}_i \right\|^2$$

where  $\mu_i$  is the mean of points in set  $S_i$ .



# K-means Clustering Problem

Given a set of observations  $(x_1, x_2, \dots, x_n)$ , where  $x_i \in \mathbb{R}^d$ 

#### K-means clustering problem:

Partition the *n* observations into *K* sets  $(K \le n)$  **S** =  $\{S_1, S_2, ..., S_K\}$  such that the sets minimize the within-cluster sum of squares:

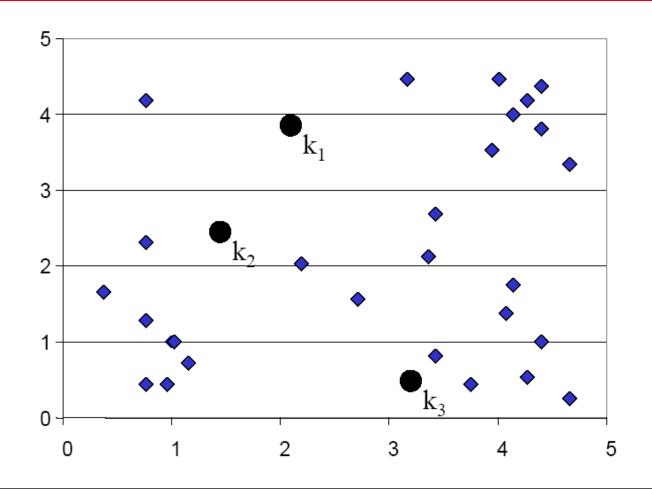
$$\arg\min_{\mathbf{S}} \sum_{i=1}^{K} \sum_{\mathbf{x}_j \in S_i} \left\| \mathbf{x}_j - \boldsymbol{\mu}_i \right\|^2$$

where  $\mu_i$  is the mean of points in set  $S_i$ .

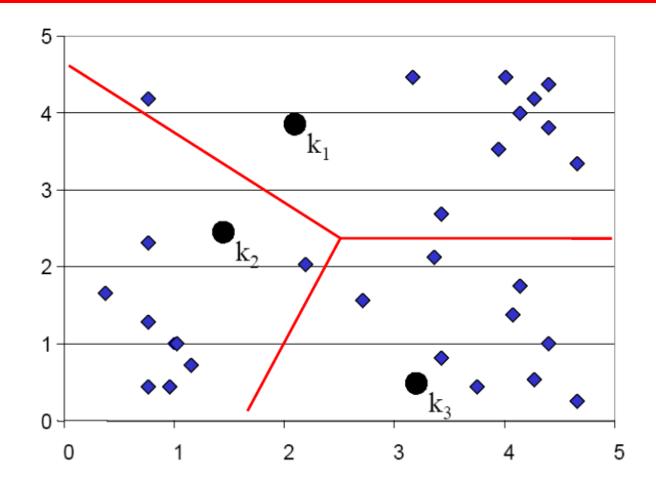
#### How hard is this problem?

The problem is NP hard, but there are good heuristic algorithms that seem to work well in practice:

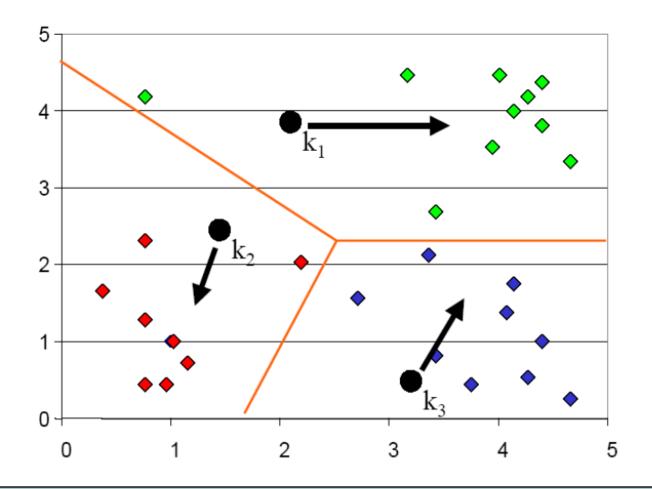
- K–means algorithm
- mixture of Gaussians



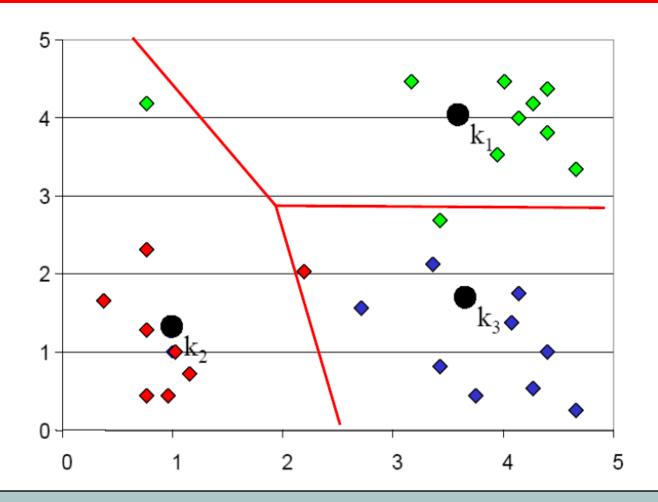
- Given n objects.
- Guess the cluster centers  $k_1$ ,  $k_2$ ,  $k_3$ . (They were  $\mu_1,...,\mu_3$  in the previous slide)



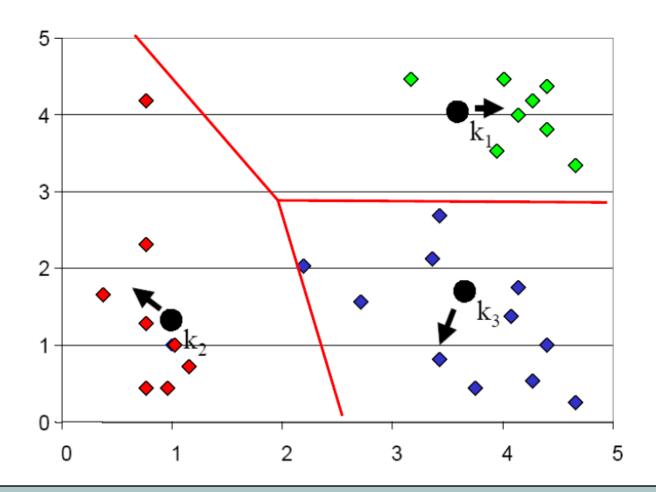
- Build a Voronoi diagram based on the cluster centers k<sub>1</sub>, k<sub>2</sub>, k<sub>3</sub>.
- Decide the class memberships of the n objects by assigning them to the nearest cluster centers  $k_1$ ,  $k_2$ ,  $k_3$ .



