
Introduction to Machine Learning
12. Gaussian Processes

Alex Smola
Carnegie Mellon University

http://alex.smola.org/teaching/cmu2013-10-701
10-701

http://alex.smola.org/teaching/berkeley2012
http://alex.smola.org/teaching/berkeley2012


The Normal Distribution

http://www.gaussianprocess.org/gpml/chapters/

http://www.gaussianprocess.org/gpml/chapters/
http://www.gaussianprocess.org/gpml/chapters/


The Normal Distribution



Gaussians in Space



Gaussians in Space

samples in R2



The Normal Distribution
• Density for scalar variables

• Density in d dimensions

• Principal components
• Eigenvalue decomposition
• Product representation
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The Normal Distribution
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Why do we care? 
• Central limit theorem shows that in the limit all 

averages behave like Gaussians
• Easy to estimate parameters (MLE)

• Distribution with largest uncertainty (entropy) 
for a given mean and covariance.

• Works well even if the assumptions are wrong

µ =
1

m

mX

i=1

xi and ⌃ =
1

m

mX

i=1

xix
>
i � µµ

>



Why do we care? 
• Central limit theorem shows that in the limit all 

averages behave like Gaussians
• Easy to estimate parameters (MLE)

X: data 
m: sample size

mu    = (1/m)*sum(X,2)
sigma = (1/m)*X*X’- mu*mu’ 
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Sampling from a Gaussian
• Case 1 - We have a normal distribution (randn)

• We want
• Recipe:                where               and 
• Proof:

• Case 2 - Box-Müller transform for U[0,1]
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Sampling from a Gaussian
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Sampling from a Gaussian
• Cumulative distribution function

Draw radial and angle component separately

tmp1 = rand()
tmp2 = rand()
r    = sqrt(-2*log(tmp1))
x1   = r*sin(tmp2/(2*pi))
x2   = r*cos(tmp2/(2*pi))
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Sampling from a Gaussian
• Cumulative distribution function

Draw radial and angle component separately

tmp1 = rand()
tmp2 = rand()
r    = sqrt(-2*log(tmp1))
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Why can we use tmp1 
instead of 1-tmp1?



Example: correlating weight and height
A simple problem

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 23



Example: correlating weight and height
A simple problem

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 23

assume Gaussian correlation



Inference

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 24

p(weight|height) =

p(height,weight)
p(height) / p(height,weight)



Inference

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 24

p(weight|height) =

p(height,weight)
p(height) / p(height,weight)
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The gory mathInference in Normal Distributions

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 27

Correlated Observations
Assume that the random variables t 2 Rn, t0 2 Rn0 are
jointly normal with mean (µ, µ0) and covariance matrix K
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Inference
Given t, estimate t0 via p(t0|t). Translation into machine
learning language: we learn t0 from t.

Practical Solution
Since t0|t ⇠ N(µ̃, ˜K), we only need to collect all terms in
p(t, t0) depending on t0 by matrix inversion, hence
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Handbook of Matrices, Lütkepohl 1997 (big timesaver)



Mini Summary
• Normal distribution

• Sampling from
Use               where               and 

• Estimating mean and variance

• Conditional distribution is Gaussian, too!
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Gaussian 
Processes



Gaussian ProcessGaussian Process

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 28

Key Idea
Instead of a fixed set of random variables t, t0 we assume
a stochastic process t : X ! R, e.g. X = Rn.
Previously we had X = {age, height, weight, . . .}.

Definition of a Gaussian Process
A stochastic process t : X ! R, where all
(t(x

1

), . . . , t(xm)) are normally distributed.
Parameters of a GP

Mean µ(x) := E[t(x)]

Covariance Function k(x, x0) := Cov(t(x), t(x0))

Simplifying Assumption
We assume knowledge of k(x, x0) and set µ = 0.



Gaussian Process
• Sampling from a Gaussian Process

• Points x where we want to sample
• Compute covariance matrix X
• Can only obtain values at those points!
• In general entire function f(x) is NOT available



Gaussian Process
• Sampling from a Gaussian Process

• Points x where we want to sample
• Compute covariance matrix X
• Can only obtain values at those points!
• In general entire function f(x) is NOT available

only looks smooth
(evaluated at many points)



Gaussian Process
• Sampling from a Gaussian Process

• Points x where we want to sample
• Compute covariance matrix X
• Can only obtain values at those points!
• In general entire function f(x) is NOT available
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where Kij = k(xi, xj) and µi = µ(xi)



Kernels ...Gaussian Processes and Kernels

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 35

Covariance Function
Function of two arguments
Leads to matrix with nonnegative eigenvalues
Describes correlation between pairs of observations

Kernel
Function of two arguments
Leads to matrix with nonnegative eigenvalues
Similarity measure between pairs of observations

Lucky Guess
We suspect that kernels and covariance functions are
the same . . . yes!



Mini Summary
• Gaussian Process

• Think distribution over function values (not functions)
• Defined by mean and covariance function

• Generates vectors of arbitrary dimensionality (via X)
• Covariance function via kernels
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Gaussian 
Process
Regression



Inference

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 24

p(weight|height) =

p(height,weight)
p(height) / p(height,weight)

Gaussian Processes for Inference

X = {height,weight}



Joint Gaussian Model
• Random variables (t,t’) are drawn from GP

• Observe subset t
• Predict t’ using 

• Linear expansion (precompute things)
• Predictive uncertainty is data independent

Good for experimental design
• Predictive uncertainty is data independent
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Inference in Normal Distributions
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Correlated Observations
Assume that the random variables t 2 Rn, t0 2 Rn0 are
jointly normal with mean (µ, µ0) and covariance matrix K
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Inference
Given t, estimate t0 via p(t0|t). Translation into machine
learning language: we learn t0 from t.

