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Carnegie Mellon University

Homework 1

Instructions

• The homework is due in the lecture on February 6, 2013. Anything that is received after the lecture
will not be considered.

• Please submit one set of notes for each of the problems and put them into a separate stack. Don’t
forget to add your name on each sheet.

• Alternatively, you can e-mail your solution to 10.701.homework@gmail.com. As before, the cutoff
is the end of the lecture.

• If you are on the waitlist, please either e-mail your solution or hand it in with everyone else. However,
put it into an envelope and write waitlist on it. While we cannot guarantee that you will definitely
get a spot, we will give preference to students who submitted homework.

• If you submit code, it should be sufficiently well documented that the TAs can understand what is
happening. Also attach pseudocode if you feel that this makes the result more comprehensible.

1 Basic Statistics

This will help you get better familiarity with probability distributions.

1.1 Probabilities

Assume that Pr is a probability distribution. Denote by A and B events, and by Ac the complement of A.
Prove the following:

1.1.1 Pr(B ∩Ac) = Pr(B)− Pr(A ∩B)
1.1.2 Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)
1.1.3 If A ⊂ B, then Pr(A) ≤ Pr(B)
1.1.4 (A ∩B)c = Ac ∪Bc
1.1.5 Pr(A ∩B) ≥ Pr(A) + Pr(B)− 1. This is the Bonferroni inequality. When is it useful?

1.2 Random Variables

1.2.1 Show that the following functions are Cumulative Distribution Functions (CDF):

F (x) =
1

2
+

1

π
arctanx for x ∈ (−∞,∞) (1)

F (x) =
(
1 + e−x

)−1 for x ∈ (−∞,∞) (2)

F (x) = e−e
−x

for x ∈ (−∞,∞) (3)

F (x) = 1− e−x for x ∈ [0,∞) (4)

1.2.2 Consider variables X ∼ FX and Y ∼ FY . Assume that FX is stochastically greater than FY , that is

FX(t) ≤ FY (t) for all t

and moreover there exists some t with FX(t) < FY (t). Show that X tends to be bigger than Y , that is

for all t we have Pr(X > t) ≥ Pr(Y > t) (5)
there exists some t such that Pr(X > t) > Pr(Y > t) (6)
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1.2.3 Show that, for random variables X , functions gi and constants αi the following holds:

E

[
n∑
i=1

αigi(x) + α0

]
=

n∑
i=1

αiE [gi(x)] + α0 (7)

1.3 Common Distributions

1.3.1 Poisson Distribution

The Poisson distribution is used to model a flow of events given only the average rate at which an event
occurs. Examples of its use include the following:

• The number of incoming requests to a server.
• The number of mutations on a strand of DNA.
• The number of cars arriving at a traffic light.
• The number of raindrops in a given area in a given time interval.
• The number of Prussian soldiers who died from horse kicks.1

The Poisson distribution has one parameter, the average rate λ > 0 and has probability mass function

p(k;λ) = Pr(X = x) =
λke−λ

k!
(8)

• Compute mean and variance of the Poisson distribution (hint — Taylor expansion for eλ).
• With x1 . . . xn drawn iid from Poisson(λ), derive a Maximum Likelihood estimator for λ.
• LetX1 ∼ Poisson(λ1) andX2 ∼ Poisson(λ2) be independent random variables. Show that the random

variable Z = X1 +X2 is Poisson-distributed and compute its mean.

1.3.2 Cauchy Distribution

The Cauchy distribution is given by

p(x; γ) =
γ

π(x2 + γ2)
(9)

It was established in class that the mean of a Cauchy distribution does not exist. Show that its second
moment is infinite — therefore the variance is not defined either.

1.3.3 Mean and Variance

Let X1, . . . , Xn be iid random variables with mean µ and variance σ2.

(a) Prove that

X̄ =
1

n

n∑
i=1

Xi and Sn =
1

n− 1

n∑
i=1

(Xi − X̄)2

are unbiased estimators of the mean and variance, that is, E[X̄] = µ and E[Sn] = σ2.

(b) For a distribution of your choice (Gauss, binary, uniform, etc.) implement these estimators and em-
pirically show on a plot that these estimators indeed converge to the true quantities µ and σ2 as we
increase the sample size n. Based on your plots guess the convergence rates of the estimators.

1http://books.google.com/books?id=o_k3AAAAMAAJ&pg=PA23
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1.4 Conditional Independence

The notation X ⊥ Y indicates that random variables X and Y are independent. Similarly, X ⊥ Y |Z means
that X and Y are conditionally independent given Z, that is p(x, y|z) = p(x|z)p(y|z).

1.4.1 Prove (or disprove via a counterexample) the following statements about conditional independence

(X ⊥ (Y,W )|Z) implies (X ⊥ Y |Z)

(X ⊥ Y |Z) and (X,Y ⊥W |Z) implies (X ⊥W |Z)

(X ⊥ (Y,W )|Z) and (Y ⊥W |Z) implies (X,W ⊥ Y |Z)

1.4.2 Give examples of distributions over random variables X, Y, Z that satisfy

X 6⊥ Y but X ⊥ Y |Z
X ⊥ Y but X 6⊥ Y |Z

X ⊥ Y and X ⊥ Z and Y ⊥ Z but (X,Y ) 6⊥ Z

2 Linear Regression

Suppose that X ∈ Rd is a random variable with X ∼ D. Moreover, assume that b ∈ R and w ∈ Rd are
parameters and let

Y = 〈X,w〉+ b+ ε where ε ∼ N (0, σ2). (10)

That is, Y is a linear function of X with some Gaussian noise added.

