
Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6 Optimization

This chapter provides a self-contained overview of some of the basic tools needed
to solve the optimization problems used in kernel methods. In particular, we will
cover topics such as minimization of functions in one variable, convex minimiza-
tion and maximization problems, duality theory, and statistical methods to solve
optimization problems approximately.
The focus is noticeably different from the topics covered in works on optimization

for Neural Networks, such as Backpropagation [575, 435, 298, 9] and its variants.
In these cases, it is necessary to deal with non-convex problems exhibiting a large
number of local minima, whereas much of the research on Kernel Methods and
Mathematical Programming is focused on problems with global exact solutions.
These boundaries may become less clear-cut in the future, but at the present time,
methods for the solution of problems with unique optima appear to be sufficient
for our purposes.
In Section 6.1, we explain general properties of convex sets and functions, andOverview

how the extreme values of such functions can be found. Next, we discuss practical
algorithms to best minimize convex functions on unconstrained domains (Section
6.2). In this context, we will present techniques like interval cutting methods,
Newton’s method, gradient descent and conjugate gradient descent. Section 6.3 then
deals with constrained optimization problems, and gives characterization results
for optimal solutions. In this context, the Lagrange functions, primal and dual
optimization problems, and the Kuhn-Tucker conditions are introduced. These
concepts set the stage for Section 6.4, which presents an interior point algorithm
for the solution of constrained convex optimization problems. In a sense, the final
section (Section 6.5) is a departure from the previous topics, since it introduces the
notion of randomization into the optimization procedures. The basic idea is that
unless the exact optimal solution is required, statistical tools can speed up search
maximization by orders of magnitude.
For a general overview, we recommend Section 6.1, and the first parts of Section

6.3, which explain the basic ideas underlying constrained optimization. The latter
section is needed to understand the calculations which lead to the dual optimization
problems in Support Vector Machines (Chapters 7 – 9). Section 6.4 is only intended
for readers interested in practical implementations of optimization algorithms. In
particular, Chapter 10 will require some knowledge of this section. Finally, Section
6.5 describes novel randomization techniques, which are needed in the sparse
greedy methods of Section 10.2, 15.3, 16.4, and 18.4.3. Unconstrained optimization

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

156 Optimization

6.3.3 Linear and
Quadratic Programs

6.3.1, 6.3.2 Optimality
Dual Problems and KKT

6.3 Constrained
Problems

6.5 Maximum Search
Problems

6.1 Convex Optimization

6.2.1 One
Dimension

6.2 Unconstrained
Problems

6.2.4 Conjugate
Gradient Descent

6.2.2, 6.2.3 Gradient
Descent

6.4 Interior Point
Methods

problems (Section 6.2) are less common in this book and will only be required
in the gradient descent methods of Section 10.6.1, and the Gaussian Process
implementation methods of Section 16.4.
The present chapter is intended as an introduction to the basic concepts of

optimization. It is relatively self-contained, and requires only basic skills in linearPrerequisites
algebra and multivariate calculus. Section 6.3 is somewhat more technical, Section
6.4 requires some additional knowledge of numerical analysis, and Section 6.5
assumes some knowledge of probability and statistics.

6.1 Convex Optimization

In the situations considered in this book, learning (or equivalently statistical
estimation) implies the minimization of some risk functional such as Remp[f] or
Rreg[f] (cf. Chapter 4). While minimizing an arbitrary function on a (possibly not
even compact) set of arguments can be a difficult task, and will most likely exhibit
many local minima, minimization of a convex objective function on a convex set
exhibits exactly one global minimum. We now prove this property.

Definition 6.1 (Convex Set) A set X in a vector space is called convex if for
any x, x′ ∈ X and any λ ∈ [0, 1], we have

λx+ (1− λ)x′ ∈ X. (6.1)
Definition and
Construction of
Convex Sets and
Functions

Definition 6.2 (Convex Function) A function f defined on a set X (note that
X need not be convex itself) is called convex if, for any x, x′ ∈ X and any λ ∈ [0, 1]
such that λx+ (1− λ)x′ ∈ X, we have

f(λx+ (1− λ)x′) ≤ λf(x) + (1− λ)f(x′). (6.2)

A function f is called strictly convex if for x $= x′ and λ ∈ (0, 1) (6.2) is a strict
inequality.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.1 Convex Optimization 157

There exist several ways to define convex sets. A convenient method is to define
them via below sets of convex functions, such as the sets for which f(x) ≤ c, for
instance.

Lemma 6.3 (Convex Sets as Below-Sets) Denote by f : X → R a convex
function on a convex set X. Then the set

X := {x|x ∈ X and f(x) ≤ c}, for some c ∈ R, (6.3)

is convex.

Proof We must show condition (6.1). For any x, x′ ∈ X, we have f(x), f(x′) ≤ c.
Moreover, since f is convex, we also have

f(λx+ (1− λ)x′) ≤ λf(x) + (1− λ)f(x′) ≤ c for all λ ∈ [0, 1]. (6.4)

Hence, for all λ ∈ [0, 1], we have (λx + (1 − λ)x′) ∈ X, which proves the claim.
Figure 6.1 depicts this situation graphically.

−2
0

2
−2

0
2

0
0.2
0.4
0.6
0.8

−2 0 2
−3

−2

−1

0

1

2

3

Figure 6.1 Left: Convex Function in two variables. Right: the corresponding convex
level sets {x|f(x) ≤ c}, for different values of c.

Lemma 6.4 (Intersection of Convex Sets) Denote by X,X ′ ⊂ X two convex
sets. Then X ∩X ′ is also a convex set.

Intersections

Proof Given any x, x′ ∈ X ∩ X ′, then for any λ ∈ [0, 1], the point xλ :=
λx+ (1− λ)x′ satisfies xλ ∈ X and xλ ∈ X ′, hence also xλ ∈ X ∩X ′.

See also Figure 6.2. Now we have the tools to prove the central theorem of this
section.

Theorem 6.5 (Minima on Convex Sets) If the convex function f : X→ R has
a minimum on a convex set X ⊂ X, then its arguments x ∈ X, for which the
minimum value is attained, form a convex set. Moreover, if f is strictly convex,
then this set will contain only one element.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

158 Optimization

Figure 6.2 Left: a convex set; observe that lines with points in the set are fully contained
inside the set. Right: the intersection of two convex sets is also a convex set.

f(x)

a b x

Figure 6.3 Note that the max-
imum of a convex function is ob-
tained at the ends of the interval
[a, b].

Proof Denote by c the minimum of f on X. Then the set Xm := {x|x ∈
X and f(x) ≤ c} is clearly convex. In addition, Xm∩X is also convex, and f(x) = c
for all x ∈ Xm ∩X (otherwise c would not be the minimum).
If f is strictly convex, then for any x, x′ ∈ X, and in particular for any

x, x′ ∈ X ∩Xm, we have (for x $= x′ and all λ ∈ (0, 1)),

f(λx+ (1− λ)x′) < λf(x) + (1− λ)f(x′) = λc+ (1− λ)c = c. (6.5)

This contradicts the assumption that Xm ∩X contains more then one element.

A simple application of this theorem is in constrained convex minimization. Recall
that the notation [n], used below, is a shorthand for {1, . . . , n}.Global Minima

Corollary 6.6 (Constrained Convex Minimization) Given the convex func-
tions f, c1, . . . , cn on the convex set X, the problem

minimize
x

f(x),

subject to ci(x) ≤ 0 for all i ∈ [n],
(6.6)

has as its solution a convex set, if a solution exists. This solution is unique if f is
strictly convex.

Many problems in Mathematical Programming or Support Vector Machines can be
cast into this formulation. This means either that they all have unique solutions (if
f is strictly convex), or that all solutions are equally good and form a convex set
(if f is merely convex).
We might ask what can be said about convex maximization. Let us analyze a

simple case first: convex maximization on an interval.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.1 Convex Optimization 159

Lemma 6.7 (Convex Maximization on an Interval) Denote by f a convex
function on [a, b] ∈ R. Then the problem of maximizing f on [a, b] has f(a) and
f(b) as the only possible solutions.

Maxima on
Extreme Points

Proof Any x ∈ [a, b] can be written as b−x
b−aa+

(

1− b−x
b−a

)

b, and hence

f(x) ≤ b− x

b− a
f(a) +

(

1− b− x

b− a

)

f(b) ≤ max(f(a), f(b)). (6.7)

Therefore the maximum of f on [a, b] is obtained on one of the points a, b.

We will next show that the problem of convex maximization on a convex set is
typically a hard problem, in the sense that the maximum can only be found at one
of the extreme points of the constraining set. We must first introduce the notion of
vertices of a set.

Definition 6.8 (Vertex of a Set) A point x ∈ X is a vertex of X if, for all
x′ ∈ X with x′ $= x, and for all λ < 0, the point λx+ (1− λ)x′ $∈ X.