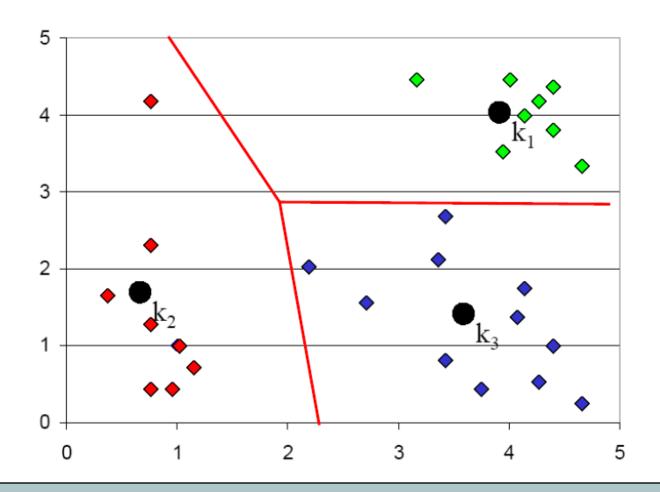
 Re-estimate the cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.



- Build a new Voronoi diagram.
- Decide the class memberships of the n objects based on this diagram



Re-estimate the cluster centers.



Stop when everything is settled.
 (The Voronoi diagrams don't change anymore)

### K- means Clustering Algorithm

#### **Algorithm**

### Input

Data + Desired number of clusters, K

#### **Initialize**

the K cluster centers (randomly if necessary)

#### Iterate

- 1. Decide the class memberships of the n objects by assigning them to the nearest cluster centers
- 2. Re-estimate the K cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

#### **Termination**

- If none of the n objects changed membership in the last iteration, exit.

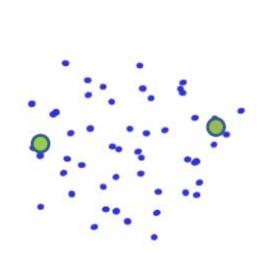
Otherwise go to 1.

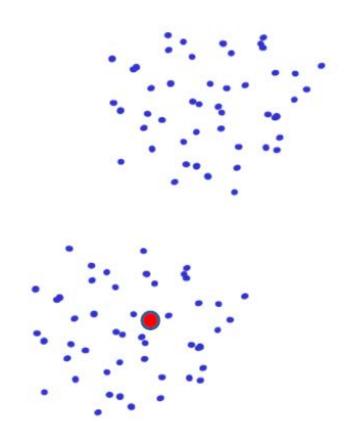
# K- means Algorithm Computation Complexity

- ☐ At each iteration,
  - Computing distance between each of the *n* objects and the *K* cluster centers is O(*Kn*).
  - Computing cluster centers: Each object gets added once to some cluster: O(n).
- $\square$  Assume these two steps are each done once for  $\ell$  iterations:  $O(\ell Kn)$ .

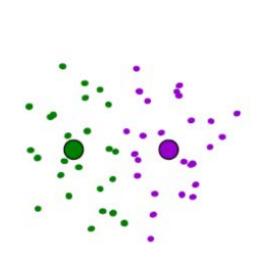
Can you prove that the K-means algorithm guaranteed to terminate?

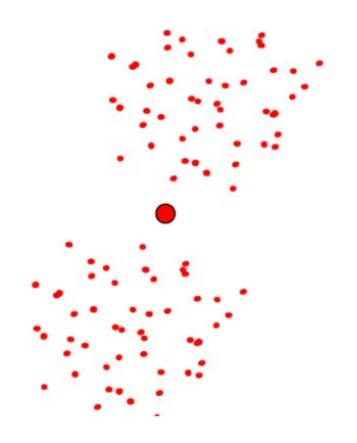
### Seed Choice





### Seed Choice





### **Seed Choice**

The results of the K- means Algorithm can vary based on random seed selection.

- □ Some seeds can result in poor convergence rate, or convergence to sub-optimal clustering.
- ☐ K-means algorithm can get stuck easily in **local minima**.
  - Select good seeds using a heuristic (e.g., object least similar to any existing mean)
  - Try out multiple starting points (very important!!!)
  - Initialize with the results of another method.

### **Alternating Optimization**

### K- means Algorithm (more formally)

□ Randomly initialize k centers

$$\mu^0 = (\mu_1^0, \dots, \mu_K^0)$$

 $\Box$  Classify: At iteration t, assign each point  $j \in \{1,...,n\}$  to nearest center:

$$C^t(j) \leftarrow \arg\min_i \|\mu_i^t - x_j\|^2$$
 Classification at iteration  $t$ 

 $\square$  **Recenter**:  $\mu_i$  is the centroid of the new sets:

$$\mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:C^t(j)=i} \|\mu - x_j\|^2$$

Re-assign new cluster centers at iteration *t* 

# What is K-means optimizing?

lacktriangle Define the following potential function F of centers  $\mu$  and point allocation C

$$\mu = (\mu_1, \dots, \mu_K)$$

$$C = (C(1), \dots, C(n))$$

$$F(\mu, C) = \sum_{j=1}^{n} \|\mu_{C(j)} - x_j\|^2$$

$$= \sum_{i=1}^{K} \sum_{j:C(j)=i} \|\mu_i - x_j\|^2$$
Two equivalent versions

☐ Optimal solution of the K-means problem:

$$\min_{\mu,C}F(\mu,C)$$

## K-means Algorithm

### Optimize the potential function:

$$\min_{\mu,C} F(\mu,C) = \min_{\mu,C} \sum_{j=1}^{n} \|\mu_{C(j)} - x_j\|^2 = \min_{\mu,C} \sum_{i=1}^{K} \sum_{j:C(j)=i} \|\mu_i - x_j\|^2$$

#### K-means algorithm:

(1) Fix  $\mu$ , Optimize C

$$\min_{C(1),C(2),...,C(n)} \sum_{j=1}^{n} \|\mu_{C(j)} - x_j\|^2 = \sum_{j=1}^{n} \min_{C(j)} \|\mu_{C(j)} - x_j\|^2$$

**Exactly first step** 

Assign each point to the nearest cluster center

(2) Fix C, Optimize  $\mu$ 

$$\min_{\mu_1, \dots, \mu_K} \sum_{i=1}^K \sum_{j:C(j)=i} \|\mu_i - x_j\|^2 = \sum_{i=1}^K \min_{\mu_i} \sum_{j:C(j)=i} \|\mu_i - x_j\|^2$$

Exactly 2<sup>nd</sup> step (re-center)

