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We have explored many ways of learning from data 
But… 

 
– How good is our classifier, really? 

 
– How much data do we need to make it “good enough”? 

Learning Theory 
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Please ask Questions 
and give us Feedbacks! 

3 



Review of what we have 
learned so far 
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Notation 
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This is what the learning algorithm produces 

We will need these definitions, please copy it! 



Big Picture   
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Bayes risk 

Estimation error Approximation error 

Bayes risk 

Ultimate goal: 

Approximation error 

Estimation error 



Big Picture   
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Bayes risk 

Estimation error Approximation error 

Bayes risk 



Big Picture   
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Bayes risk 

Estimation error Approximation error 

Bayes risk 



Big Picture: Illustration of Risks 
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Upper bound 

Goal of Learning: 



11. Learning Theory 
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Outline 
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These results are useless if N is big, or infinite. (e.g. all possible hyper-planes) 

Today we will see how to fix this with the  
Shattering coefficient and VC dimension 

Theorem: 

From Hoeffding’s inequality, we have seen that 



Outline 
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Theorem: 

From Hoeffding’s inequality, we have seen that 

After this fix, we can say something meaningful about this too: 

This is what the learning algorithm produces and its true risk 



Hoeffding inequality 
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Theorem: 

Observation: 



McDiarmid’s  
Bounded Difference Inequality 

It follows that 
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Bounded Difference Condition 
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Our main goal is to bound 
Lemma: 

Let g denote the following function: 

Observation: 

Proof: 

) McDiarmid can be applied for g! 



Bounded Difference Condition 
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Corollary: 

The Vapnik-Chervonenkis inequality does that  
with the shatter coefficient (and VC dimension)! 



Concentration and  
Expected Value 
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Vapnik-Chervonenkis inequality  
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We already know: 

Vapnik-Chervonenkis inequality: 

Corollary: Vapnik-Chervonenkis theorem: 

Our main goal is to bound 



Shattering 
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How many points can a linear 
boundary classify exactly in 1D? 

- + 

2 pts 3 pts - + + 

- - + 

- + - ?? There exists placement s.t.  
all labelings can be classified 

- + 
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The answer is 2 



- + 3 pts 4 pts 

- + 
+ - + 

- + 

- 
?? 

- + 
- + 

How many points can a linear 
boundary classify exactly in 2D? 

There exists placement s.t.  
all labelings can be classified 
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The answer is 3 



How many points can a linear 
boundary classify exactly in d-dim? 
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The answer is d+1 

How many points can a linear 
boundary classify exactly in 3D? 
The answer is 4 

tetraeder 

+ 

+ - 

- 



Growth function, 
 Shatter coefficient 

Definition 

0 0 0 
0 1 0 
1 1 1 
1 0 0 
0 1 1 
0 1 0 
1 1 1 

(=5 in this example) 

Growth function, Shatter coefficient 

maximum number of behaviors on n points 
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Growth function,  
Shatter coefficient 

Definition 

Growth function, Shatter coefficient 

maximum number of behaviors on n points 

- + 

+ 

Example: Half spaces in 2D 

+ + - 
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VC-dimension 

Definition 

Growth function, Shatter coefficient 

maximum number of behaviors on n points 

Definition: VC-dimension 

# 
be

ha
vi

or
s 

 

Definition: Shattering 

Note: 
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VC-dimension 

Definition 

# 
be

ha
vi

or
s 
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- + 
- + 

VC-dimension 
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Examples 
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VC dim of decision stumps  
(axis aligned linear separator) in 2d 

What’s the VC dim. of decision stumps in 2d? 

- + 

+ 

- + 

- 

+ + 

- 

There is a placement of 3 pts that can be shattered ) VC dim ≥ 3  

29 



What’s the VC dim. of decision stumps in 2d? 
If VC dim = 3, then for all placements of 4 pts, there exists a labeling that 

can’t be shattered 
 

3 collinear 
1 in convex hull 
of other 3 

quadrilateral 

- + - - 
+ 

- 

- 
+ 

- 

+ - 

VC dim of decision stumps  
(axis aligned linear separator) in 2d 
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VC dim. of axis parallel 
rectangles in 2d 

What’s the VC dim. of axis parallel rectangles in 2d? 