This definition implies, for instance, that in the case of X being an "2 ball, the
vertices of X make up its surface. In the case of an "∞ ball, we have 2n vertices in
n dimensions, and for an "1 ball, we have only 2n of them. These differences will
guide us in the choice of admissible sets of parameters for optimization problems
(see, e.g., Section 14.4). In particular, there exists a connection between suprema
on sets and their convex hulls. To state this link, however, we need to define the
latter.

Definition 6.9 (Convex Hull) Denote by X a set in a vector space. Then the
convex hull coX is defined as

coX :=

{

x̄

∣
∣
∣
∣
∣
x̄ =

n
∑

i=1

αixi where n ∈ N,αi ≥ 0 and
n
∑

i=1

αi ≤ 1

}

. (6.8)

Theorem 6.10 (Suprema on Sets and their Convex Hulls) Denote by X a
set and by coX its convex hull. Then for a convex function f

sup{f(x)|x ∈ X} = sup{f(x)|x ∈ coX}. (6.9)
Evaluating
Convex Sets on
Extreme Points

Proof Recall that the below set of convex functions is convex (Lemma 6.3), and
that the below set of f with respect to c = sup{f(x)|x ∈ X} is by definition a
superset of X. Moreover, due to its convexity, it is also a superset of coX.

This theorem can be used to replace search operations over sets X by subsets
X ′ ⊂ X, which are considerably smaller, if the convex hull of the latter generates
X. In particular, the vertices of convex sets are sufficient to reconstruct the whole
set.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

160 Optimization

Theorem 6.11 (Convex Sets and Vertices) A compact convex set is the con-
vex hull of its vertices.

Reconstructing
Convex Sets from
Vertices

The proof is slightly technical, and not central to the understanding of kernel
methods. See Rockafellar [419, Chapter 18] for details, along with further theorems
on convex functions. We now proceed to the second key theorem in this section.

Theorem 6.12 (Maxima of Convex Functions on Convex Compact Sets)
Denote by X a compact convex set in X, by |X the vertices of X, and by f a convex
function on X. Then

sup{f(x)|x ∈ X} = sup{f(x)|x ∈ |X}. (6.10)

Proof Application of Theorem 6.10 and Theorem 6.11 proves the claim, since
under the assumptions made on X, we have X = co (|X). Figure 6.4 depicts the
situation graphically.

Figure 6.4 A convex func-
tion on a convex polyhedral set.
Note that the minimum of this
function is unique, and that the
maximum can be found at one
of the vertices of the constrain-
ing domain.

6.2 Unconstrained Problems

After the characterization and uniqueness results (Theorem 6.5, Corollary 6.6, and
Lemma 6.7) of the previous section, we will now study numerical techniques to
obtain minima (or maxima) of convex optimization problems. While the choice of
algorithms is motivated by applicability to kernel methods, the presentation here is
not problem specific. For details on implementation, and descriptions of applications
to learning problems, see Chapter 10.

6.2.1 Functions of One Variable

We begin with the easiest case, in which f depends on only one variable. Some of
the concepts explained here, such as the interval cutting algorithm and Newton’s
method, can be extended to the multivariate setting (see Problem 6.5). For the sake
of simplicity, however, we limit ourselves to the univariate case.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.2 Unconstrained Problems 161

Assume we want to minimize f : R → R on the interval [a, b] ⊂ R. If we cannot
make any further assumptions regarding f , then this problem, as simple as it may
seem, cannot be solved numerically.

731 2456
Figure 6.5 Interval Cutting Algorithm. The selection of points is ordered according to
the numbers beneath (points 1 and 2 are the initial endpoints of the interval).

If f is differentiable, the problem can be reduced to finding f ′(x) = 0 (seeContinuous
Differentiable
Functions

Problem 6.4 for the general case). If in addition to the previous assumptions, f is
convex, then f ′ is monotonic, and we can find a fast, simple algorithm (Algorithm
6.1) to solve our problem (see Figure 6.5).

Algorithm 6.1 Interval Cutting

Require: a, b, Precision ε
Set A = a,B = b
repeat

if f ′ (A+B
2

)

> 0 then
B = A+B

2
else

A = A+B
2

end if
until (B −A)min(|f ′(A)|, |f ′(B)|) ≤ ε

Output: x = A+B
2

Interval Cutting
This technique works by halving the size of the interval that contains the

minimum x∗ of f , since it is always guaranteed by the selection criteria for B
and A that x∗ ∈ [A,B]. We use the following Taylor series expansion to determine
the stopping criterion.

Theorem 6.13 (Taylor Series) Denote by f : R → R a function that is d times
differentiable. Then for any x, x′ ∈ R, there exists a ξ with |ξ| ≤ |x− x′|, such that

f(x′) =
d−1
∑

i=0

1

i!
f (i)(x)(x′ − x)i +

ξd

d!
f (d)(x+ ξ). (6.11)

Now we may apply (6.11) to the stopping criterion of Algorithm 6.1. We denoteProof of Linear
Convergence

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

162 Optimization

by x∗ the minimum of f(x). Expanding f around f(x∗), we obtain for some
ξA ∈ [A− x∗, 0] that f(A) = f(x∗) + ξAf ′(x∗ + ξA), and therefore,

|f(A)− f(x∗)| = |ξA||f ′(x∗ + ξA)| ≤ (B −A)|f ′(A)|.

Taking the minimum over {A,B} shows that Algorithm 6.1 stops once f is ε-close
to its minimal value. The convergence of the algorithm is linear with constant 0.5,
since the intervals [A,B] for possible x∗ are halved at each iteration.
In constructing the interval cutting algorithm, we in fact wasted most of the

information obtained in evaluating f ′ at each point, by only making use of the sign
of f . In particular, we could fit a parabola to f and thereby obtain a method that
converges more rapidly. If we are only allowed to use f and f ′, this leads to the
Method of False Position (see e.g. [315] or Problem 6.3).
Moreover, if we may compute the second derivative as well, we can use (6.11) to

obtain a quadratic approximation of f and use the latter to find the minimum of f .
This is commonly referred to as Newton’s method (see Section 16.4.1 for a practicalNewton’s Method
application of the latter to classification problems). We expand f(x) around x0;

f(x) ≈ f(x0) + (x− x0)f
′(x0) +

(x− x0)2

2
f ′′(x0). (6.12)

Minimization of the expansion (6.12) yields

x = x0 −
f ′(x0)

f ′′(x0)
. (6.13)

Hence, we hope that if the approximation (6.12) is good, we will obtain an algorithm
with fast convergence (Algorithm 6.2). Let us analyze the situation in more detail.
For convenience, we state the result in terms of g := f ′, since finding a zero of g is
equivalent to finding a minimum of f .

Algorithm 6.2 Newton’s Method

Require: x0, Precision ε
Set x = x0

repeat
x = x− f ′(x)

f ′′(x)

until |f ′(x)| ≤ ε
Output: x

Theorem 6.14 (Convergence of Newton Method) Let g : R → R be a twice
continuously differentiable function, and denote by x∗ ∈ R a point with g′(x∗) $= 0
and g(x∗) = 0. Then, provided x0 is sufficiently close to x∗, the sequence generated
by (6.13) will converge to x∗ at least quadratically.Quadratic

Convergence

Proof For convenience, denote by xn the value of x at the n-th iteration. As
before, we apply Theorem 6.13. We now expand g(x∗) around xn. For some

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.2 Unconstrained Problems 163

ξ ∈ [0, x∗ − xn], we have

g(xn) = g(xn)− g(x∗) = g(xn)−
[

g(xn) + g′(xn)(x
∗ − xn) +

ξ2

2
g′′(xn)

]

, (6.14)

and therefore by substituting (6.14) into (6.13),

xn+1 − x∗ = xn − x∗ − g(xn)

g′(xn)
= ξ2

g′′(xn)

2g′(xn)
. (6.15)

Since by construction |ξ| ≤ |xn−x∗|, we obtain a quadratically convergent algorithm

in |xn − x∗|, provided that
∣
∣
∣(xn − x∗) g′′(xn)

2g′(xn)

∣
∣
∣ < 1.

Region of
Convergence

In other words, if the Newton method converges, it converges more rapidly than
interval cutting or similar methods. We cannot guarantee beforehand that we are
really in the region of convergence of the algorithm. In practice, if we apply
the Newton method and find that it converges, we know that the solution has
converged to the minimizer of f . For more information on optimization algorithms
for unconstrained problems see e.g. [163, 519, 315, 15, 152, 45].

In some cases we will not know an upper bound on the size of the interval to be
analyzed for the presence of minima. In this situation we may, for instance, startLine Search
with an initial guess of an interval, and if no minimum can be found strictly inside
the interval, enlarge it, say by doubling its size. See [315] for more information on
this matter. Let us now proceed to a technique which is quite popular (albeit not
always preferable) in machine learning.