# K-means Algorithm

### Optimize the potential function:

$$\min_{\mu,C} F(\mu,C) = \min_{\mu,C} \sum_{j=1}^{n} \|\mu_{C(j)} - x_j\|^2$$

**K-means algorithm:** (coordinate descent on F)

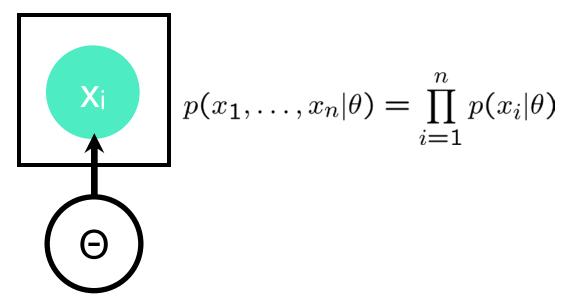
- (1) Fix  $\mu$ , Optimize C Expectation step
- (2) Fix C, Optimize  $\mu$  Maximization step

Today, we will see a generalization of this approach:

### Gaussian Mixture Model

## Density Estimation

### Generative approach



- There is a latent parameter Θ
- For all i, draw observed x<sub>i</sub> given Θ

#### What if the basic model doesn't fit all data?

 $\Rightarrow$  Mixture modelling, Partitioning algorithms

Different parameters for different parts of the domain.  $[\theta_1, \dots, \theta_K]$ 

# Partitioning Algorithms

#### K-means

-hard assignment: each object belongs to only one cluster

$$\theta_i \in \{\theta_1, \dots, \theta_K\}$$

- Mixture modeling
  - -soft assignment: probability that an object belongs to a cluster

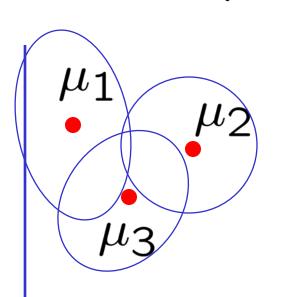
$$(\pi_1, \dots, \pi_K), \ \pi_i \geq 0, \ \sum_{i=1}^K \pi_i = 1$$

### Gaussian Mixture Model

#### Mixture of K Gaussians distributions: (Multi-modal distribution)

- There are K components
- Component i has an associated mean vector  $\mu_i$

Component *i* generates data from  $N(\mu_i, \Sigma_i)$ 



#### Each data point is generated using this process:

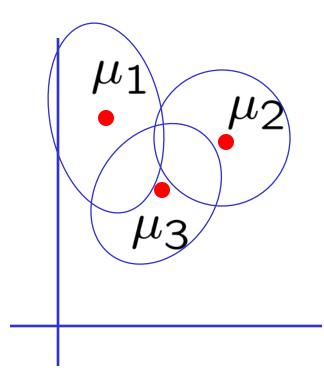
- 1) Choose component i with probability  $\pi_i = P(y = i)$
- 2) Datapoint  $x \sim N(\mu_i, \Sigma_i)$

### Gaussian Mixture Model

Mixture of K Gaussians distributions: (Multi-modal distribution)

#### Hidden variable

$$p(x|y=i) = N(\mu_i, \Sigma_i)$$
 
$$p(x) = \sum_{i=1}^K p(x|y=i)P(y=i)$$
 
$$\uparrow$$
 Observed Mixture Mixture data component proportion



### Mixture of Gaussians Clustering

#### Assume that

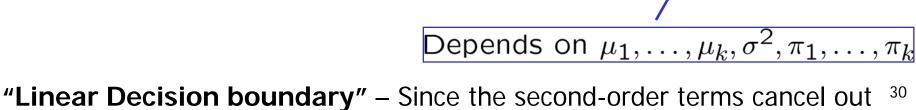
$$\Sigma_i = \sigma^2 \mathbf{I}$$
, for simplicity.  $p(x|y=i) = N(\mu_i, \sigma^2 \mathbf{I})$   $p(y=i) = \pi_i$   $\mu_1, \dots, \mu_K, \sigma^2, \pi_1, \dots, \pi_K$  are known.

### Cluster x based on posteriors:

$$\log \frac{P(y=i|x)}{P(y=j|x)}$$

$$= \log \frac{p(x|y=i)P(y=i)/p(x)}{p(x|y=j)P(y=j)/p(x)}$$

$$= \log \frac{p(x|y=i)\pi_i}{p(x|y=j)\pi_j} = \log \frac{\pi_i \exp(\frac{-1}{2\sigma^2} ||x-\mu_i||^2)}{\pi_j \exp(\frac{-1}{2\sigma^2} ||x-\mu_j||^2)} = w^T x$$



### MLE for GMM

### What if we don't know $\mu_1, \ldots, \mu_K, \sigma^2, \pi_1, \ldots, \pi_K$ ?

### ⇒ Maximum Likelihood Estimate (MLE)

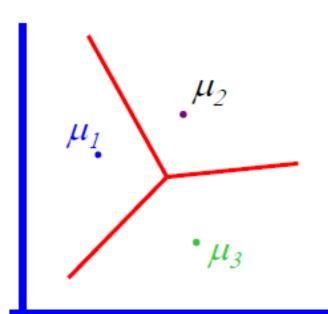
$$\theta = [\mu_1, \dots, \mu_K, \sigma^2, \pi_1, \dots, \pi_K]$$

$$\arg\max_{\theta} \prod_{j=1}^{n} P(x_{j}|\theta)$$

$$= \arg\max_{\theta} \prod_{j=1}^{n} \sum_{i=1}^{K} P(y_j = i, x_j | \theta)$$

= 
$$\arg \max_{\theta} \prod_{j=1}^{n} \sum_{i=1}^{K} P(y_{j} = i | \theta) p(x_{j} | y_{j} = i | \theta)$$

$$= \arg \max_{\theta} \prod_{i=1}^{n} \sum_{i=1}^{K} \pi_{i} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp(\frac{-1}{2\sigma^{2}} ||x_{j} - \mu_{i}||^{2})$$



### K-means and GMM

- Assume data comes from a mixture of K Gaussians distributions with same variance σ<sup>2</sup>
- Assume Hard assignment:

$$P(y_j = i) = 1 \text{ if } i = C(j)$$
  
= 0 otherwise

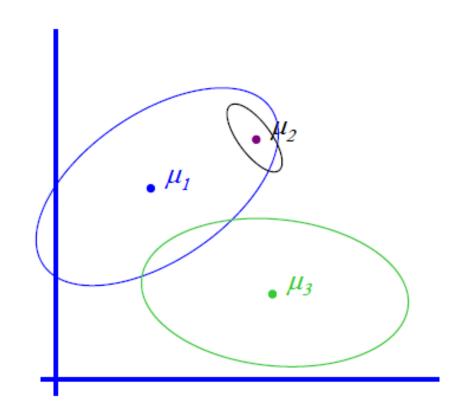
#### Maximize marginal likelihood (MLE):

$$P(y_j = i, x_j | \theta)$$
 arg  $\max_{\theta} \prod_{j=1}^n P(x_j | \theta) = \arg\max_{\theta} \prod_{j=1}^n \sum_{i=1}^K P(y_j = i) \frac{1}{\sqrt{2\pi\sigma^2}} \exp(\frac{-1}{2\sigma^2} \|x_j - \mu_i\|^2)$  
$$= \arg\max_{\theta} \prod_{j=1}^n \exp(\frac{-1}{2\sigma^2} \|x_j - \mu_{C(j)}\|^2)$$
 
$$= \arg\min_{\mu, C} \sum_{j=1}^n \|x_j - \mu_{C(j)}\|^2) = \arg\min_{\mu, C} F(\mu, C)$$
 Same as K-means!!!

