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Homework 2

Instructions

• The homework is due in the lecture on February 20. Anything that is received after the lecture will
not be considered.

• Please submit one set of notes for each of the problems and put them into a separate stack. Don’t
forget to add your name on each sheet.

• Alternatively, you can e-mail your solution to 10.701.homework@gmail.com. Please write the
subject as: “[Homework 2] yourandrewID”, followed by the numbers of the questions you are includ-
ing in the email, or “all” if you’re submitting the entire homework. As before, the cutoff is the end of
the lecture.

• If you are on the waitlist, please either e-mail your solution or hand it in with everyone else. However,
put it into an envelope and write waitlist on it. While we cannot guarantee that you will definitely
get a spot, we will give preference to students who submitted homework.

• If you submit code, it should be sufficiently well documented that the TAs can understand what is
happening. Also attach pseudocode if you feel that this makes the result more comprehensible.

1 Lagrange multipliers in entropy maximization (Xuezhi)

A discrete distribution p = (p1, p2, . . . , pn) has
∑
pi = 1 and pi ≥ 0 for all i. The entropy, which measures

the uncertainty of a distribution, is defined by H(p) = −
∑n
i=1 pi log pi. (Note we define 0 log 0 = 0).

1. Show that the uniform distribution has the largest entropy.
[Hint: Use Lagrange multipliers:
http://en.wikipedia.org/wiki/Lagrange_multipliers]

The entropy of a continuous distribution with density function f is defined by H(f) = −
∫
f(x) log f(x) dx.

Questions 2 and 3 are extra credit:

Let X be a random variable with density f .

2. Prove that if Ef [X] = 0Ef [X2] = σ2, then the Gaussian distributionN(0, σ2) has the maximal entropy.
[Hint: Use Lagrange multipliers, and use ∂

∂f(y)

∫
r(x)f(x) dx = r(y). To prove, let F [f(x)] .=

∫
r(x)f(x)dx

functional. We have to calculate ∂
∂f(y)F [f(x)]. By defintion

∂

∂f(y)
F [f(x)]

.
= lim
ε→0

F [f(x) + εδ(x− y)]− F [f(x)]
ε

,

where δ(x) is the Dirac delta.
http://en.wikipedia.org/wiki/Functional_derivative

lim
ε→0

F [f(x) + εδ(x− y)]− F [f(x)]
ε

=

∫
r(x)(f(x) + εδ(x− y)) dx−

∫
r(x)f(x) dx

ε

=

∫
εr(x)δ(x− y) dx

ε
= r(y)

Similarly, one can also prove that ∂
∂f(y)

∫
f(x) log f(x) dx = log f(y) + 1

Also, if a density has the form a exp((x− b)2/2c2) for any real constants a, b and c, then it must be the density
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of the normal distribution.]

3. Prove that if supp(f) = [0,∞], and E[X] = µ, then the exponential distribution (f(x) = 1
µ exp(− x

µ ))
has the largest entropy.
[Hint: If a density has the form a exp(bx) for any real constants a, b, then it must be the density of the
exponential distribution.]

2 The Perceptron is NOT Limited (Mu)

Given a sequence of n samples xi ∈ Rp, and the according labels yi ∈ {−1, 1}, the Perceptron algorithm
runs as follows:

initialize w ← 0
for i = 1, . . . , n do

if yi〈w, xi〉 < 0 then
w ← w + yixi

end if
end for

For simplicity, we have put the bias b into w, that is w ← [w, b] and xi ← [xi, 1]. So there is no necessary
to consider the bias term on this question.

Assume ‖xi‖ ≤ r for all i. Alex has shown that if there exists some w∗ such that ‖w∗‖ = 1 and for all i

yi〈w∗, xi〉 ≥ ρ,

then the number of updates of w is upper bounded by

r2/ρ2. (1)

1. Consider the general Perceptron updates w ← w + ηyixi with learning rate η > 0. The Perceptron
algorithm is the special case η = 1. Prove a bound on the number of updates similar to (1). How does
η affect this bound?