6.2.2 Functions of Several Variables: Gradient Descent

Gradient descent is one of the simplest optimization techniques to implement for
minimizing functions of the form f : X → R, where X may be Rn, or indeed any
set on which a gradient may be defined and evaluated. In order to avoid further
complications we assume that the gradient f ′(x) exists and that we are able to
compute it.
The basic idea is as follows: given a location xn at iteration n, compute the

gradient gn := f ′(xn), and updateDirection of
Steepest Descent

xn+1 = xn − γgn (6.16)

such that the decrease in f is maximal over all γ > 0. For the final step, one of the
algorithms from Section 6.2.1 can be used. It is straightforward to show that f(xn)
is a monotically decreasing series, since at each step the line search updates xn+1

in such a way that f(xn+1) < f(xn). Such a value of γ must exist, since (again by
Theorem 6.13) we may expand f(xn + γgn) in terms of γ around xn, to obtain1

f(xn − γgn) = f(xn)− γ‖gn‖2 +O(γ2). (6.17)

1. To see that Theorem 6.13 applies in (6.17), note that f(xn + γgn) is a mapping R→ R

when viewed as a function of γ.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

164 Optimization

As usual ‖·‖ is the Euclidean norm. For small γ the linear contribution in the Taylor
expansion will be dominant, hence for some γ > 0 we have f(xn − γgn) < f(xn).
It can be shown (see e.g. [315]) that after a (possibly infinite) number of steps,
gradient descent (see Algorithm 6.3) will converge.

Algorithm 6.3 Gradient Descent

Require: x0, Precision ε
n = 0
repeat

Compute g = f ′(xn)
Perform line search on f(xn − γg) for optimal γ.
xn+1 = xn − γg
n = n+ 1

until ‖f ′(xn)‖ ≤ ε
Output: xn

Problems of
Convergence In spite of this, the performance of gradient descent is far from optimal. Depend-

ing on the shape of the landscape of values of f , gradient descent may take a long
time to converge. Figure 6.6 shows two examples of possible convergence behavior
of the gradient descent algorithm.

Figure 6.6 Left: Gradient descent takes a long time to converge, since the landscape
of values of f forms a long and narrow valley, causing the algorithm to zig-zag along the
walls of the valley. Right: due to the homogeneous structure of the minimum, the algorithm
converges after very few iterations. Note that in both cases, the next direction of descent
is orthogonal to the previous one, since line search provides the optimal step length.

6.2.3 Convergence Properties of Gradient Descent

Let us analyze the convergence properties of Algorithm 6.3 in more detail. To keep
matters simple, we assume that f is a quadratic function, i.e.

f(x) =
1

2
(x− x∗)%K(x− x∗) + c0, (6.18)

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.2 Unconstrained Problems 165

where K is a positive definite symmetric matrix (cf. Definition 2.4) and c0 is
constant.2 This is clearly a convex function with minimum at x∗, and f(x∗) = 0.
The gradient of f is given by

g := f ′(x) = K(x− x∗). (6.19)

To find the update of the steepest descent we have to minimize

f(x− γg) = 1

2
(x− γg − x∗)K(x− γg − x∗) =

1

2
γ2g%Kg − γg%g. (6.20)

By minimizing (6.20) for γ, the update of steepest descent is given explicitly by

xn+1 = xn −
g%g

g%Kg
g. (6.21)

Improvement per
Step

Substituting (6.21) into (6.18) and subtracting the terms f(xn) and f(xn+1) yields
the following improvement after an update step

f(xn)− f(xn+1) = (xn − x∗)%K
g%g

g%Kg
g − 1

2

(
g%g

g%Kg

)2

g%Kg

=
1

2

(g%g)2

g%Kg
= f(xn)

[
(g%g)2

(g%Kg)(g%K−1g)

]

. (6.22)

Thus the relative improvement per iteration depends on the value of t(g) :=
(g"g)2

(g"Kg)(g"K−1g) . In order to give performance guarantees we have to find a lower
bound for t(g). To this end we introduce the condition of a matrix.

Definition 6.15 (Condition of a Matrix) Denote by K a matrix and by λmax

and λmin its largest and smallest singular values (or eigenvalues if they exist)
respectively. The condition of a matrix is defined as

cond K :=
λmax

λmin
. (6.23)

Clearly, as cond K decreases, different directions are treated in a more homogeneous
manner by x%Kx. In particular, note that smaller cond K correspond to less elliptic
contours in Figure 6.6. Kantorovich proved the following inequality which allows us
to connect the condition number with the convergence behavior of gradient descent
algorithms.

Theorem 6.16 (Kantorovich Inequality [262]) Denote by K ∈ Rm×m (typi-
cally the kernel matrix) a strictly positive definite symmetric matrix with largest

Lower Bound for
Improvement

and smallest eigenvalues λmax and λmin. Then the following inequality holds for
any g ∈ Rm:

(g%g)2

(g%Kg)(g%K−1g)
≥ 4λminλmax

(λmin + λmax)2
≥ 1

cond K
. (6.24)

2. Note that we may rewrite (up to a constant) any convex quadratic function f(x) =
x"Kx+ c"x+ d in the form (6.18), simply by expanding f around its minimum value x∗.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

166 Optimization

We typically denote by g the gradient of f . The second inequality follows immedi-
ately from Definition 6.15; the proof of the first inequality is more technical, and is
not essential to the understanding of the situation. See Problem 6.7 and [262, 315]
for more detail.
A brief calculation gives us the correct order of magnitude. Note that for any

x, the quadratic term x%Kx is bounded from above by λmax‖x‖2, and likewise
x%K−1x ≤ λ−1

min‖x‖2. Hence we bound the relative improvement t(g) (as defined
below (6.22)) by 1/(cond K) which is almost as good as the second term in (6.24)
(the latter can be up to a factor of 4 better for λmin + λmax).

This means that gradient descent methods perform poorly if some of the eigenval-
ues of K are very small in comparison with the largest eigenvalue, as is usually the
case with matrices generated by positive definite kernels (and as sometimes desired
for learning theoretical reasons); see Chapter 4 for details. This is one of the rea-
sons why many gradient descent algorithms for training Support Vector Machines,
such as the Kernel AdaTron [173, 12] or AdaLine [175], exhibit poor convergence.
Section 10.6.1 deals with these issues, and sets up the gradient descent directions
both in the Reproducing Kernel Hilbert Space H and in coefficient space Rm.

6.2.4 Functions of Several Variables: Conjugate Gradient Descent

Let us now look at methods that are better suited to minimizing convex functions.
Again, we start with quadratic forms. The key problem with gradient descent is
that the quotient between the smallest and the largest eigenvalue can be very large,
which leads to slow convergence. Hence, one possible technique is to rescale X by
some matrix M such that the condition of K ∈ Rm×m in this rescaled space, which
is to say the condition of M%KM , is much closer to 1 (in numerical analysis this
is often referred to as preconditioning [232, 407, 519]). In addition, we would like
to focus first on the largest eigenvectors of K.
A key tool is the concept of conjugate directions. The basic idea is that rather

than using the metric of the normal dot product x%x′ = x%1x′ (1 is the unit
matrix) we use the metric imposed by K, i.e. x%Kx′, to guide our algorithm, and
we introduce an equivalent notion of orthogonality with respect to the new metric.

Definition 6.17 (Conjugate Directions) Given a symmetric matrix K ∈ Rm×m,
any two vectors v, v′ ∈ Rm are called K-orthogonal if v%Kv′ = 0.

Likewise, we can introduce notions of a basis and of linear independence with respect
to K. The following theorem establishes the necessary identities.

Theorem 6.18 (Orthogonal Decompositions in K) Denote by K ∈ Rm×m a
strictly positive definite symmetric matrix and by v1, . . . , vm a set of mutually K-
orthogonal and nonzero vectors. Then the following properties hold:

(i) The vectors v1, . . . , vm form a basis.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.2 Unconstrained Problems 167

(ii) Any x ∈ Rm can be expanded in terms of vi by

x =
m
∑

i=1

vi
v%i Kx

v%i Kvi
. (6.25)

In particular, for any y = Kx, we can find x by

x =
m
∑

i=1

vi
v%i y

v%i Kvi
. (6.26)

Proof (i) Since we have m vectors in Rm, all we have to show is that the
vectors vi are linearly independent. Assume that there exist some αi ∈ R such
that

∑m
i=1 αivi = 0. Then due to K-orthogonality, we haveLinear

Independence

0 = v%j K

[
m
∑

i=1

αivi

]

=
m
∑

i=1

αiv
%
j Kvi = αjv

%
j Kvj for all j. (6.27)

Hence αj = 0 for all j. This means that all vj are linearly independent.

(ii) The vectors {v1, . . . , vm} form a basis. Therefore we may expand any x ∈ Rm

as a linear combination of vj , i.e. x =
∑m

i=1 αivi. Consequently we can expand
v%j Kx in terms of v%j Kvi, and we obtain

v%j Kx = v%j K

[
m
∑

i=1

αivi

]

= αjv
%
j Kvj . (6.28)

Basis Expansion
Solving for αj proves the claim.