2.1 Maximum Likelihood Estimation

2.1.1 Give an explicit expression for the conditional distribution of Y |X,w, b.
2.1.2 Assume that we draw n pairs (xi, yi) from the above model, i.e. we draw xi from D and the yi ac-

cording to (10). What is the distribution of (y1, . . . , yn)|(x1, . . . , xn), w, b? Write out the associated the
log-likelihood.

2.1.3 Derive the parameters w, b that maximize the log-likelihood of the conditional model.

2.2 Maximum-a-Posteriori Estimation

Now assume that the parameters w, b are drawn from a Normal distribution with w ∼ N (0, λ21) and
b ∼ N (0, λ2).

2.2.1 Give an explicit expression for the conditional distribution of Y |X . Note that w, b are not specified.
2.2.2 After drawing n pairs as above, what is the distribution of (y1, . . . , yn)|(x1, . . . , xn)?.
2.2.3 What is the log-posterior w, b|((x1, y1), . . . , (xn, yn).
2.2.4 Find the mode of it with respect to w, b.
2.2.5 Do we need to know w, b in order to estimate yn+1|(x1, . . . , xn), (y1, . . . , yn), xn+1? Describe an alter-

native.
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2.3 Sparsity Penalty

Now assume that instead of a log-prior on w, b we use an `1 penalty (‖z‖1 :=
∑
i |zi| is the 1-norm of z).

That is, we minimize

− log p(y1, . . . , yn|x1, . . . , xn, w, b) + λ [‖w‖1 + |b|] . (11)

Give a sufficient condition under which (11) has a closed form solution in terms of w, b (hint — consider
large λ). Why does it not have such a solution in general.

3 Naive Bayes and k-Nearest Neighbors

In this problem you will implement Naive Bayes and k-NN and test them on both synthetic data and real
data. For the synthetic dataset you can download the code generator here2. You can check out what it
does by running this script3. Moreover, choose one dataset of your choice from the UCI repository4 that
can be viewed as a binary classification problem and that contains at least 2,000 instances and at least 10
dimensions.

3.1 Data Preprocessing

Download the dataset. Describe the transformations (covariates x, labels y) you applied to convert it into a
binary classification problem. Attach the preprocessing code.

3.2 Naive Bayes

Implement a Naive Bayes algorithm. Apply binning for the discrete components and use a Gaussian model
for the continuous components of the data (e.g. the synthetic dataset has only continuous components).
Attach the code. It should have the following signature:5

model = nb_train(Xtrain, Ytrain, attributes)
Ytest = nb_test(model, Xtest)

Here X, Y are sets of observations and labels respectively. attributes is a vector of attribute indicators,
i.e. whether they are discrete or continuous respectively. model is a container for all the model parameters
you generate.

3.3 k-Nearest Neighbor

Implement a k-Nearest Neighbor algorithm. Discuss your choice of distance function for discrete random
variables. Attach the code. The call signature should take the following form:

Ytest = knn(Xtrain, Ytrain, Xtest, attributes, k)

The meaning of the variables is as above. k obviously denotes the k in k-Nearest Neighbors. It is OK to
use a memory-inefficient implementation. Moreover, it is OK for the purpose of this assignment to use
Quicksort (i.e. Matlab’s sort function) to find the nearest neighbor.

Why should you use odd k?
2http://alex.smola.org/teaching/cmu2013-10-701/assignments/gen_synthetic.m
3http://alex.smola.org/teaching/cmu2013-10-701/assignments/draw_synthetic.m
4http://archive.ics.uci.edu/ml/datasets.html
5Feel free to use any other language than MATLAB/Octave, as long as you are sure that the TAs are able to read it. For C/C++ the

eigen and flens libraries are quite useful.
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3.4 Comparison on synthetic data

Your task is to compare k-NN and Naive Bayes on the synthetic datasets. You need to implement N -fold
crossvalidation for both codes. We set N = 10 in the experiments below. Keep track of training and
validation error. The function gen synthetic.m generates (as expected) synthetic data. Its signature is as
follows:

function [Y,X,w] = gen_synthetic(n,p,rho,sigma)

Here n controls the number of samples, p controls the dimensionality, rho measures correlation between
dimensions and sigma determines the amount of additive noise in the associated linear model. Moreover,
X, Y correspond to data and labels respectively. Finally, w is the parameter vector used by the model to
generate the data.

3.4.1 Generate a set of points with n=1000, p=10, rho=0 and sigma=0.001. For the values of k=1:2:49
run the k-NN algorithm and plot the change of the mean cross-validation test and train error (submit
the plot). What is a value of k after which the test error becomes rather stable? What can you say
about the shape of the training error for small values of k?

3.4.2 Generate a set of points with n=1000, p=4, and sigma=0.001, but now for rho=0.1:0.1:0.8.
Run Naive Bayes and k-NN with k=9. Plot the change in cross-validation test error as a function of
rho. How does the performance of these two classifiers compare when the variables become more
dependent? Explain the differences between the performance of the two algorithms.

3.4.3 Generate a set of points with n=400, rho=0.1, and sigma=0.001, but now for p = 2:2:40. Run
both classifiers (with k=9 and plot the change in cross-validation test error as a function of the dimen-
sionality p. How does the performance of these two classifiers compare as the dimensionality of the
data increases? Explain the differences between the performance of the two algorithms.

3.5 Comparison on real data

Compare k-NN and Naive Bayes on several fractions of your data. For this purpose, pick 1%, 2%, 5%, 10%,
20% and 100% of the data and compare the performance of naive Bayes and k-NN respectively (for k=1
and k=9). For the full dataset, plot the k-NN crossvalidation error for k=1:2:49.
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