2. From the bound (1), we know small ρ may make the problem hard to solve. Actually, it could be
exponentially hard! Consider the following example:

yi = (−1)i+1 and xi = ((−1)i, . . . , (−1)i, (−1)i+1︸ ︷︷ ︸
i elements

, 0, . . . , 0) for i = 1, . . . ,m

Prove that O(2m) updates are required before the Perceptron algorithm finds an optimal w∗ that sat-
isfies yi〈xi, w∗〉 > 0 for all i, no matter how we select the sample on each iteration. (That is, no matter
how you construct the sequence of samples, it should be at least O(2m) length so that the Perceptron
algorithm can find the optimal solution.)

3. Now let’s drop the assumption that samples are linear separable. The world is not so simple! But
fortunately, this world is not so complex.

Let u be any vector with ‖u‖ = 1 and let ρ > 0. Define the deviation of xi by di = max(0, ρ−yi〈u, xi〉),
and δ =

(∑n
i=1 d

2
i

)−1/2. Show that the number of updates of the Perceptron algorithm is bounded by
(r + δ)2/ρ2.
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[Hint: You may try to construct separable x′i and reuse the previews proof. For example, define x′i = [xi, 0, . . . , 0, c, 0, . . . , 0],
which is a p+ n dimensional vector and the scalar c is on position p+ i. Then how to construct the according u′ such that
u′ separates x′is? Now you get a bound similar to (1), then how to choose the scale c to minimize this bound? Does the
bound you obtained work on the original xi? ]

4. The main idea behind the proof of the above question is mapping sample points into higher dimen-
sional space where linear separation is possible. It coincides with the idea of kernel methods, which
mapping xi into φ(xi).

Write down the dual Kernel Perceptron algorithm. Your inputs are a kernel function k(·, ·) and the
sample sequence {yi, xi}ni=1 similar as above. Your output will be the coefficients {αi}ni=1, where
w =

∑n
i=1 αixi. Also show how to predict (y = 1 or −1) when a new sample x is coming.

[Hint: Examine the Perception algorithm again, you will find that w is a linear combination of xi, denoted by w =∑n
i=1 αixi. So we only need to get the values of αis. Instead of updating w, the dual Perceptron updates (α1, . . . , αn)

directly. Then replace xi with φ(xi). Note that, we only need to compute 〈φ(xi), φ(xj)〉 during updating, which could be
presented as the kernel function k(xi, xj). ]

3 Linear Algebra (Leila)

3.1 Elementwise product of two positive semidefinite matrices

Let K1,K2 ∈ Rn×n be two positive semidefinite matrices. Prove that their elementwise product matrix
K(i, j) = K1(i, j)K2(i, j) is positive semidefinite matrix, too.

[Hint: Consider the covariance matrix of w = (u1v1, . . . , unvn)
T vector, where the n dimensional vectors u =

(u1, . . . , un)
T ∼ N(0,K1) and v = (v1, . . . , vn)

T ∼ N(0,K2) are each drawn from its own Gaussian distribution,
as shown here. Remember that the covariance matrix is always positive semidefinite.]

3.2 Product of positive semidefinite matrices

Let A,B ∈ Rn×n be positive semidefinite matrices.

1. Show that AB is not necessarily positive semidefinite.

2. Show that Am is positive semidefinite for all m ∈ Z+.
[Hint: The finite-dimensional spectral theorem says that any symmetric matrix M ∈ Rn×n can be diagonalized
by an orthogonal matrix. More explicitly: For every symmetric real matrix M there exists a real orthogonal
matrix U such that D = UTMU ∈ Rn×n is a diagonal matrix.
(Orthogonal means UTU = I where I is the identity matrix.). ]

4 Kernels (Ina)

4.1 Constructing kernels

Let k1(x, x̃) and k2(x, x̃) be valid kernel functions, and c1, c2 > 0 be positive real constants.