(iii) Let y = Kx. Since the vectors vi form a basis, we can expand x in terms of
αi. Substituting this definition into (6.28) proves (6.26).

The practical consequence of this theorem is that, provided we know a set of
K-orthogonal vectors vi, we can solve the linear equation y = Kx via (6.26).
Furthermore, we can also use it to minimize quadratic functions of the form
f(x) = 1

2x
%Kx− c%x. The following theorem tells us how.

Theorem 6.19 (Deflation Method) Denote by v1, . . . , vm a set of mutually K-
orthogonal vectors for a strictly positive definite symmetric matrix K ∈ Rm×m.
Then for any x0 ∈ Rm the following method finds xi that minimize f(x) =
1
2x

%Kx− c%x in the linear manifold Xi := x0 + span{v1, . . . , vi}.Optimality in
Linear Space

xi := xi−1 − vi
g%i−1vi
v%i Kvi

where gi−1 = f ′(xi−1) for all i > 0. (6.29)

Proof We use induction. For i = 0 the statement is trivial, since the linear
manifold consists of only one point.
Assume that the statement holds for i. Since f is convex, we only need prove

that the gradient of f(xi) is orthogonal to span{v1, . . . , vi}. In that case no further
improvement can be gained on the linear manifold Xi. It suffices to show that for

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

168 Optimization

all j ≤ i+ 1,

0 = v%j gi. (6.30)

Additionally, we may expand xi+1 to obtainGradient Descent
in Rescaled Space

v%j gi = v%j

[

Kxi−1 − c−Kvi
g%i−1vi
v%i Kvi

]

= v%j gi−1 − (g%i−1vi)
v%j Kvi

v%i Kvi
. (6.31)

For j = i both terms cancel out. For j < i both terms vanish due to the induction
assumption. Since the vectors vj form a basis Xm = Rm, xm is a minimizer of f .

In a nutshell, Theorem 6.19 already contains the Conjugate Gradient descent
algorithm: in each step we perform gradient descent with respect to one of the K-
orthogonal vectors vi, which means that after n steps we will reach the minimum.
We still lack a method to obtain such a K-orthogonal basis of vectors vi. It turns
out that we can get the latter directly from the gradients gi. Algorithm 6.4 describes
the procedure.

Algorithm 6.4 Conjugate Gradient Descent

Require: x0

Set i = 0
g0 = f ′(x0)
v0 = g0
repeat

xi+1 = xi + αivi where αi = − g"i vi
v"
i Kvi

gi+1 = f ′(xi+1)

vi+1 = −gi+1 + βivi where βi =
g"i+1Kvi

v"
i Kvi

.

i = i+ 1
until gi = 0

Output: xi

All we have to do is prove that Algorithm 6.4 actually does what it is required
to do, namely generate a K-orthogonal set of vectors vi, and perform deflation in
the latter. To achieve this, the vi are obtained by an orthogonalization procedure
akin to Gram-Schmidt orthogonalization.

Theorem 6.20 (Conjugate Gradient) Assume we are given a quadratic convex
function f(x) = 1

2x
%Kx − c%x, to which we apply conjugate gradient descent for

minimization purposes. Then algorithm 6.4 is a deflation method, and unless gi = 0,
we have for every 0 ≤ i ≤ m,

(i) span{g0, . . . , gi} = span{v0, . . . , vi} = span{g0,Kg0, . . . ,Kig0}.
(ii) The vectors vi are K-orthogonal.

(iii) The equations in Algorithm 6.4 for αi and βi can be replaced by αi =
g"
i gi

v"
i Kvi

and βi =
g"
i+1gi+1

g"
i gi

.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.2 Unconstrained Problems 169

(iv) After i steps, xi is the optimal solution within the linear manifold given
byx0 + span{g0,Kg0, . . . ,Ki−1g0}.

Proof (i) and (ii) We use induction. For i = 0 the statements trivially hold since
v0 = g0. For i note that by construction (see Algorithm 6.4) gi+1 = Kxi+1 − c =
gi + αiKvi, hence span{g0, . . . , gi+1} = span{g0,Kg0, . . . ,Ki+1g0}. Since vi+1 =
−gi+1+βivi the same statement holds for span{v0, . . . , vi+1}. Moreover, the vectors
gi are linearly independent or 0 due to Theorem 6.19.
Finally v%j Kvi+1 = −v%j Kgi+1 + βiv%j Kvi = 0, since for j = i both terms cancel
out, and for j < i both terms individually vanish (due to Theorem 6.19 and (i)).

(iii) We have −g%i vi = g%i gi − βi−1g%i vi−1 = g%i gi, since the second term vanishes
due to Theorem 6.19. This proves the result for αi.
For βi note that g%i+1Kvi = α−1

i g%i+1(gi+1 − gi) = α−1
i g%i+1gi+1. Substitution of the

value of αi proves the claim.

(iv) Again, we use induction. At step i = 1 we compute the optimal solution within
the space spanned by g0.

We conclude this section with some remarks on the optimality of conjugate gradient
descent algorithms, and how they can be extended to arbitrary convex functions.
Due to Theorems 6.19 and 6.20, we can see that after i iterations, the conjugateSpace of Largest

Eigenvalues gradient descent algorithm finds an optimal solution on the linear manifold x0 +
span{g0,Kg0, . . . ,Ki−1g0}. This means that the solutions will be mostly aligned
with the largest eigenvalues of K, since after multiple application of K to any
arbitrary vector g0, the largest eigenvectors dominate. Nonetheless, the algorithm
here is significantly cheaper than computing the eigenvalues of K, and subsequently
minimizing f in the subspace corresponding to the largest eigenvalues. For more
detail see e.g. [315]
In the case of general convex functions, the assumptions of Theorem 6.20 are no

longer satisfied. In spite of this, conjugate gradient descent has proven to be effective
even in these situations. Additionally, we have to account for some modifications.
Basically, the update rules for gi and vi remain unchanged but the parameters αi

and βi are computed differently. Table 6.1 gives an overview of different methods.
See e.g. [163, 315, 519, 398] for details.Nonlinear

Extensions
6.2.5 Predictor Corrector Methods

As we go to higher order Taylor expansions of the function f to be minimized (or set
to zero), the corresponding numerical methods become increasingly complicated to
implement, and require an ever increasing number of parameters to be estimated
or computed. For instance, a quadratic expansion of a multivariate function f :Increasing the

Order Rm → R requires m × m terms for the quadratic part (the Hessian), whereas
the linear part (the gradient) can be obtained by computing m terms. Since the
quadratic expansion is only an approximation for most non-quadratic functions,
this is wasteful (e.g. for interior point programs, see Section 6.4). We might instead

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

170 Optimization

Table 6.1 Non-quadratic modifications of conjugate gradient descent.

Generic Method Compute Hessian Ki := f ′′(xi) and update αi,βi with

αi = − g"i vi
v"
i Kivi

βi =
g"i+1Kivi

v"
i Kivi

This requires calculation of the Hessian at each iteration.

Fletcher–Reeves [163] Find αi via a line search and use Theorem 6.20 (iii) for βi

αi = argminαf(xi + αvi)

βi =
g"i+1gi+1

g"i gi

Polak–Ribiere [398] Find αi via a line search

αi = argminαf(xi + αvi)

βi =
(gi+1−gi)

"gi+1

g"i gi

Experimentally, Polak–Ribiere tends to be better than

Fletcher–Reeves.

be able to achieve roughly the same goal without computing the quadratic term
explicitly, or more generally, obtain the performance of higher order methods
without actually implementing them.
This can in fact be achived using predictor-corrector methods. These work by

computing a tentative update xi → xpred
i+1 (predictor step), then using xpred

i+1 to
account for higher order changes in the objective function, and finally obtaining
a corrected value xcorr

i+1 based on these changes. A simple example illustrates the
method. Assume we want to find the solution to the equationPredictor

Corrector
Methods for
Quadratic
Equations

f(x) = 0 where f(x) = f0 + ax+
1

2
bx2. (6.32)

We assume a, b, f0, x ∈ R. Exact solution of (6.32) requires taking a square root.
Let us see whether we can find an approximate method that avoids this (in general
b will be an m ×m matrix, so this is a worthwhile goal). The predictor corrector
approach works as follows: first solve

f0 + ax = 0 and hence xpred = −f0
a
. (6.33)

Second, substitute xpred into the nonlinear parts of (6.32) to obtain

f0 + axcorr +
1

2
b

(
f0
a

)2

= 0 and hence xcorr = −f0
a

(

1 +
1

2

bf0
a2

)

. (6.34)

Comparing xpred and xcorr, we see that 1
2
bf0
a2 is the correction term that takes the

effect of the changes in x into account.No Quadratic
Residuals Since neither of the two values (xpred or xcorr) will give us the exact solution

to f(x) = 0 in just one step, it is worthwhile having a look at the errors of both
approaches.

f(xpred) =
1

2

bf2
0

a2
and f(xcorr) = 2

f2(xpred)

f0
+

f3(xpred)

f2
0

. (6.35)

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.3 Constrained Problems 171

We can check that if bf0
a2 ≤ 2− 2

√
2, the corrector estimate will be better than the

predictor one. As our initial estimate f0 decreases, this will be the case. Moreover,
we can see that f(xcorr) only contains terms in x that are of higher order than
quadratic. This means that even though we did not solve the quadratic form
explicitly, we eliminated all corresponding terms.
The general scheme is described in Algorithm 6.5. It is based on the assumption

that f(x+ ξ) can be split up into

f(x+ ξ) = f(x) + fsimple(ξ, x) + T (ξ, x), (6.36)

where fsimple(ξ, x) contains the simple, possibly low order, part of f , and T (ξ, x)
the higher order terms, such that fsimple(0, x) = T (0, x) = 0. While in the previous
example we introduced higher order terms into f that were not present before (f is
only quadratic), usually such terms will already exist anyway. Hence the corrector
step will just eliminate additional lower order terms without too much additional
error in the approximation.

