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Learning Bayesian Networks 
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Known Structure Unknown Structure 

Fully Observed Data EASY 
(estimate CPT) 

HARD 
(structure + CPT) 

Missing Data HARD 
(Variational Methods) 

VERY HARD 
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BN Learning for Known Structure 

MLE for a BN whose CPDs (Conditional 
Probability Distributions) have disjoint 
parameters =  

   MLEs for each of its CPDs 
 

=> Estimate MLEs for the parameters of 
the conditionals 
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Decomposability 
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Deriving the MLE 

Most common distributions have closed 
forms for the MLE – you’ve used them 
Useful to know what distributions you 
obtain when you condition 
Solve analytically, for every parameter: 
 
 
Convex optimization 
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Learning Structure 

Same principle: maximizing the 
likelihood of the data 
Alternative:  

use stat. tests to det. cond. independencies 
construct the corresponding PDAG 

 

Idea: use likelihood to score structures 
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Likelihood and BN structures 

For every possible structure, consider it 
with its best possible parameters (MLE) 
Optimistic, but correct if the overall goal 
is maximizing likelihood 
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Deriving the structure score for G 
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Deriving the structure score for G 
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Decomposition 

Structure’s likelihood decomposes by 
family => increased efficiency 
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doesn’t depend 
on structure 

directly related 
to structure 
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Problem with Mutual Information 

 
 
Unless conditional independence holds 
exactly in the data, more connections are 
always better! 
For structure, MLE is guaranteed to 

OVERFIT 
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≤ 
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Possible Solution: Chow-Liu 
Each node can have at most one parent 
Structure will have at most n-1 edges 
Decision is where to place the edges 
Algorithm: 

Consider 𝐼(𝑋𝑖 ,𝑋𝑗) to be the score of putting 
an edge between 𝑋𝑖 and 𝑋𝑗 
Find the maximum spanning tree 

Number of trees? 𝑂(2𝑛𝑛𝑛𝑛(𝑛)) 
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Possible Solution: Chow-Liu 
Each node can have at most one parent 
Structure will have at most n-1 edges 
Decision is where to place the edges 
Algorithm: 

Consider 𝐼(𝑋𝑖 ,𝑋𝑗) to be the score of putting 
an edge between 𝑋𝑖 and 𝑋𝑗 
Find the maximum spanning tree 
Pick root, traverse to get structure 
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Maximum-scoring spanning trees gives 
the skeleton 
Trees with the same skeleton have 

The same conditional independence 
assertions 
The same mutual information score 

The resulting model has no V-structures 
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Possible Solution: Chow-Liu 
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Not covered (yet) 

Being Bayesian: priors on structure 
Consistent* Scores: 

Bayesian Score and modularity 
Bayesian Information Criterion (BIC) 

• Penalizes model dimension by log(m)/2 

 
 
Structure search 

4/3/2013 15 Recitation 10: Structure Learning 

* as the number of samples goes to infinity, the recovered 
structure is ‘I-equivalent’ to the map of the true distribution 
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