1. Show that c1k1(x, x̃) + c2k2(x, x̃) is a valid kernel function too.
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2. Show that k1(x, x̃)k2(x, x̃) is also a valid kernel function.
[Hint: Use the previous results about the elementwise products of positive definite matrices. Remember that if
k is a kernel, then any Gram matrix made of k(·, ·) is positive semi definite.]

4.2 Non-kernels

1. Let k1(x, x̃) and k2(x, x̃) be valid kernel functions. Show that k1 − k2 is not necessarily positive semi
definite.
[Hint: Remember that if k is a kernel, then any Gram matrix made of k(·, ·) is positive semi definite.]

2. We know that exp(−‖x− y‖2) is a kernel function. Show that exp(‖x− y‖2) is not a valid kernel.
[Hint: Construct a Gram matrix that is not positive semi definite.]

4.3 Representer theorem

Let F be an RKHS function space with kernel k(·, ·). Let {(x1, y1), . . . , (xm, ym)} be m training input-output
pairs. Our task is to find the f∗ ∈ F function that minimizes the following regularized functional:

f∗ = argmin
f∈F

(
m∏
i=1

|f(xi)|6
)

m∑
i=1

[∣∣ sin(‖xi‖|yi−f(xi)|
) ∣∣25 + yi|f(xi)|42

]
+ exp(‖f‖F )

This is a nonparametric minimization problem over functions in the function space F . Prove that f∗

can be expressed as f∗(·) =
m∑
i=1

αik(xi, ·), reducing the problem to an m-dimensional minimization [with

respect to (α1, . . . , αm)] only.
[Hint: Use the representer theorem; see http://en.wikipedia.org/wiki/Representer_theorem]

5 SVMs (Junier)

Implement the soft SVM classification problem in Primal and Dual form. (It is allowed to use any quadratic
programming codes and toolboxes (e.g. ’quadprog’ in Matlab), but do NOT use SVM toolboxes.)

5.1 Primal Problem

Implement a function predictedY = svm primal classify(testX, trainX, trainY,C) that solves the primal prob-
lem for SVMs using trainX, trainY as training data, labels (respectively), and C as the constant in the primal
formulation, then using testX as test data, the function outputs predictedY, the predicted labels.

[Hint: The primal problem is :

min
w

1

2
‖w‖2 + C

m∑
i=1

ξi

subject to
yi〈xi, w〉 ≥ 1− ξ, (i = 1, . . . ,m)

ξ ≥ 0, (i = 1, . . . ,m)

]
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5.2 Dual Problem

Implement a function predictedY = svm dual classify(testX, trainX, trainY,C, kernel) that solves the dual prob-
lem for SVMs using trainX, trainY as training data, labels (respectively), C as the constant in the dual for-
mulation, and kernel ∈ {′linear′,′ polynomial′,′ RBF′} is a string specifying the kernel to use (see below) then
using testX as test data, the function outputs predictedY, the predicted labels.

For kernel = ′linear′, let K(xi, xj) ≡ 〈xi, xj〉, for kernel = ′polynomial′, let K(xi, xj) ≡ ( 12 〈xi, xj〉)
3 and for

kernel = ′RBF′, let K(xi, xj) ≡ exp(− 1
2‖xi − xj‖

2
2).

[Hint: The dual problem is :

max
α

−1

2

∑n
i,j αiαjyiyjK(xi,xj) +

∑n
i αi

subject to 0 ≤ αi ≤ C∑n
i=1 αiyi = 0

]

5.3 Results on Data

Compare the classification accuracy on the training set with ’linear’ ’polynomial’, and ’RBF’ kernels using
both svm primal classify and svm dual classify. (Note: RBF kernel need only be tried in dual formulation.
Why is this?) Use the data.mat dataset in http://alex.smola.org/teaching/cmu2013-10-701/
assignments/data.mat (first two columns are features, third column is binary label). Also, provide
decision surface plots.

[Hint: Consider using ’contourf’ and ’meshgrid’ MATLAB functions ]
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