- + 

+ 

- + 

- 
There is a placement of 3 pts that can be shattered ) VC dim ≥ 3  
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VC dim. of axis parallel 
rectangles in 2d 

There is a placement of 4 pts that can be shattered ) VC dim ≥ 4  
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VC dim. of axis parallel 
rectangles in 2d 

What’s the VC dim. of axis parallel rectangles in 2d? 
   

+ 
+ - 

- 

- 
- 

- + - - 
+ 

- 

- - 

- 
+ 

- 

+ 
- 

If VC dim = 4, then for all placements of 5 pts, there exists a labeling that 
can’t be shattered 

 

4 collinear 
2 in convex hull 1 in convex hull   

pentagon 
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Sauer’s Lemma 
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The VC dimension can be used to upper bound  
the shattering coefficient. 

Sauer’s lemma: 

Corollary: 

We already know that [Exponential in n] 

[Polynomial in n] 



Proof of Sauer’s Lemma 

Write all different behaviors on a sample  
(x1,x2,…xn) in a matrix: 

0 0 0 
0 1 0 
1 1 1 
1 0 0 
0 1 0 
1 1 1 
0 1 1 
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0 0 0 
0 1 0 
1 1 1 
1 0 0 
0 1 1 



Proof of Sauer’s Lemma 

We will prove that 
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0 0 0 
0 1 0 
1 1 1 
1 0 0 
0 1 1 

Shattered subsets of columns: 

Therefore, 



Proof of Sauer’s Lemma 

Lemma 1 
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0 0 0 
0 1 0 
1 1 1 
1 0 0 
0 1 1 

for any binary matrix with no repeated rows. 

Shattered subsets of columns: 

Lemma 2 

In this example: 5· 6 

In this example: 6· 1+3+3=7 



Proof of Lemma 1 

Lemma 1 
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0 0 0 
0 1 0 
1 1 1 
1 0 0 
0 1 1 

Shattered subsets of columns: 

Proof 

In this example: 6· 1+3+3=7 



Proof of Lemma 2 
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for any binary matrix with no repeated rows. 
Lemma 2 

Induction on the number of columns Proof 

Base case: A has one column. There are three cases: 

) 1 · 1 
) 1 · 1 
) 2 · 2 



Proof of Lemma 2 
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Inductive case: A has at least two columns.  

We have, 

By induction (less columns) 

0 0 0 
0 1 0 
1 1 1 
1 0 0 
0 1 1 



Proof of Lemma 2 
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because 

0 0 0 
0 1 0 
1 1 1 
1 0 0 
0 1 1 



Vapnik-Chervonenkis inequality  
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Vapnik-Chervonenkis inequality: 

From Sauer’s lemma: 

Since 

Therefore, 

[We don’t prove this] 

Estimation error 



Linear (hyperplane) classifiers 
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Estimation error 

We already know that 

Estimation error 

Estimation error 



Vapnik-Chervonenkis Theorem  
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We already know from McDiarmid: 

Corollary: Vapnik-Chervonenkis theorem: [We don’t prove them] 

Vapnik-Chervonenkis inequality: 

Hoeffding + Union bound for finite function class: 



PAC Bound for the Estimation 
Error 
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VC theorem: 

Inversion: 

Estimation error 



Structoral Risk Minimization 

46 

Bayes risk 

Estimation error Approximation error 

Ultimate goal: 

Approximation error 

Estimation error 

So far we studied when  
estimation error ! 0, but we also want approximation error ! 0 

 

Many different variants…  
penalize too complex models to avoid overfitting 



What you need to know 
 

Complexity of the classifier depends on number of points that can 
be classified exactly 

 
Finite case – Number of hypothesis 

Infinite case – Shattering coefficient, VC dimension 
 

PAC bounds on true error in terms of empirical/training error and 
complexity of hypothesis space 

 
Empirical and Structural Risk Minimization 
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Thanks for your attention  
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