### General GMM

#### General GMM – Gaussian Mixture Model (Multi-modal distribution)

- There are k components
- Component / has an associated mean vector μ<sub>I</sub>
- Each component generates data from a Gaussian with mean  $\mu_i$  and covariance matrix  $\Sigma_i$ . Each data point is generated according to the following recipe:



- 1) Pick a component at random: Choose component i with probability P(y=i)
- 2) Datapoint  $x \sim N(\mu_1, \Sigma_i)$

### General GMM

#### GMM – Gaussian Mixture Model (Multi-modal distribution)

$$p(x|y=i) = N(\mu_i, \Sigma_i)$$
 
$$p(x) = \sum_{i=1}^K p(x|y=i)P(y=i)$$
 
$$\uparrow$$
 
$$\uparrow$$
 
$$\mathsf{Mixture}$$
 
$$\mathsf{Mixture}$$
 
$$\mathsf{component}$$
 
$$\mathsf{proportion}$$

### General GMM

#### Assume that

$$\theta = [\mu_1, \dots, \mu_K, \Sigma_1, \dots, \Sigma_K, \pi_1, \dots, \pi_K]$$
 are known.

$$p(x|y=i) = N(\mu_i, \Sigma_i)$$

$$p(y=i)=\pi_i$$

#### Clustering based on posteriors:

$$\log \frac{P(y=i|x)}{P(y=j|x)}$$

$$= \log \frac{p(x|y=i)P(y=i)/p(x)}{p(x|y=j)P(y=j)/p(x)}$$

$$= \log \frac{p(x|y=i)\pi_i}{p(x|y=j)\pi_j} = \log \frac{\pi_i \frac{1}{\sqrt{2\pi|\Sigma_i|}} \exp\left[-\frac{1}{2}(x-\mu_i)^T \Sigma_i^{-1}(x-\mu_i)\right]}{\pi_j \frac{1}{\sqrt{2\pi|\Sigma_j|}} \exp\left[-\frac{1}{2}(x-\mu_j)^T \Sigma_j^{-1}(x-\mu_j)\right]}$$

$$= x^T W x + w^T x + c$$

Depends on  $\mu_1, \ldots, \mu_K, \Sigma_1, \ldots, \Sigma_K, \pi_1, \ldots, \pi_K$ 

"Quadratic Decision boundary" – second-order terms don't cancel out 35

### General GMM MLE Estimation

What if we don't know  $\theta = [\mu_1, \dots, \mu_K, \Sigma_1, \dots, \Sigma_K, \pi_1, \dots, \pi_K]$ ?

#### ⇒ Maximize marginal likelihood (MLE):

arg 
$$\max_{\theta} \prod_{j=1}^{n} P(x_j | \theta) = \arg\max_{\theta} \prod_{j=1}^{n} \sum_{i=1}^{K} P(y_j = i, x_j | \theta)$$

$$= \arg\max_{\theta} \prod_{j=1}^{n} \sum_{i=1}^{K} P(y_j = i | \theta) p(x_j | y_j = i | \theta)$$

$$= \arg\max_{\theta} \prod_{j=1}^{n} \sum_{i=1}^{K} \pi_i \frac{1}{\sqrt{2\pi |\Sigma_i|}} \exp\left[-\frac{1}{2}(x_j - \mu_i)^T \Sigma_i^{-1}(x_j - \mu_i)\right]$$

How do we find  $\theta = [\mu_1, \dots, \mu_K, \Sigma_1, \dots, \Sigma_K, \pi_1, \dots, \pi_K]$  which gives max. marginal likelihood?

- \* Set  $\frac{\partial}{\partial \mu_i} \log \text{Prob}(...) = 0$ , and solve for  $\mu_i$ . Non-linear, non-analytically solvable
- \* Use gradient descent. Doable, but often slow
- \* Use EM.

### Expectation-Maximization (EM)

- A general algorithm to deal with hidden data, but we will study it in the context of unsupervised learning (hidden class labels = clustering) first.
- EM is an optimization strategy for objective functions that can be interpreted as likelihoods in the presence of missing data.
- EM is much simpler than gradient methods:
   No need to choose step size.
- EM is an iterative algorithm with two linked steps:
  - o E-step: fill-in hidden values using inference
  - o M-step: apply standard MLE/MAP method to completed data
- We will prove that this procedure monotonically improves the likelihood (or leaves it unchanged). EM always converges to a local optimum of the likelihood.

### Expectation-Maximization (EM)

#### A simple case:

- We have unlabeled data  $x_1, x_2, ..., x_m$
- We know there are K classes
- We know  $P(y=1)=\pi_1$ ,  $P(y=2)=\pi_2$  P(y=3) ...  $P(y=K)=\pi_K$
- We know common variance  $\sigma^2$
- We **don't** know  $\mu_1, \mu_2, ... \mu_K$ , and we want to learn them

#### We can write

$$p(x_1,\ldots,x_n|\mu_1,\ldots\mu_K) = \prod_{j=1}^n p(x_j|\mu_1,\ldots,\mu_K) \quad \text{Independent data}$$

$$= \prod_{i,j=1}^n \sum_{i=1}^K p(x_j,y_j=i|\mu_1,\ldots,\mu_K) \quad \text{Marginalize over class}$$

$$= \prod_{i,j=1}^n \sum_{i=1}^K p(x_j|y_j=i|\mu_1,\ldots,\mu_K) p(y_j=i)$$

$$\propto \prod_{i,j=1}^n \sum_{i=1}^K \exp(-\frac{1}{2\sigma^2}||x_j-\mu_i||^2) \pi_i \quad \Rightarrow \text{learn } \mu_1, \ \mu_2, \ \ldots, \ \mu_K$$

### Expectation (E) step

We want to learn:  $\theta = [\mu_1, \dots, \mu_K]$ Our estimator at the end of iteration t-1:  $\theta^{t-1} = [\mu_1^{t-1}, \dots, \mu_K^{t-1}]$ 