Algorithm 6.5 Predictor Corrector Method

Require: x0, Precision ε
Set i = 0
repeat

Expand f into f(xi) + fsimple(ξ, xi) + T (ξ, xi).
Predictor Solve f(xi) + fsimple(ξ

pred, xi) = 0 for ξpred.
Corrector Solve f(xi) + fsimple(ξ

corr, xi) + T (ξpred, xi) = 0 for ξcorr.
xi+1 = xi + ξcorr.
i = i+ 1.

until |f(xi)| ≤ ε
Output: xi

We will encounter such methods for instance in the context of interior point
algorithms (Section 6.4), where we have to solve a set of quadratic equations.

6.3 Constrained Problems

After this digression on unconstrained optimization problems, let us return to
constrained optimization, which makes up the main body of the problems we will
have to deal with in learning (e.g. quadratic or general convex programs for Support
Vector Machines). Typically, we have to deal with problems of type (6.6). For
convenience we repeat the problem statement:

minimize
x

f(x)

subject to ci(x) ≤ 0 for all i ∈ [n].
(6.37)

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

172 Optimization

Here f and ci are convex functions and n ∈ N. In some cases3, we additionally have
equality constraints ej(x) = 0 for some j ∈ [n′]. Then the optimization problem can
be written as

minimize
x

f(x),

subject to ci(x) ≤ 0 for all i ∈ [n],

ej(x) = 0 for all j ∈ [n′].

(6.38)

Before we start minimizing f , we have to discuss what optimality means in this
case. Clearly f ′(x) = 0 is too restrictive a condition. For instance, f ′ could point
into a direction which is forbidden by the constraints ci and ei. Then we could have
optimality, even though f ′ $= 0. Let us analyze the situation in more detail.

6.3.1 Optimality Conditions

We start with optimality conditions for optimization problems which are indepen-
dent of their differentiability. While it is fairly straightforward to state sufficient
optimality conditions for arbitrary functions f and ci, we will need convexity and
“reasonably nice” constraints (see Lemma 6.23) to state necessary conditions. This
is not a major concern, since for practical applications, the constraint qualification
criteria are almost always satisfied, and the functions themselves are usually convex
and differentiable. Much of the reasoning in this section follows [327], which should
also be consulted for further references and detail.
Some of the most important sufficient criteria are the Kuhn-Tucker4 saddlepoint

conditions [294]. As indicated previously, they are independent of assumptions on
convexity or differentiability of the constraints ci or objective function f .

Theorem 6.21 (Kuhn-Tucker Saddlepoint Condition [294, 327]) Assume
an optimization problem of the form (6.37), where f : Rm → R and ci : Rm → R

for i ∈ [n] are arbitrary functions, and a Lagrange functionLagrange
Function

L(x,α) := f(x) +
n
∑

i=1

αici(x) where αi ≥ 0. (6.39)

If a pair of variables (x̄, ᾱ) with x̄ ∈ Rn and ᾱi ≥ 0 for all i ∈ [n] exists, such that
for all x ∈ Rm and α ∈ [0,∞)n,

L(x̄,α) ≤ L(x̄, ᾱ) ≤ L(x, ᾱ) (Saddlepoint) (6.40)

then x̄ is an optimal solution to (6.37).

The parameters αi are called Lagrange multipliers. As described in the later

3. Note that it is common practice in Support Vector Machines to write ci as positivity
constraints by using concave functions. This can be fixed by a sign change, however.
4. An earlier version is due to Karush [267]. This is why often one uses the abbreviation
KKT (Karush-Kuhn-Tucker) rather than KT to denote the optimality conditions.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.3 Constrained Problems 173

chapters, they will become the coefficients in the kernel expansion in Support Vector
Machines.

Proof The proof follows [327]. Denote by (x̄, ᾱ) a pair of variables satisfying
(6.40). From the first inequality it follows that

n
∑

i=1

(αi − ᾱi)ci(x̄) ≤ 0. (6.41)

Since we are free to choose αi ≥ 0, we can see (by setting all but one of the terms
αi to ᾱi and the remaining one to αi = ᾱi + 1) that ci(x) ≤ 0 for all i ∈ [n]. This
shows that x̄ satisfies the constraints, i.e. it is feasible.
Additionally, by setting one of the αi to 0, we see that ᾱici(x̄) ≥ 0. The only way

to satisfy this is by having

ᾱici(x̄) = 0 for all i ∈ [n]. (6.42)

Eq. (6.42) is often referred to as the Karush-Kuhn-Tucker (KKT) condition [267,
294]. Finally, combining (6.42) and ci(x) ≤ 0 with the second inequality in (6.40)
yields f(x̄) ≤ f(x) for all feasible x. This proves that x̄ is optimal.

We can immediately extend Theorem 6.21 to accommodate equality constraints by
splitting them into the conditions ei(x) ≤ 0 and ei(x) ≥ 0. We obtain:

Theorem 6.22 (Equality Constraints) Assume an optimization problem of the
form (6.38), where f, ci, ej : Rm → R for i ∈ [n] and j ∈ [n′] are arbitrary functions,
and a Lagrange function

L(x,α) := f(x) +
n
∑

i=1

αici(x) +
n′
∑

j=1

βjej(x) where αi ≥ 0 and βj ∈ R. (6.43)

If a set of variables (x̄, ᾱ, β̄) with x̄ ∈ Rm, ᾱ ∈ [0,∞), and β̄ ∈ Rn′
exists such that

for all x ∈ Rm, α ∈ [0,∞)n, and β ∈ Rn′
,

L(x̄,α,β) ≤ L(x̄, ᾱ, β̄) ≤ L(x, ᾱ, β̄), (6.44)

then x̄ is an optimal solution to (6.38).

Now we determine when the conditions of Theorem 6.21 are necessary. We will see
that convexity and sufficiently “nice” constraints are needed for (6.40) to become
a necessary condition. The following lemma (see [327]) describes three constraint
qualifications, which will turn out to be exactly what we need.

Lemma 6.23 (Constraint Qualifications) Denote by X ⊂ Rm a convex set, and
by c1, . . . , cn : X→ R n convex functions defining a feasible region byFeasible Region

X := {x|x ∈ X and ci(x) ≤ 0 for all i ∈ [n]}. (6.45)

Then the following additional conditions on ci are connected by (i) ⇐⇒ (ii) and
(iii) =⇒ (i).Equivalence

Between
Constraint
Qualifications

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

174 Optimization

Figure 6.7 Two hyperplanes
(and their normal vectors) sep-
arating the convex hull of a fi-
nite set of points from the ori-
gin.

(i) There exists an x ∈ X such that for all i ∈ [n] ci(x) < 0 (Slater’s condition
[487]).

(ii) For all nonzero α ∈ [0,∞)n there exists an x ∈ X such that
∑n

i=1 αici(x) ≤ 0
(Karlin’s condition [265]).

(iii) The feasible region X contains at least two distinct elements, and there exists
an x ∈ X such that all ci are strictly convex at x wrt. X (Strict constraint
qualification).

The connection (i) ⇐⇒ (ii) is also known as the Generalized Gordan Theorem
[155]. The proof can be skipped if necessary. We need an auxiliary lemma which we
state without proof (see [327, 419] for details).

Lemma 6.24 (Separating Hyperplane Theorem) Denote by X ∈ Rm a con-
vex set not containing the origin 0. Then there exists a hyperplane with normal
vector α ∈ Rm such that α%x > 0 for all x ∈ X.

See also Figure 6.7.

Proof of Lemma 6.23. We prove {(i) ⇐⇒ (ii)} by showing {(i) =⇒ (ii)} and
{ not (i) =⇒ not (ii)}.

(i) =⇒ (ii) For a point x ∈ X with ci(x) < 0, for all i ∈ [n] we have that αici(x) ≥ 0
implies αi = 0.