Practical Solution
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Linear Gaussian Process RegressionExample: Linear Regression

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 38

Linear kernel: k(x, x0) = hx, x0i
Kernel matrix X>X
Mean and covariance
˜K = X 0>X 0 � X 0>X(X>X)

�1X>X 0
= X 0>

(1� PX)X 0.

µ̃ = X 0>⇥
X(X>X)

�1t
⇤

µ̃ is a linear function of X 0.
Problem

The covariance matrix X>X has at most rank n.
After n observations (x 2 Rn) the variance vanishes.
This is not realistic.
“Flat pancake” or “cigar” distribution.



Degenerate Covariance

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 39
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Degenerate Covariance

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 39

x t

Degenerate Covariance



Degenerate Covariance
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x t y

‘fatten up’
covariance

Degenerate Covariance



Degenerate Covariance
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Degenerate Covariance

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 39

x t y

‘fatten up’
covariance

t ⇠ N(µ,K)

yi ⇠ N(ti,�
2)

Degenerate Covariance



Additive NoiseAdditive Noise

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 40

Indirect Model
Instead of observing t(x) we observe y = t(x) + ⇠, where
⇠ is a nuisance term. This yields

p(Y |X) =

Z mY

i=1

p(yi|ti)p(t|X)dt

where we can now find a maximum a posteriori solution
for t by maximizing the integrand (we will use this later).

Additive Normal Noise
If ⇠ ⇠ N(0, �2

) then y is the sum of two Gaussian ran-
dom variables.
Means and variances add up.

y ⇠ N(µ, K + �21).



Training Data

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 41

Data



Predictive meanMean ~k>(x)(K + �21)

�1y

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 42
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VarianceVariance k(x, x) + �2 � ~k>(x)(K + �21)

�1~k(x)

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 43



Putting it all togetherPutting everything together . . .

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 44



Putting it all togetherAnother Example

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 45



Ugly detailsThe ugly details

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 46

Covariance Matrices
Additive noise

K = K
kernel

+ �21

Predictive mean and variance
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Plug this into the mean and covariance equations.

With Noise
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Pseudocode

ktrtr   = k(xtrain,xtrain) + sigma2 * eye(mtr)
ktetr   = k(xtest,xtrain)
ktete   = k(xtest,xtest)

alpha   = ytr/ktrtr %better if you use cholesky
yte     = ktetr * alpha
sigmate = ktete + sigma2 * eye(mte) + ... 
          ktetr * (ktetr/ktrtr)’
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The connection between SVM and GPThe Support Vector Connection

Alexander J. Smola: An Introduction to Machine Learning with Kernels, Page 36

Gaussian Process on Parameters
t ⇠ N(µ, K) where Kij = k(xi, xj)

Linear Model in Feature Space
t(x) = h�(x), wi + µ(x) where w ⇠ N(0,1)

The covariance between t(x) and t(x0) is then given by
Ew [h�(x), wihw, �(x0)i] = h�(x), �(x0)i = k(x, x0)

Conclusion
A small weight vector in “feature space”, as commonly
used in SVM amounts to observing t with high p(t).

Log prior � log p(t) () Margin kwk2

Will get back to this later again.

Linear model in feature space
induces a Gaussian Process



Mini Summary
• Latent variables t drawn from a Gaussian Process
• Observations y are t corrupted with noise
• Observations y are drawn from Gaussian Process

• Estimate y’|y,x,x’ (matrix inversion)

• SVM kernel is GP kernel

µ ! µ and K ! K + �21
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Gaussian 
Process
Classification



• Regression
• Data y is scalar
• Connection to t is by additive noise

• (Binary) Classification
• Data y in {-1, 1}
• Connection to t is by logistic model

Gaussian Process Classification
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Logistic function
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Gaussian Process Classification
• Regression

We can integrate out the latent variable t.
• Classification

Closed form solution is not possible
 
(we cannot solve the integral in t).

t ⇠ N(µ,K) and yi ⇠ N(ti,�
2) hence y ⇠ N(µ,K + �21)

t ⇠ N(µ,K) and yi ⇠ Logistic(ti)
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Gaussian Process Classification
• What we should do: integrate out t,t’

But this is very very expensive (e.g. MCMC)
• Maximum a Posteriori approximation

• Find
• Ignore correlation in test data (horrible)
• Find
• Estimate

p(y0|y, x, x0) =
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Maximum a Posteriori Approximation

• Step 1 - maximize p(t|y,x)

• Step 2 - find t’|t for MAP estimate of t

• Step 3 - estimate p(y’|t’)

minimize
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Clean DataA Toy Example

Alex J. Smola: Exponential Families for Estimation, Page 14



Noisy DataNoisy Data

Alex J. Smola: Exponential Families for Estimation, Page 15



Connection to SVMs revisited
• SVM objective

• Logistic regression objective (MAP estimation)

• Reparametrize 

minimize
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More loss functions

• Logistic
• Huberized loss

• Soft margin

8
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Mini Summary
• Latent variables drawn from Gaussian Process
• Observation drawn from logistic model

• Impossible to integrate out latent variables
• Maximum a posteriori inference

(with many hacks to make it scale)
• Optimization problem is similar to SVM

(different loss and parametrization             )
• Advanced topic - adjusting K via prior on k

↵ = K�1t