At iteration t, construct function Q:

$$Q(\theta^t | \theta^{t-1}) = \sum_{j=1}^n \sum_{i=1}^K P(y_j = i | x_j, \theta^{t-1}) \log P(x_j, y_j = i | \theta^t)$$

$$\begin{split} P(y_j = i | x_j, \theta^{t-1}) &= P(y_j = i | x_j, \mu_1^{t-1}, \dots, \mu_K^{t-1}) \\ &\propto P(x_j | y_j = i, \mu_1^{t-1}, \dots, \mu_K^{t-1}) P(y_j = i) \\ &\propto \exp(-\frac{1}{2\sigma^2} \|x_j - \mu_i^{t-1}\|^2) \pi_i \\ &= \frac{\exp(-\frac{1}{2\sigma^2} \|x_j - \mu_i^{t-1}\|^2) \pi_i}{\sum_{i=1}^K \exp(-\frac{1}{2\sigma^2} \|x_j - \mu_i^{t-1}\|^2) \pi_i} \end{split}$$

Equivalent to assigning clusters to each data point in K-means in a soft way

### Maximization (M) step

$$Q(\theta^t | \theta^{t-1}) = \sum_{j=1}^n \sum_{i \equiv 1}^K P(y_j = i | x_j, \theta^{t-1}) \log P(x_j, y_j = i | \theta^t)$$

$$= \sum_{j=1}^n \sum_{i=1}^K P(y_j = i | x_j, \theta^{t-1}) [\log P(x_j | y_j = i, \theta^t) + \log P(y_j = i | \theta^t)]$$

$$\propto \exp(-\frac{1}{2\sigma^2} ||x_j - \mu_i^t||^2)$$
We calculated these weights in the E step

We calculated these weights in the E step

$$R_{i,j}^{t-1} = P(y_j = i | x_j, \theta^{t-1})$$

Joint distribution is simple

**M step** At iteration t, maximize function Q in  $\theta^t$ :

$$Q(\mu_i^t | \theta^{t-1}) \propto \sum_{j=1}^n R_{i,j}^{t-1} \left( -\frac{1}{2\sigma^2} ||x_j - \mu_i^t||^2 \right)$$
$$\frac{\partial}{\partial \mu_i^t} Q(\mu_i^t | \theta^{t-1}) = 0 \Rightarrow \sum_{j=1}^n R_{i,j}^{t-1} (x_n - \mu_i^t) = 0$$

$$\mu_i^t = \sum_{j=1}^n w_j x_j \text{ where } w_j = \frac{R_{i,j}^{t-1}}{\sum_{j=1}^n R_{i,j}^{t-1}} = \frac{P(y_j = i | x_j, \theta^{t-1})}{\sum_{l=1}^n P(y_l = i | x_l, \theta^{t-1})}$$

# EM for spherical, same variance GMMs

#### E-step

Compute "expected" classes of all datapoints for each class

$$P(y_j = i|x_j, \theta^{t-1}) = \frac{\exp(-\frac{1}{2\sigma^2} ||x_j - \mu_i^{t-1}||^2) \pi_i}{\sum_{i=1}^K \exp(-\frac{1}{2\sigma^2} ||x_j - \mu_i^{t-1}||^2) \pi_i}$$

In K-means "E-step" we do hard assignment. EM does soft assignment

#### M-step

Compute Max. like **µ** given our data's class membership distributions (weights)

$$\mu_i^t = \sum_{j=1}^n w_j x_j$$
 where  $w_j = \frac{P(y_j = i | x_j, \theta^{t-1})}{\sum_{l=1}^n P(y_l = i | x_l, \theta^{t-1})}$ 

Iterate. Exactly the same as MLE with weighted data.

### EM for general GMMs

#### The more general case:

- We have unlabeled data  $x_1, x_2, ..., x_m$
- We know there are K classes
- We **don't** know  $P(y=1)=\pi_1$ ,  $P(y=2)=\pi_2$  P(y=3) ...  $P(y=K)=\pi_K$
- We **don't** know  $\Sigma_1,...$   $\Sigma_K$
- We **don't** know  $\mu_1$ ,  $\mu_2$ , ...  $\mu_K$

We want to learn:  $\theta = [\mu_1, \dots, \mu_K, \pi_1, \dots, \pi_K, \Sigma_1, \dots, \Sigma_K]$ 

Our estimator at the end of iteration t-1:

$$\theta^{t-1} = [\mu_1^{t-1}, \dots, \mu_K^{t-1}, \pi_1^{t-1}, \dots, \pi_K^{t-1}, \Sigma_1^{t-1}, \dots, \Sigma_K^{t-1}]$$

#### The idea is the same:

At iteration t, construct function Q (E step) and maximize it in  $\theta^t$  (M step)

$$Q(\theta^t | \theta^{t-1}) = \sum_{j=1}^n \sum_{i=1}^K P(y_j = i | x_j, \theta^{t-1}) \log P(x_j, y_j = i | \theta^t)$$

### EM for general GMMs

At iteration t, construct function Q (E step) and maximize it in  $\theta^t$  (M step)

$$Q(\theta^t | \theta^{t-1}) = \sum_{j=1}^n \sum_{i=1}^K P(y_j = i | x_j, \theta^{t-1}) \log P(x_j, y_j = i | \theta^t)$$

#### E-step

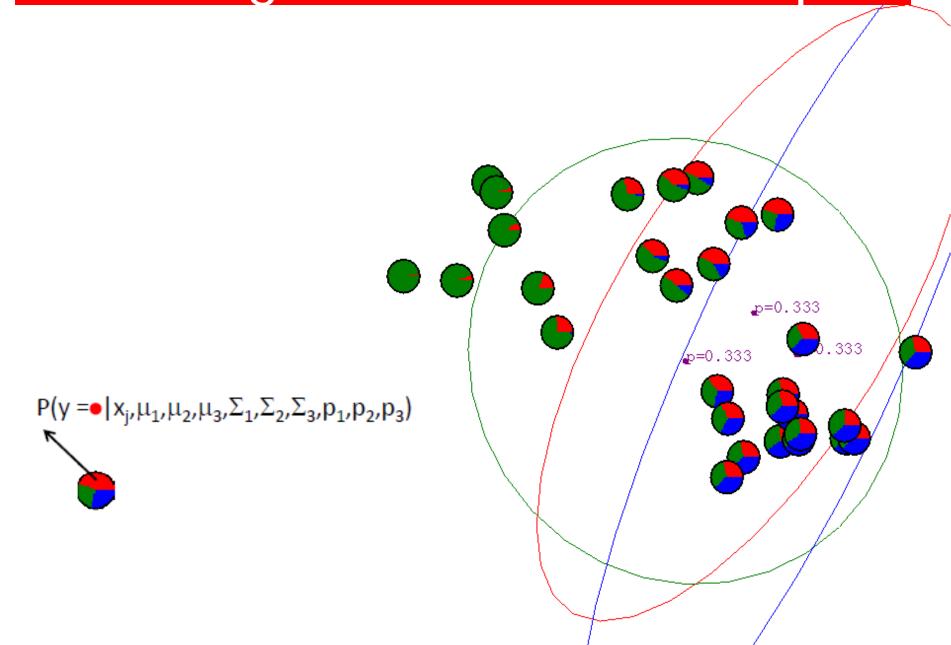
Compute "expected" classes of all datapoints for each class

$$R_{i,j}^{t-1} = P(y_j = i | x_j, \theta^{t-1}) = \frac{\exp(-\frac{1}{2\sigma^2} || x_j - \mu_i^{t-1} ||^2) \pi_i^{t-1}}{\sum_{i=1}^K \exp(-\frac{1}{2\sigma^2} || x_j - \mu_i^{t-1} ||^2) \pi_i^{t-1}}$$