(i) =⇒ (ii) Assume that there is no x with ci(x) < 0 for all i ∈ [n]. Hence the set

Γ := {γ|γ ∈ R
n and there exists some x ∈ X with γi > ci(x) for all i ∈ [n]} (6.46)

is convex and does not contain the origin. The latter follows directly from the
assumption. For the former take γ, γ′ ∈ Γ and λ ∈ (0, 1) to obtain

λγi + (1− λ)γ′i > λci(x) + (1− λ)ci(x′) ≥ ci(λx+ (1− λ)x′). (6.47)

Now by Lemma 6.24, there exists some α ∈ Rn such that α%γ ≥ 0 and ‖α‖2 = 1
for all γ ∈ Γ. Since each of the γi for γ ∈ Γ can be arbitrarily large (with respect
to the other coordinates), we conclude αi ≥ 0 for all i ∈ [n].
Denote by δ := infx∈X

∑n
i=1 αici(x) and by δ′ := infγ∈Γ α%γ. One can see that

by construction δ = δ′. By Lemma 6.24 α was chosen such that δ′ ≥ 0, and hence

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.3 Constrained Problems 175

δ ≥ 0. This contradicts (ii), however, since it implies the existence of a suitable α
with αici(x) ≥ 0 for all x.

(iii) =⇒ (i) Since X is convex we get for all ci and for any λ ∈ (0, 1):

λx+ (1− λ)x′ ∈ X and 0 ≥ λci(x) + (1− λ)ci(x′) > ci(λx+ (1− λ)x′). (6.48)

This shows that λx+ (1− λ)x′ satisfies (i) and we are done.

We proved Lemma 6.23 as it provides us with a set of constraint qualifications
(conditions on the constraints) that allow us to determine cases where the Kuhn-
Tucker Saddlepoint conditions are both necessary and sufficient. This is important,
since we will use the Kuhn-Tucker conditions to transform optimization problems
into their duals, and solve the latter numerically. For this approach to be valid,
however, we must ensure that we do not change the solvability of the optimization
problem.

Theorem 6.25 (Necessary Kuhn-Tucker Conditions [294, 541, 265]) Un-
der the assumptions and definitions of Theorem 6.21 with the additional assump-
tion that f and ci are convex on the convex set X ⊆ Rm (containing the set of
feasible solutions as a subset) and that ci satisfy one of the constraint qualifications
of Lemma 6.23, the saddlepoint criterion (6.40) is necessary for optimality.

Proof Denote by x̄ the solution to (6.37), and by X ′ the set

X ′ := X ∩ {x|x ∈ X with f(x)− f(x̄) ≤ 0 and ci(x) ≤ 0 for all i ∈ [n]}. (6.49)

By construction x̄ ∈ X ′. Furthermore, there exists no x′ ∈ X ′ such that all
inequality constraints including f(x) − f(x̄) are satisfied as strict inequalities
(otherwise x̄ would not be optimal). In other words, X ′ violates Slater’s conditions
(i) of Lemma 6.23 (where both (f(x)− f(x̄)) and c(x) together play the role of
ci(x)), and thus also Karlin’s conditions (ii). This means that there exists a nonzero
vector (ᾱ0, ᾱ) ∈ Rn+1 with nonnegative entries such that

ᾱ0(f(x)− f(x̄)) +
n
∑

i=1

ᾱici(x) ≥ 0 for all x ∈ X. (6.50)

In particular, for x = x̄ we get
∑n

i=1 ᾱici(x̄) ≥ 0. In addition, since x̄ is a solution
to (6.37), we have ci(x̄) ≤ 0. Hence

∑n
i=1 ᾱici(x̄) = 0. This allows us to rewrite

(6.50) as

ᾱ0f(x) +
n
∑

i=1

ᾱici(x) ≥ ᾱ0f(x̄) +
n
∑

i=1

ᾱici(x̄). (6.51)

This looks almost like the first inequality of (6.40), except for the ᾱ0 term (which
we will return to later). But let us consider the second inequality first.
Again, since ci(x̄) ≤ 0 we have

∑n
i=1 αici(x̄) ≤ 0 for all αi ≥ 0. Adding ᾱ0f(x̄)

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

176 Optimization

on both sides of the inequality and
∑n

i=1 ᾱici(x̄) on the RHS yields

ᾱ0f(x̄) +
n
∑

i=1

ᾱici(x̄) ≥ ᾱ0f(x̄) +
n
∑

i=1

αici(x̄). (6.52)

This is almost all we need for the first inequality of (6.40) .5 If ᾱ0 > 0 we can divide
(6.51) and (6.52) by ᾱ0 and we are done.
When ᾱ0 = 0, then this implies the existence of ᾱ ∈ Rn with nonnegative entries

satisfying
∑n

i=1 ᾱici(x) ≥ 0 for all x ∈ X. This contradicts Karlin’s constraint
qualification condition (ii), which allows us to rule out this case.

6.3.2 Duality and KKT-Gap

Now that we have formulated necessary and sufficient optimality conditions (Theo-
rem 6.21 and 6.25) under quite general circumstances, let us put them to practical
use for convex differentiable optimization problems. We first derive a more practi-
cally useful form of Theorem 6.21. Our reasoning is as follows: eq. (6.40) implies
that L(x̄, ᾱ) is a saddlepoint in terms of (x̄, ᾱ). Hence, all we have to do is write
the saddlepoint conditions in the form of derivatives.

Theorem 6.26 (Kuhn-Tucker for Differentiable Convex Problems [294])
An optimal solution to the optimization problem (6.37) with convex, differentiable
f, ci is given by x̄, if there exists some ᾱ ∈ Rn with αi ≥ 0 for all i ∈ [n] such that
the following conditions are satisfied:Primal and Dual

Feasibility
∂xL(x̄, ᾱ) = ∂xf(x̄) +

n
∑

i=1

ᾱi∂xci(x̄) = 0 (Saddlepoint in x̄), (6.53)

∂αiL(x̄, ᾱ) = ci(x̄) ≤ 0 (Saddlepoint in ᾱ), (6.54)
n
∑

i=1

ᾱici(x̄) = 0 (Vanishing KKT-Gap). (6.55)

Proof The easiest way to prove Theorem 6.26 is to show that for any x ∈ X, we
have f(x)− f(x̄) ≥ 0. Due to convexity we may linearize and obtain

f(x)− f(x̄) ≥ (∂xf(x̄))
%(x− x̄) (6.56)

= −
n
∑

i=1

ᾱi (∂xci(x̄))
% (x− x̄) (6.57)

≥ −
n
∑

i=1

ᾱi(ci(x)− ci(x̄)) (6.58)

5. The two inequalities (6.51) and (6.52) are also known as the Fritz-John saddlepoint nec-
essary optimality conditions [253], which play a similar role as the saddlepoint conditions
for the Lagrangian (6.39) of Theorem 6.21.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.3 Constrained Problems 177

= −
n
∑

i=1

ᾱici(x) ≥ 0. (6.59)

Here we used the convexity and differentiability of f to arrive at the rhs of (6.56)
and (6.58). To obtain (6.57) we exploited the fact that at the saddlepoint ∂xf(x̄)
can be replaced by the corresponding expansion in ∂xci(x̄); thus we used (6.53).
Finally, for (6.59) we used the fact that the KKT gap vanishes at the optimum
(6.55) and that the constraints are satisfied (6.54).

Optimization by
Constraint
Satisfaction

In other words, we may solve a convex optimization problem by finding (x̄, ᾱ)
that satisfy the conditions of Theorem 6.26. Moreover, these conditions, together
with the constraint qualifications of Lemma 6.23, ensure necessity.

Note that we transformed the problem of minimizing functions into one of solving
a set of equations, for which several numerical tools are readily available. This is
exactly how interior point methods work (see Section 6.4 for details on how to
implement them). Necessary conditions on the constraints similar to those discussed
previously can also be formulated (see [327] for a detailed discussion).

The other consequence of Theorem 6.26, or rather of the definition of the
Lagrangian L(x,α), is that we may bound f(x̄) = L(x̄, ᾱ) from above and below
without explicit knowledge of f(x̄).

Theorem 6.27 (KKT-Gap) Assume an optimization problem of type (6.37),
where both f and ci are convex and differentiable. Denote by x̄ its solution. Then
for any set of variables (x,α) with αi ≥ 0, and for all i ∈ [n] satisfying

∂xL(x,α) = 0, (6.60)

∂αiL(x,α) ≤ 0 for all i ∈ [n], (6.61)

we haveBounding the
Error

f(x) ≥ f(x̄) ≥ f(x) +
m
∑

i=1

αici(x). (6.62)

Strictly speaking, we only need differentiability of f and ci at x̄. However, since x̄
is only known after the optimization problem has been solved, this is not a very
useful condition.

