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Carnegie Mellon University

Homework 3

Instructions

• The homework is due in the lecture on March 18. Anything that is received after the lecture will not
be considered.

• Please submit one set of notes for each of the problems and put them into a separate stack. Don’t
forget to add your name on each sheet.

• Alternatively, you can e-mail your solution to 10.701.homework@gmail.com. Please write the
subject as: [Homework 3] yourandrewID followed by the numbers of the questions you are in-
cluding in the email, or “all” if you’re submitting the entire homework. As before, the cutoff is the
end of the lecture.

• If you are on the waitlist, please either e-mail your solution or hand it in with everyone else. However,
put it into an envelope and write waitlist on it. While we cannot guarantee that you will definitely
get a spot, we will give preference to students who submitted homework.

• If you submit code, it should be sufficiently well documented that the TAs can understand what is
happening. Also attach pseudocode if you feel that this makes the result more comprehensible.

• The number of ◦ indicates the hardness of the problem. This is only a hint and often the hard problems
simply require a bit of thinking to get the idea for the proof.
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1 Vapnik Chervonenkis Dimension (Ina) - 45 points

1.1 Finite function classes ◦
Assume that we are given a function class F that contains finitely many functions, i.e. |F| < ∞. Compute
an upper bound on the VC dimension, that is, bound how many points x1, . . . , xm there can be at most such
that for all arbitrary yi ∈ {±1} there exists some f ∈ F with sgn f(xi) = yi.

1.2 Gram matrix ◦◦
One may prove that for certain kernels such as the Gaussian RBF kernel, the kernel matrix K with Kij =
k(xi, xj) has full rank, regardless of the size of the matrix K. See e.g. Michelli, Interpolation of scat-
tered data, Constructive Approximation 1986.1 Prove for these kernels the following function class has
unbounded VC dimension:

F :=

{
f(x) =

m∑
i=1

αik(xi, x) for xi ∈ X and m ∈ N

}
(1)

1.3 One parameter and infinite dimensions ◦ ◦ ◦
Usually the number of parameters is a good quantity to guesstimate the complexity of the function class
under consideration. However, this need not always be the case. Consider points x ∈ R and the class

F := {sin aπx for a ∈ R} (2)

Show that the VC dimension of F is infinite. Hint: consider placing the points xi on N in special places. Can you
encode the bit sequence of arbitrary labels in a suitable choice of a? Use the above to show that for x ∈ (0, 1] the
following class also has infinite VC dimension:

F := {sin aπ/x for a ∈ R} (3)

1.4 Fat shattering and covering numbers ◦ ◦ ◦◦
In many cases such as regression or density estimation, scale insensitive quantities like the VC dimension
are not ideal for measuring model complexity. In this case one can introduce the fat shattering VC dimension.

One definition defines VCε[F ] to be the largest m for which there exists some {x1, . . . , xm} ∈ X and
{y1, . . . ym} ∈ R such that for all zi ∈ {±1}we can find an f ∈ F satisfying

zi(f(xi)− yi) ≥ ε. (4)

In other words, for zi = −1 we have f(xi) ≤ yi − ε and for zi = 1 we have f(xi) ≥ yi + ε for any arbitrary
choice of {z1, . . . , zm}. The covering number Nε(F) of a function class F is defined as the number of ε-balls
that are needed to approximate F to ε precision.

• Compute a boud on VCε(F) as a function of Nε(F) provided that the ε-approximation holds uni-
formly on X .

• Assume that F = {f |f = 〈w, x〉 and ‖x‖2 ≤ 1} and that ‖x‖2 ≤ 1. Compute a bound on Nε(F) if
we are only interested in an ε-cover on the m points x1, . . . , xm. A crude bound is sufficient. Hint: it
suffices to cover the `2 ball in Rm as spanned by the points xi.

1http://www.maths.gla.ac.uk/˜tl/Micchelli_Interpolation.pdf
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2 40 Shades of Blue (Junier) - 30 points

Google wants to try out a new shade of blue.2 To ensure that the most amazing blue is chosen, it tries them
out on users to see whether they’re more likely to click on a given button. Obviously, it wants to complete
this experiment as quickly as possible to provide the bluest blue to everyone. Your task is to determine how
many users need to see this before the designer in chief can pick a color and to avoid insignificant results.3

The experiment works as follows: a user is given a page containing a particular shade of blue and Google
records clicks on a user interface element with this hue. These things are then logged and the number of
clicks is counted. In other words, each hue i ∈ {1, . . . 40} is displayed to m random visitors and we observe
mi clicks for each i as a result. We want to find the i corresponding to the largest click probability.