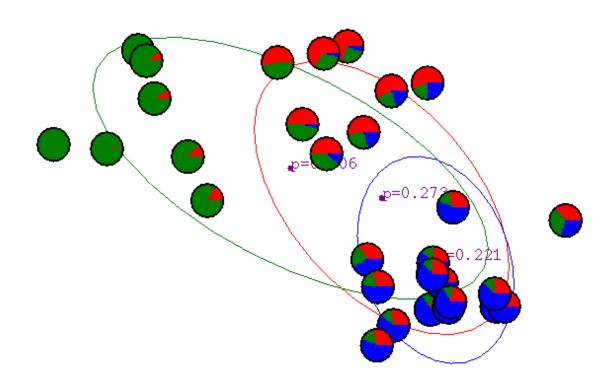
**M-step** 
$$\frac{\partial}{\partial \theta^t} Q(\theta^t | \theta^{t-1}) = 0$$

Compute MLEs given our data's class membership distributions (weights)

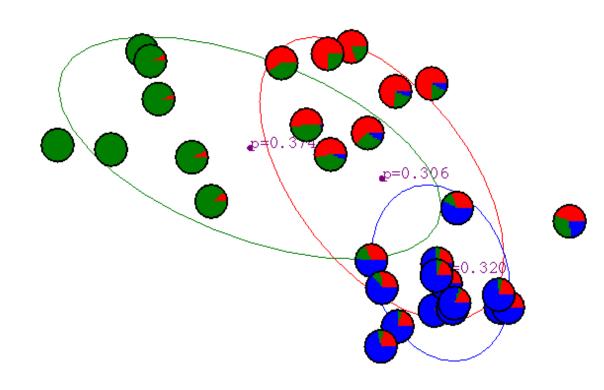
$$\begin{aligned} \mu_i^t &= \sum_{j=1}^n w_j x_j \quad \text{where } w_j = \frac{R_{i,j}^{t-1}}{\sum_{j=1}^n R_{i,j}^{t-1}} \\ \Sigma_i^t &= \sum_{j=1}^n w_j (x_j - \mu_i^t)^T (x_j - \mu_i^t) \\ \pi_i^t &= \frac{1}{n} \sum_{j=1}^n R_{i,j}^{t-1} \end{aligned}$$