Proof The first part of (6.62) follows from the fact that x ∈ X, so that x satisfies
the constraints. Next note that L(x̄, ᾱ) = f(x̄) where (x̄, ᾱ) denotes the saddlepoint
of L. For the second part note that due to the saddlepoint condition (6.40), we have
for any α with αi ≥ 0,

f(x̄) = L(x̄, ᾱ) ≥ L(x̄,α) ≥ inf
x′∈X

L(x′,α). (6.63)

The function L(x′,α) is convex in x′ since both f ′ and the constraints ci are convex
and all αi ≥ 0. Therefore (6.60) implies that x minimizes L(x′,α). This proves the
second part of (6.63), which in turn proves the second inequality of (6.62).

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

178 Optimization

Hence, no matter what algorithm we are using in order to solve (6.37), we may
always use (6.62) to assess the proximity of the current set of parameters to the
optimal solution. Clearly, the relative size of

∑n
i=1 αici(x) provides a useful stopping

criterion for convex optimization algorithms.
Finally, another concept that is useful when dealing with optimization problems

is that of duality. This means that for the primal minimization problem considered
so far, which is expressed in terms of x, we can find a dual maximization problem in
terms of α by computing the saddlepoint of the Lagrangian L(x,α), and eliminating
the primal variables x. We thus obtain the following dual maximization problem
from (6.37):

maximize L(x,α) = f(x) +
n
∑

i=1

αici(x),

where (x,α) ∈ Y :=

{

(x,α)

∣
∣
∣
∣
∣

x ∈ X,αi ≥ 0 for all i ∈ [n]

and ∂xL(x,α) = 0

}

.

(6.64)

We state without proof a theorem guaranteeing the existence of a solution to (6.64).
Existence of Dual
Solution

Theorem 6.28 (Wolfe [595]) Recall the definition of X (6.45) and of the opti-
mization problem (6.37). Under the assumptions that X is an open set, X satisfies
one of the constraint qualifications of Lemma 6.23, and f, ci are all convex and
differentiable, there exists an ᾱ ∈ Rn such that (x̄, ᾱ) solves the dual optimization
problem (6.64) and in addition L(x̄, ᾱ) = f(x̄).

In order to prove Theorem 6.28 we first have to show that some (x̄, ᾱ) exists
satisfying the Kuhn-Tucker conditions, and then use the fact that the KKT-Gap at
the saddlepoint vanishes.

6.3.3 Linear and Quadratic Programs

Let us analyze the notions of primal and dual objective functions in more detail by
looking at linear and quadratic programs. We begin with a simple linear setting.6Primal Linar

Program
minimize

x
c%x

subject to Ax+ d ≤ 0
(6.65)

where c, x ∈ Rm, d ∈ Rn and A ∈ Rn×m, and where Ax+ d ≤ 0 is a shorthand for
∑m

j=1 Aijxj + di ≤ 0 for all i ∈ [n].

6. Note that we encounter a small clash of notation in (6.65), since c is used as a symbol for
the loss function in the remainder of the book. This inconvenience is outweighed, however,
by the advantage of remaining consistent with the standard literature (e.g., [327, 45, 543])
on optimization. The latter will allow the reader to read up on the subject without any
need for cumbersome notational changes.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.3 Constrained Problems 179

It is far from clear that (6.65) always has a solution, or indeed a minimum. For
instance, the set of x satisfying Ax + d ≤ 0 might be empty, or it might contain
rays going to infinity in directions where c%x keeps increasing. Before we deal withUnbounded and

Infeasible
Problems

this issue in more detail, let us compute the sufficient Kuhn-Tucker conditions
for optimality, and the dual of (6.65). We may use (6.26) since (6.65) is clearly
differentiable and convex. In particular we obtain:

Theorem 6.29 (Kuhn-Tucker Conditions for Linear Programs) A suffici-
ent condition for a solution to the linear program (6.65) to exist is that the following
four conditions are satisfied for some (x,α) ∈ Rm+n where α ≥ 0:

∂xL(x,α) = ∂x
[

c%x+ α%(Ax+ d)
]

= A%α+ c = 0, (6.66)

∂αL(x,α) = Ax+ d ≤ 0, (6.67)

α%(Ax+ d) = 0, (6.68)

α ≥ 0. (6.69)

Then the minimum is given by c%x.

Note that, depending on the choice of A and d, there may not always exist an x
such that Ax+ d ≤ 0, in which case the constraint does not satisfy the conditions
of Lemma 6.23. In this situation, no solution exists for (6.65). If a feasible x exists,
however, then (projections onto lower dimensional subspaces aside) the constraint
qualifications are satisfied on the feasible set, and the conditions above are necessary.
See e.g. [315, 327, 543] for details.
Next we may compute Wolfe’s dual optimization problem by substituting (6.66)

into L(x,α). Consequently, the primal variables x vanish, and we obtain a maxi-
mization problem in terms of α only:Dual Linear

Program
maximize d%α,

subject to A%α+ c = 0 and α ≥ 0.
(6.70)

Note that the number of variables and constraints has changed: we started with
m variables and n constraints. Now we have n variables together with m equality
constraints and n inequality constraints. While it is not yet completely obvious in
the linear case, dualization may render optimization problems more amenable to
numerical solution (the contrary may be true as well, though).
What happens if a solution x̄ to the primal problem (6.65) exists? In this casePrimal Solution

⇔ Dual Solution we know (since the Kuhn-Tucker conditions of Theorem 6.29 are necessary and
sufficient) that there must be an ᾱ solving the dual problem, since L(x,α) has a
saddlepoint at (x̄, ᾱ).
If no feasible point of the primal problem exists, there must exist, by (a small

modification of) Lemma 6.23, some α ∈ Rn with α ≥ 0 and at least one αi > 0 such
that α%(Ax + d) > 0 for all x. This means that for all x, the Lagrange function
L(x,α) is unbounded from above, since we can make α%(Ax+ d) arbitrarily large.
Hence the dual optimization problem is unbounded. Using analogous reasoning, if
the primal problem is unbounded, the dual problem is infeasible.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

180 Optimization

Table 6.2 Connections between primal and dual optimization problems.

Primal Optimization Problem (in x) Dual Optimization Problem (in α)

solution exists solution exists and is equal to primal solution

no solution exists maximization problem is unbounded

minimization problem is unbounded no solution exists

inequality constraint inequality constraint

equality constraint free variable

free variable equality constraint

Let us see what happens if we dualize (6.70) one more time. First we need more
Lagrange multipliers, since we have two sets of constraints. The equality constraints
can be taken care of by an unbounded variable x′ (see Theorem 6.22 for how to
deal with equalities). For the inequalities α ≥ 0, we introduce a second Lagrange
multiplier y ∈ Rn. After some calculations and resubstitution into the corresponding
Lagrange function, we getDual Dual Linear

Program →
Primal

maximize c%x′,

subject to Ax′ + d+ y = 0 and y ≥ 0.
(6.71)

We can remove y ≥ 0 from the set of variables by transforming Ax′ + d + y into
Ax+d ≤ 0; thus we recover the primal optimization problem (6.65).7 Table 6.2 gives
an overview of the transformations and relations between primal and dual problems.
Even though we only derived these relations for linear programs, this approach can
also be applied to other convex differentiable settings such as quadratic programs
[45].
We conclude this section by stating primal and dual optimization problems, and

the sufficient Kuhn-Tucker conditions for convex quadratic optimization problems.
To keep matters simple we only consider the following type of optimization problem
(other problems can be rewritten in the same form; see Problem 6.11 for details):Primal Quadratic

Program
minimize

x

1
2x

%Kx+ c%x,

subject to Ax+ d ≤ 0.
(6.72)

Here K is a strictly positive definite matrix, x, c ∈ Rm, A ∈ Rn×m, and d ∈ Rn.
Note that this is clearly a differentiable convex optimization problem. To introduce
a Lagrange function we need corresponding multipliers α ∈ Rn with α ≥ 0. We
obtain

L(x,α) =
1

2
x%Kx+ c%x+ α%(Ax+ d). (6.73)

7. This finding is useful if we have to dualize twice in some optimization settings (see
Chapter 10), since then we will be able to recover some of the primal variables without
further calculations if the optimization algorithm provides us with both primal and dual
variables.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.4 Interior Point Methods 181

Next we may apply Theorem 6.26 to obtain the Kuhn-Tucker conditions. They can
be stated in analogy to (6.66)–(6.68) as

∂xL(x,α) = ∂x

[

c%x+ α%(Ax+ d) +
1

2
x%Kx

]

= Kx+A%α+ c = 0, (6.74)

∂αL(x,α) = Ax+ d ≤ 0, (6.75)

α%(Ax+ d) = 0, (6.76)

α ≥ 0. (6.77)

In order to compute the dual of (6.72), we have to eliminate x from (6.73) and write
it as a function of α. We obtain

L(x,α) = −1

2
x%Kx+ α%d (6.78)

= −1

2
α%A%K−1Aα+

[

d− c%K−1A%]α− 1

2
c%K−1c. (6.79)

In (6.78) we used (6.74) and (6.76) directly, whereas in order to eliminate x
completely in (6.79) we solved (6.74) for x = −K−1(c + A%α). Ignoring constant
terms this leads to the dual quadratic optimization problem,Dual Quadratic

Program
minimize

α
− 1

2α
%A%K−1Aα+

[

d− c%K−1A%]α,

subject to α ≥ 0.
(6.80)

The surprising fact about the dual problem (6.80) is that the constraints become
significantly simpler than in the primal (6.72). Furthermore, if n < m, we also
obtain a more compact representation of the quadratic term.
There is one aspect in which (6.80) differs from its linear counterpart (6.70): if

we dualize (6.80) again, we do not recover (6.72) but rather a problem very similar
in structure to (6.80). Dualizing (6.80) twice, however, we recover the dual itself
(Problem 6.13 deals with this matter in more detail).