2.1 Confidence Bounds ◦◦
You may assume that the click probability never exceeds 0.1. Using this fact, how many sessions do you
need to establish the click probability for all 40 shades with error 0.001? Derive bounds using the following:

1. Markov inequality
2. Chebyshev inequality
3. Hoeffding’s inequality
4. Bernstein’s inequality, that is, using the inequality

Pr

{
m∑
i=1

xi > ε

}
≤ exp

(
− ε2

2
∑
iE[x2i ] + 2Mε/3

)
(5)

Here xi are indepdentent zero-mean random variables with |xi| ≤M . Hint: to obtain zero-mean random
variables use the transformation xi ← xi−E[xi]. Moreover, the upper bound on the click probability allows us
to compute a bound on the variance.

2.2 Dependent Outcomes ◦ ◦ ◦
Now assume that we are giving the users a choice between 40 different outcomes, e.g. by asking them
directly which color they prefer. In other words, in each session we observe one of 40 events.

1. How many sessions do we need to establish with accuracy 0.001 the popularity of all colors? Use
Hoeffding’s or Bernstein’s inequality to derive this.

2. Argue how we could get away using fewer sessions than the above number if we only wanted to find
the most popular color? No need to derive a detailed strategy, just explain what property you could
exploit for estimation.

2http://iterativepath.wordpress.com/2012/10/29/testing-40-shades-of-blue-ab-testing/.
3http://imgs.xkcd.com/comics/significant.png
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3 Sketches (Mu) - 40 Points

A hash function4 h : X → {1, . . . n} is a mapping that converts items from some domain X to the range
of integers between 1 and n. For our purposes we consider this function as a parametric random variable,
just with the added benefit that we can look up its value at any time (again). That is, the probability that
x1, . . . , xj maps into any elements from {1, . . . n} is uniform.

We now use this to design an algorithm for sketching the frequency of items in a data stream. That is,
we want to have an approximate estimate of how frequently we see a particular item. For this we need
insert and query operations.

Init(k,n)
Create array M ∈ Rk×n with M [i, j] = 0 for all i, j.
Insert(x)
for i = 1 to k do
M [i, h(i, x)]←M [i, h(i, x)] + 1

end for
Query(x)
r =∞
for i = 1 to k do
r ← min(r,M [i, h(i, x)])

end for
return r

3.1 Lower Bound ◦
Denote by mx the number of times we actually observed x.

1. Prove that M [i, h(i, x)] ≥ mx.
2. Prove that Query(x) returns an upper bound on nx.

3.2 Expectation ◦◦
Denote by m the total number of observations that we made. Compute the expected value of M [i, h(i, x)]
as a function ofmx,m and n. That is, take the expectation over all hash functions by treating the probability
that h(i, x) = h(i, x′) for x 6= x′ as a random variable with probability n−1.

3.3 Upper bound M [i, h(i, x)] ◦◦
Use Markov’s inequality to bound the probability that M [i, h(i, x)] > nx + em/n.

3.4 Upper bound query(x) ◦ ◦ ◦
Now assume that we want to bound the probability that query(x) considerably overestimates nx. For this
purpose derive a bound on the probability that query(x)> nx+em/n. Hint: Use the previous result and exploit
the fact that conditioned on the data distribution the M [i, h(i, x)] are independent random variables for different i.

Note: This is one of the most effective sketching algorithms for counts of observations. You can check that
the sketch is tolerant to removals as long as the final number of counts is nonnegative.

4http://en.wikipedia.org/wiki/Hash_function
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4 Experiments with Random Variables (Xuezhi) - 35 Points

Provide well-commented code for your problems.

4.1 Central Limit Theorem ◦◦
Empirically verify that the central limit theorem holds for a number of random variables. Assume that

xij ∼ p(x) and zi :=
1√
n

n∑
j=1

xij . (6)

Now, for n ∈ {1, 3, 10, 30, 100, 300, 1000, 3000} generate 10000 random variables zi and plot a histogram
using 500 bins.

1. Do this for the Normal distribution N (0, 1) with mean 0 and variance 1.
2. Do this for the uniform distribution U [−1, 1] over [−1, 1].
3. Do this for the centered Poisson distribution, that is x = v − 1 where v ∼ Poi(1).

Provide plots of the histograms. It is OK if you use libraries to draw from Poisson and Gaussians.

4.2 Tails from the Central Limit Theorem ◦
Plot the 0.05 and 0.95 quantiles of zi for the Uniform distribution as a function of n.

4.3 Sampling with replacement ◦ ◦ ◦
Assume that we have n items. We draw with replacement αn from this set.

1. Derive an the approximation e−α for the fraction of items not drawn even once. Hint: use (1−x) < e−x

for x > 0 and the limit definition of e−1.
2. Empirically verify your bound for n ∈ {1, 3, 10, 30, 100, 300, 1000, 3000} and for α ∈ {0.5, 1, 2, 5}.
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