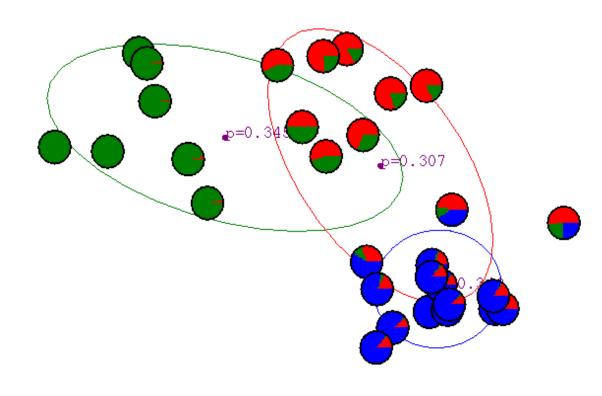
#### After 1st iteration



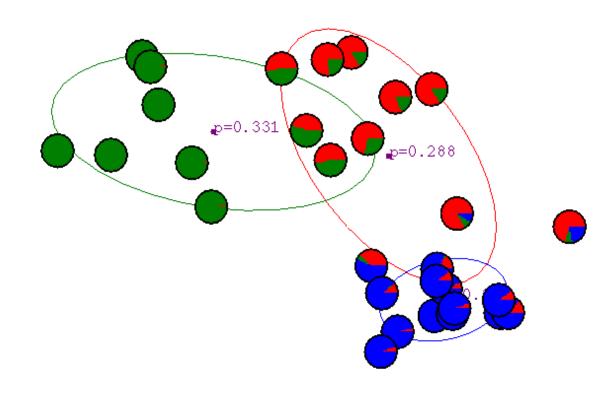
#### After 2<sup>nd</sup> iteration



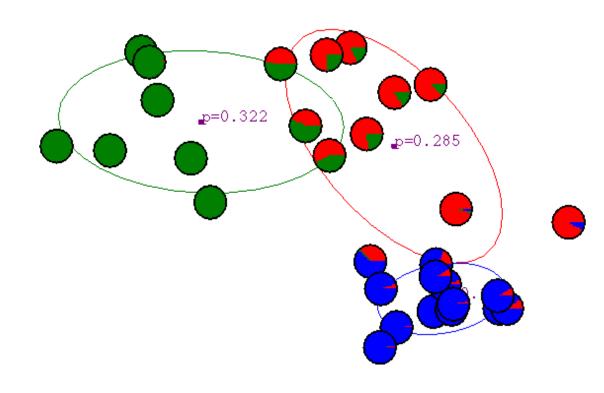
After 3rd iteration



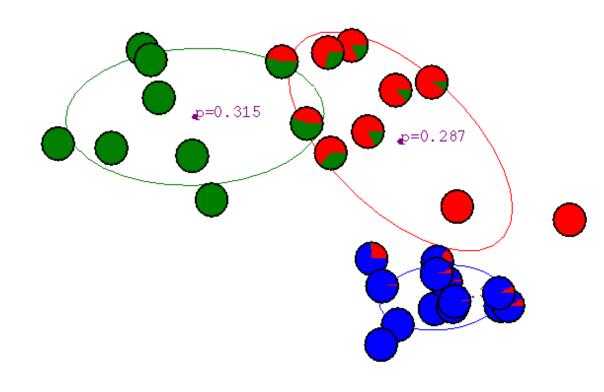
#### After 4th iteration



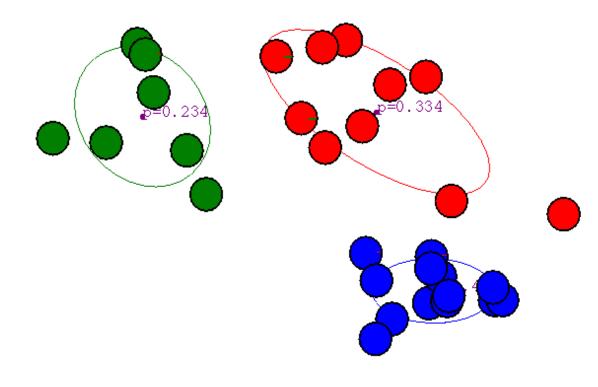
#### After 5th iteration



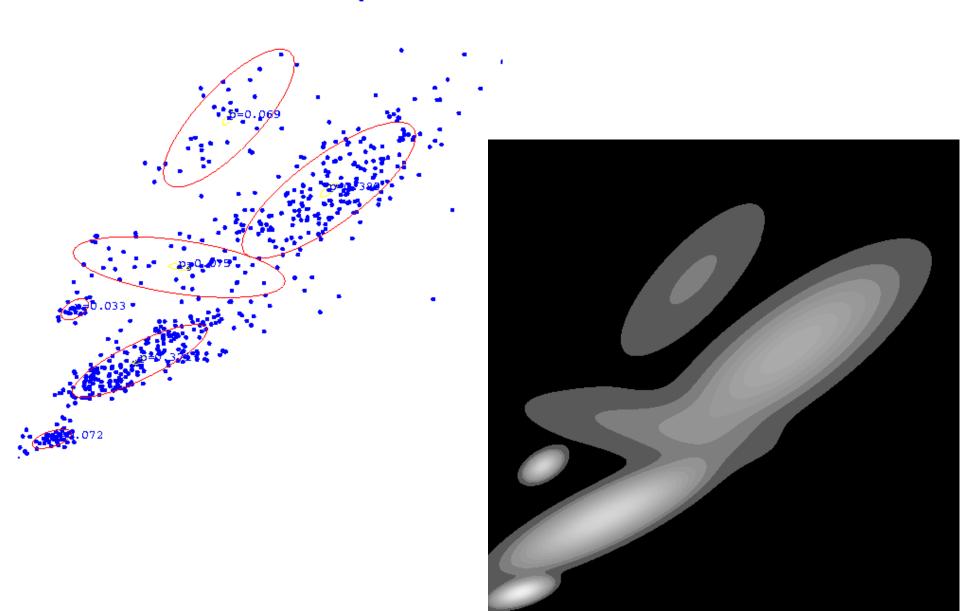
#### After 6th iteration



After 20th iteration



# **GMM** for Density Estimation



What is EM in the general case, and why does it work?

#### **Notation**

```
Observed data: D = \{x_1, \dots, x_n\}
```

Unknown variables: *y* 

For example in clustering:  $y = (y_1, \dots, y_n)$ 

Paramaters:  $\theta$ 

For example in MoG:  $\theta = [\mu_1, \dots, \mu_K, \pi_1, \dots, \pi_K, \Sigma_1, \dots, \Sigma_K]$ 

Goal: 
$$\widehat{\theta}_n = \arg\max_{\theta} \log P(D|\theta)$$

Other Examples: Hidden Markov Models

Observed data:  $D = \{x_1, \dots, x_n\}$ 

Unknown variables:  $y = (y_1, \dots, y_n)$ 

Paramaters:  $\theta = [\pi_1, \dots, \pi_K, A, B]$ 

Initial probabilities:  $P(x_1 = i) = \pi_i$ , i = 1, ..., K

Transition probabilities:  $P(y_{t+1} = j | y_t = i) = A_{ij}$ 

Emission probabilities:  $P(x_{t+1} = l | x_t = i) = B_{il}$ 

#### Goal:

$$\widehat{\theta}_n = \arg\max_{\theta} \log P(D|\theta) = \arg\max_{\pi,A,B} \log P(x_1,\dots,x_n|\theta)$$

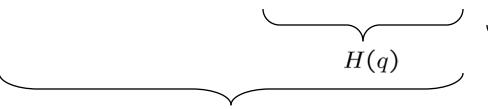
Goal:  $\underset{\theta}{\operatorname{arg max}} \log P(D|\theta)$ 

$$\begin{split} \log P(D|\theta^t) &= \int dy \, q(y) log P(D|\theta^t) \\ &= \int dy \, q(y) log \left[ \frac{P(y,D|\theta^t) \, q(y)}{P(y|D,\theta^t) \, q(y)} \right] \quad \text{since } P(y,D|\theta^t) = P(D|\theta^t) P(y|D,\theta^t) \\ &= \int dy \, q(y) log P(y,D|\theta^t) - \int dy \, q(y) \log q(y) + \int dy \, q(y) \log \frac{q(y)}{P(y|D,\theta^t)} \\ &+ H(q) & KL(q(y) ||P(y|D,\theta^t)) \end{split}$$

Free energy:  $F_{\theta^t}(q(\cdot), D)$ 

E Step: 
$$Q(\theta^t | \theta^{t-1}) = \mathbb{E}_y[\log P(y, D | \theta^t) | D, \theta^{t-1}]$$
  
 $= \int dy P(y | D, \theta^{t-1}) \log P(y, D | \theta^t)$   
M Step:  $\theta^t = \arg \max_{\theta} Q(\theta | \theta^{t-1})$ 

$$\log P(D|\theta^t) = \int dy \, q(y) \log P(y, D|\theta^t) - \int dy \, q(y) \log q(y) + \int dy \, q(y) \log \frac{q(y)}{P(y|D, \theta^t)}$$



Free energy:  $F_{\theta^t}(q(\cdot), D)$ 

**E Step**: 
$$Q(\theta^{t+1}|\theta^t) = \int dy P(y|D,\theta^t) \log P(y,D|\theta^{t+1})$$

Let 
$$q(y) = P(y|D, \theta^t)$$

$$\Rightarrow KL(q(y)||P(y|D,\theta^t)) = 0$$

$$\Rightarrow \log P(D|\theta^t) = F_{\theta^t}(P(y|D,\theta^t),D)$$

$$= \int dy P(y|D,\theta^t) \log P(y,D|\theta^t) - \int dy P(y|D,\theta^t) \log P(y|D,\theta^t)$$

