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Linear Regression

Data X : N × P matrix, Target y : N × 1 vector
N samples, each sample has P features

Want to find θ so that y and Xθ are as close as possible
Pick θ that minimizes the cost function

L =
1
2

∑
i

(yi − Xiθ)2 =
1
2
||y − Xθ||2

use gradient descent

θt+1
j = θt

j − step ∗ ∂L
∂θj

= θt
j − step ∗

∑
i

(yi − Xiθ)(−Xij)
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Linear Regression

Matrix form:

L =
1
2

∑
i

(yi − Xiθ)2 =
1
2
||y − Xθ||2

=
1
2

(y − Xθ)>(y − Xθ)

=
1
2

(y>y − y>Xθ − θ>X>y + θ>X>Xθ)

Take derivative w.r.t. θ

∂L
∂θ

=
1
2

(−2X>y + 2X>Xθ) = 0

Hence we get
θ = (X>X )−1X>y
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Linear Regression

Comparison of iterative methods and matrix methods:
matrix methods achieve solution in a single step, but can
be infeasible for real-time data, or large amount of data.
iterative methods can be used in large practical problems,
but need to decide learning rate

Any problems?
Data X is an N × P matrix
Usually N > P, i.e., number of data points larger than
feature dimensions. And usually X is of full column rank.
Under this case X>X have rank P, i.e., invertible
What if X has less than full column rank?
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Regularization: `2 norm

Ridge Regression:

min
θ

1
2

∑
i

(yi − Xiθ)2 + λ||θ||22

Solution is given by:

θ = (X>X + λI)−1X>y

Results in a solution with small θ
Solves the problem that X>X is not invertible
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Regularization: `1 norm

Lasso Regression:

min
θ

1
2

∑
i

(yi − Xiθ)2 + λ||θ||1

Solution is given by taking subgradient:∑
i

(yi − Xiθ)(−Xij) + λtj

where tj is the subgradient of `1 norm,

tj = sign(θj) if θj 6= 0, tj ∈ [−1,1] otherwise

Sparse solution, i.e., θ will be a vector with more zero
coordinates.
Good for high-dimensional problems
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Solving Lasso regression

Efron et al. proposed LARS (least angle regression) which
computes the LASSO path efficiently

Forward stagewise algorithm
Assume X is standardized and y is centered
choose small ε

Start with initial residual r = y , and θ1 = ... = θP = 0
Find the predictor Zj (j th column of X ) most correlated with
r
Update θj ← θj + δj , where δj = ε · sign(Z>

j r)
Set r ← r − δjZj , repeat steps 2 and 3

Lasso



Ridge/Lasso Regression
Model Selection

Linear Regression
Regularization
Probabilistic Intepretation

Comparison of Ridge and Lasso regression:

Two-dimensional case:
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Comparison of Ridge and Lasso regression:

Higher dimensional case:
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Choosing λ

Standard practice now is to use cross-validation
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Probabilistic Intepretation of Linear regression

Assume yi = Xiθ + εi , where ε is the random noise.
Assume ε ∼ N (0, σ2)

p(yi |Xi ; θ) =
1√
2πσ

exp{−(yi − Xiθ)2

2σ2 }

Since data points are i.i.d, we have the data likelihood

L(θ) =
N∏

i=1

p(yi |Xi ; θ) ∝ exp{−
∑N

i=1(yi − Xiθ)2

2σ2 }

The log likelihood is:

`(θ) = −
∑N

i=1(yi − Xiθ)2

2σ2 + const

Maximizing the log-likelihood is equivalent to minimize∑N
i=1(yi − Xiθ)2, i.e., the loss function in LR!
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Probabilistic Intepretation of Ridge regression

Assume a Gaussian prior on θ ∼ N (0, τ2I), i.e.,

p(θ) ∝ exp{−θ>θ/2τ2}

Now get the MAP estimate of θ

p(θ|X , y) ∝ p(y |X ; θ)p(θ) = exp{−
∑N

i=1(yi − Xiθ)2

2σ2 }exp{−θ>θ/2τ2}

The log likelihood is:

`(θ|X , y) = −
∑N

i=1(yi − Xiθ)2

2σ2 − θ>θ/2τ2 + const

which matches minθ 1
2
∑

i(yi − Xiθ)2 + λ||θ||22, where λ is a
constant associated with σ2, τ2.
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Probabilistic Intepretation of Lasso regression

Assume a Laplace prior on θi
iid∼ Laplace(0, t), i.e.,

p(θi) ∝ exp{−|θi |/t}

Now get the MAP estimate of θ

p(θ|X , y) ∝ p(y |X ; θ)p(θ) = exp{−
∑N

i=1(yi − Xiθ)2

2σ2 }exp{−
∑

i

|θi |/t}

The log likelihood is:

`(θ|X , y) = −
∑N

i=1(yi − Xiθ)2

2σ2 −
∑

i

|θi |/t + const

which matches minθ 1
2
∑

i(yi − Xiθ)2 + λ||θ||1, where λ is a
constant associated with σ2, t .
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Variable Selection

Consider "best" subsets, order O(2P) (combinatorial
explosion)
Stepwise selection

A new variable may be added into the model even with a
small improvement in LMS
When applying stepwise to a perturbation of the data,
probably have different set of variables enter into the model
at each stage

LASSO produces sparse solutions, which takes care of
model selection

we can even see when variables jump into the model by
looking at the LASSO path
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Example

Suppose you have data Y1, ...,Yn and you want to model the
distribution of Y . Some popular models are:

the Exponential distribution: f (y ; θ) = θe−θy

the Gaussian distribution: f (y ; u, σ2) ∼ N (u, σ2)

...
How do you know which model is better?
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AIC

Suppose we have models M1, ...,Mk where each model is a set
of densities:

Mj = {p(y ; θj) : θj ∈ Θj}

We have data Y1, ...,Yn drawn from some density f (not
necessarily drawn from these models). Define

AIC(j) = `j(θ̂j)− 2dj

where `j(θj) is the log-likelihood, and θ̂j is the parameter that
maximizes the log-likelihood. dj is the dimension of Θj .
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BIC

Bayesian Information Criterion We choose j to maximize

BICj = `j(θ̂j)−
dj

2
log n

which is similar to AIC but the penalty is harsher, hence BIC
tends to choose simpler models.
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Simple example

Let
Y1, ...,Yn ∼ N (µ,1)

we want to compare two model:

M0 : N (0,1) and M1 : N (u,1)
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Simple example: AIC

The log-likelihood is

` = log
∏

i

e−(Yi−u)2/2 = −
∑

i

(Yi − u)2/2

AIC0 = −
∑

i

Y 2
i /2− 0

AIC1 = −
∑

i

(Yi − Ȳ )2/2− 2 = −
∑

i

Y 2
i /2 +

n
2

Ȳ 2 − 2

we choose model 1 if AIC1 > AIC0 i.e.,

−
∑

i

Y 2
i /2 +

n
2

Ȳ 2 − 2 > −
∑

i

Y 2
i /2

or Ȳ >
√

4
n .
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Simple example: BIC

BIC0 = −
∑

i

Y 2
i /2−

0
2

log n = −
∑

i

Y 2
i /2

AIC1 = −
∑

i

(Yi−Ȳ )2/2−1
2

log n = −
∑

i

Y 2
i /2+n/2Ȳ 2−1

2
log n

we choose model 1 if BIC1 > BIC0 i.e.,

−
∑

i

Y 2
i /2 + n/2Ȳ 2 − 1

2
log n > −

∑
i

Y 2
i /2

or Ȳ >
√

log n
n .
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Comparison

Generally speaking,
AIC/CV finds the most predictive model
BIC find the true model with high probability, i.e., BIC
assumes that one of the models is true and that you are
trying to find the model most likely to be true in the
Bayesian sense.
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