**M Step:** 
$$\leq \int dy P(y|D, \theta^t) log P(y, D|\theta^{t+1}) - \int dy P(y|D, \theta^t) log P(y|D, \theta^t)$$

We maximize only here in  $\theta!!!$ 

 $KL(q(y)||P(y|D, \theta^t))$ 

$$\log P(D|\theta^t) = \int dy \, q(y) \log P(y, D|\theta^t) - \int dy \, q(y) \log q(y) + \int dy \, q(y) \log \frac{q(y)}{P(y|D, \theta^t)}$$

$$H(q)$$

$$KL(q(y)||P(y|D, \theta^t))$$

Free energy:  $F_{\theta^t}(q(\cdot), D)$ 

**Theorem:** During the EM algorithm the marginal likelihood is not decreasing!  $P(D|\theta^t) \leq P(D|\theta^{t+1})$ 

#### **Proof:**

$$\begin{split} \log P(D|\theta^t) &= F_{\theta^t}(P(y|D,\theta^t),D) \\ &\leq \int dy \, P(y|D,\theta^t) log P(y,D|\theta^{t+1}) - \int dy \, P(y|D,\theta^t) \log P(y|D,\theta^t) \\ &= F_{\theta^{t+1}}(P(y|D,\theta^t),D) \\ &= \log P(D|\theta^{t+1}) - KL(P(y|D,\theta^t) \|P(y|D,\theta^{t+1})) \\ &\leq \log P(D|\theta^{t+1}) \end{split}$$

```
Goal: \arg\max_{\theta} \log P(D|\theta)

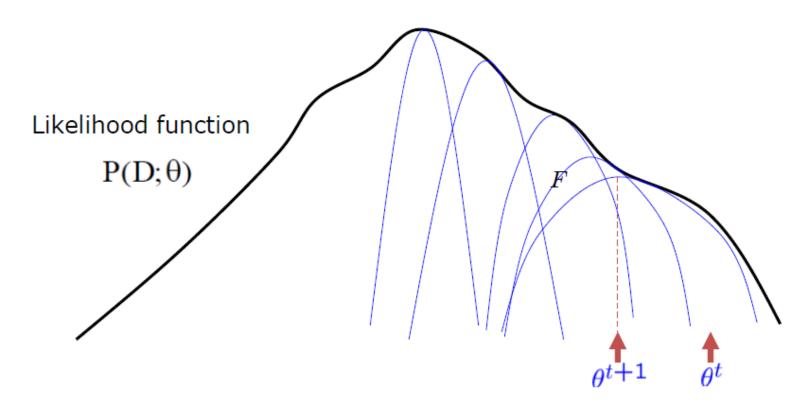
E Step: Q(\theta^t|\theta^{t-1}) = \mathbb{E}_y[\log P(y,D|\theta^t)|D,\theta^{t-1}]
= \int dy P(y|D,\theta^{t-1}) \log P(y,D|\theta^t)

M Step: \theta^t = \arg\max_{\theta} Q(\theta|\theta^{t-1})
```

During the EM algorithm the marginal likelihood is not decreasing!

$$P(D|\theta^t) \le P(D|\theta^{t+1})$$

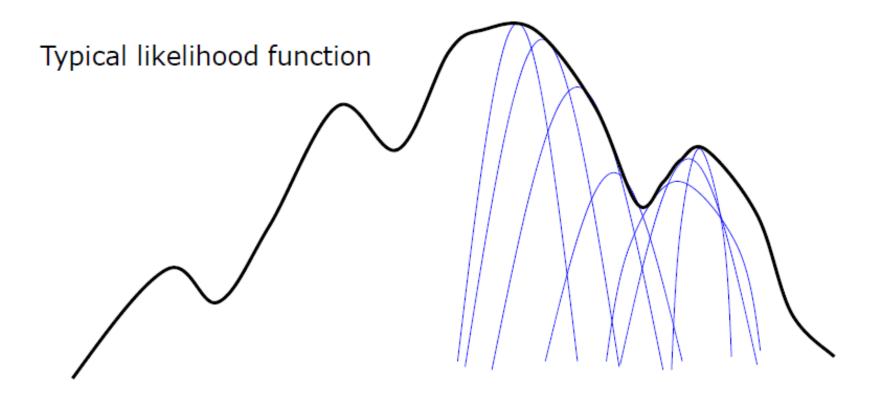
## Convergence of EM



Sequence of EM lower bound F-functions

EM monotonically converges to a local maximum of likelihood!

### Convergence of EM



Different sequence of EM lower bound F-functions depending on initialization

Use multiple, randomized initializations in practice

### Variational Methods

### Variational methods

$$\log P(D|\theta^t) = \int dy \, q(y) \log P(y, D|\theta^t) - \int dy \, q(y) \log q(y) + \int dy \, q(y) \log \frac{q(y)}{P(y|D, \theta^t)}$$

$$H(q)$$

$$KL(q(y)||P(y|D, \theta^t))$$

Free energy:  $F_{\theta t}(q(\cdot), D)$ 

$$\log P(D|\theta^t) \ge F_{\theta^t}(q(\cdot), D)$$

If  $P(y|D, \theta^t)$  is complicated, then instead of setting

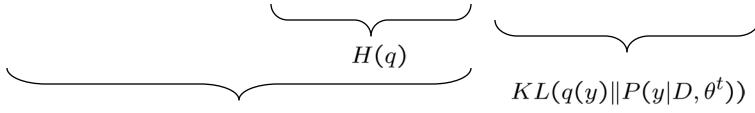
$$q(y) = P(y|D, \theta^t),$$

try to find suboptimal maximum points of the free energy.

Variational methods might decrease the marginal likelihood!

### Variational methods

$$\log P(D|\theta^t) = \int dy \, q(y) \log P(y, D|\theta^t) - \int dy \, q(y) \log q(y) + \int dy \, q(y) \log \frac{q(y)}{P(y|D, \theta^t)}$$



Free energy:  $F_{\theta t}(q(\cdot), D)$ 

$$\log P(D|\theta^t) = F_{\theta^t}(q(\cdot), D) + KL(q(y)||P(y|D, \theta^t)) \log P(D|\theta^t) \ge F_{\theta^t}(q(\cdot), D)$$

### Partial E Step:

 $\theta^t$  is fixed

$$q^{t}(\cdot) = \arg\max_{q(\cdot)} F_{\theta^{t}}(q(\cdot), D) = \arg\min_{q(\cdot)} KL(q(y) || P(y|D, \theta^{t}))$$

But **not** necessarily the best max/min which would be  $P(y|D, \theta^t)$ 

### Partial M Step:

 $q^t$  is fixed  $\theta^{t+1} = \arg\max_{\theta} F_{\theta}(q^t(\cdot), D)$ 

Variational methods might decrease the marginal likelihood!

### Summary: EM Algorithm

A way of maximizing likelihood function for hidden variable models.

Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces:

- 1.Estimate some "missing" or "unobserved" data from observed data and current parameters.
- 2. Using this "complete" data, find the MLE parameter estimates.

Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:

**E Step**: 
$$q^t = \arg \max_q F_{\theta^t}(q(\cdot), D)$$

**M Step**: 
$$\theta^{t+1} = \arg \max_{\theta} F_{\theta}(q^t(\cdot), D)$$

In the M-step we optimize a lower bound F on the likelihood L.

In the E-step we close the gap, making bound F = likelihood L.

EM performs coordinate ascent on F, can get stuck in local optima.