6.4 Interior Point Methods

Let us now have a look at simple, yet efficient optimization algorithms for con-
strained problems: interior point methods.
An interior point is a pair of variables (x,α) that satisfies both primal and dual

constraints. As already mentioned before, finding a set of vectors (x̄, ᾱ) that satisfy
the Kuhn-Tucker conditions is sufficient to obtain an optimal solution in x̄. Hence,
all we have to do is devise an algorithm which solves (6.74)–(6.77), for instance, if
we want to solve a quadratic program. We will focus on the quadratic case — the
changes required for linear programs merely involve the removal of some variables,
simplifying the equations. See Problem 6.14 and [543, 496] for details.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

182 Optimization

6.4.1 Sufficient Conditions for a Solution

We need a slight modification of (6.74)–(6.77) in order to achieve our goal: rather
than the inequality (6.75), we are better off with an equality and a positivity
constraint for an additional variable, i.e. we transform Ax+d ≤ 0 into Ax+d+ξ = 0,
where ξ ≥ 0. Hence we arrive at the following system of equations:Optimality as

Constraint
Satisfaction

Kx+A%α+ c = 0 (Dual Feasibility),

Ax+ d+ ξ = 0 (Primal Feasibility),

α%ξ = 0,

α, ξ ≥ 0.

(6.81)

Let us analyze the equations in more detail. We have three sets of variables: x,α, ξ.
To determine the latter, we have an equal number of equations plus the positivity
constraints on α, ξ. While the first two equations are linear and thus amenable to
solution, e.g. by matrix inversion, the third equality α%ξ = 0 has a small defect:
given one variable, say α, we cannot solve it for ξ or vice versa. Furthermore, the last
two constraints are not very informative either. So we need a strategy to improve
this situation.
We use a primal-dual path-following algorithm, as proposed in [542], to solve this

problem. Rather than requiring α%ξ = 0 we modify it to become αiξi = µ > 0 for
all i ∈ [n], solve (6.81) for a given µ, and decrease µ to 0 as we go. The advantage of
this strategy is that we may use a Newton-type predictor corrector algorithm (see
Section 6.2.5) to update the parameters x,α, ξ, which exhibits the fast convergence
of a second order method.

6.4.2 Solving the Equations

For the moment, assume that we have suitable initial values of x,α, ξ, and µ with
α, ξ > 0. Linearization of the first three equations of (6.81), together with the
modification αiξi = µ, yields (we expand x into x+∆x, etc.):Linearized

Constraints
K∆x+A%∆α = −Kx−A%α− c =: ρp,

A∆x+∆ξ = −Ax− d− ξ =: ρd,

α−1
i ξi∆αi +∆ξi = µα−1

i − ξi − α
−1
i ∆αi∆ξi =: ρKKTi for all i

(6.82)

Next we solve for ∆ξi to obtain what is commonly referred to as the reduced KKT
system. For convenience we use D := diag(α−1

1 ξ1, . . . ,α−1
n ξn) as a shorthand;

[

K A%

A −D

][

∆x

∆α

]

=

[

ρp

ρd − ρKKT

]

. (6.83)

We apply a predictor-corrector method as in Section 6.2.5. The resulting matrix of
the linear system in (6.83) is indefinite but of full rank, and we can solve (6.83) for
(∆xPred,∆αPred) by explicitly pivoting for individual entries (e.g. solve for ∆x first
and then substitute the result in to the second equality to obtain ∆α).

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.4 Interior Point Methods 183

This gives us the predictor part of the solution. Next we have to correct for the
linearization, which is conveniently achieved by updating ρKKT and solving (6.83)
again to obtain the corrector values (∆xCorr,∆αCorr). The value of ∆ξ is then
obtained from (6.82).
Next, we have to make sure that the updates in α, ξ do not cause the estimates

to violate their positivity constraints. This is done by shrinking the length of
(∆x,∆α,∆ξ) by some factor λ ≥ 0, such thatUpdate in x,α

min

(
α1 + λ∆α1

α1
, . . . ,

αn + λ∆αn

αn
,
ξ1 + λ∆ξ1

ξ1
, . . . ,

ξn + λ∆ξn
ξn

)

≥ ε. (6.84)

Of course, only the negative ∆ terms pose a problem, since they lead the parameter
values closer to 0, which may lead them into conflict with the positivity constraints.
Typically [542, 498], we choose ε = 0.05. In other words, the solution will not
approach the boundaries in α, ξ by more than 95%. See Problem 6.15 for a formula
to compute λ.

6.4.3 Updating µ

Next we have to update µ. Here we face the following dilemma: if we decrease µ too
quickly, we will get bad convergence of our second order method, since the solution
to the problem (which depends on the value of µ) moves too quickly away from our
current set of parameters (x,α, ξ). On the other hand, we do not want to spend
too much time solving an approximation of the unrelaxed (µ = 0) Kuhn-Tucker
conditions exactly. A good indication is how much the positivity constraints would
be violated by the current update. Vanderbei [542] proposes the following update
of µ:Tightening the

KKT Conditions
µ =

α%ξ

n

(
1− λ
10 + λ

)2

. (6.85)

The first term gives the average value of satisfaction of the condition αiξi = µ
after an update step. The second term allows us to decrease µ rapidly if good
progress was made (small (1 − λ)2). Experimental evidence shows that it pays to
be slightly more conservative, and to use the predictor estimates of α, ξ for (6.85)
rather than the corresponding corrector terms.8 This imposes little overhead for
the implementation.

6.4.4 Initial Conditions and Stopping Criterion

To provide a complete algorithm, we have to consider two more things: a stopping
criterion and a suitable start value. For the latter, we simply solve a regularized
version of the initial reduced KKT system (6.83). This means that we replace K

8. In practice it is often useful to replace (1 − λ) by (1 + ε − λ) for some small ε > 0, in
order to avoid µ = 0.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

184 Optimization

by K + 1, use (x,α) in place of ∆x,∆α, and replace D by the identity matrix.
Moreover, ρp and ρd are set to the values they would have if all variables had beenRegularized KKT

System set to 0 before, and finally ρKKT is set to 0. In other words, we obtain an initial
guess of (x,α, ξ) by solving
[

K + 1 A%

A −1

][

x

α

]

=

[

−c
−d

]

, (6.86)

and ξ = −Ax− d. Since we have to ensure positivity of α, ξ, we simply replace

αi = max(αi, 1) and ξi = max(ξi, 1). (6.87)

This heuristic solves the problem of a suitable initial condition.
Regarding the stopping criterion, we recall Theorem 6.27, and in particular (6.62).

Rather than obtaining bounds on the precision of parameters, we want to make
sure that f(x) is close to its optimal value f(x̄). From (6.64) we know, provided the
feasibility constraints are all satisfied, that the value of the dual objective function
is given by f(x) +

∑n
i=1 αici(x). We may use the latter to bound the relative size

of the gap between primal and dual objective function by

Gap(x,α) =

2

∣
∣
∣
∣
f(x)−

(

f(x) +
n∑

i=1
αici(x)

)∣
∣
∣
∣

|f(x)|+
∣
∣
∣
∣

(

f(x) +
n∑

i=1
αici(x)

)∣
∣
∣
∣

≤
−

n∑

i=1
αici(x)

∣
∣
∣
∣
f(x) + 1

2

n∑

i=1
αici(x)

∣
∣
∣
∣

. (6.88)

For the special case where f(x) = 1
2x

%Kx+ c%x as in (6.72), we know by virtue of
(6.73) that the size of the feasibility gap is given by α%ξ, and therefore

Gap(x,α) =
α%ξ

∣
∣ 1
2x

%Kx+ c%x+ 1
2α

%ξ
∣
∣
. (6.89)

In practice, a small number is usually added to the denominator of (6.89) in order
to avoid divisions by 0 in the first iteration. The quality of the solution is typically
measured on a logarithmic scale by − log10 Gap(x,α), the number of significantNumber of

Significant
Figures

figures.9 We will come back to specific versions of such interior point algorithms in
Chapter 10, and show how Support Vector Regression and Classification problems
can be solved with them.
Primal-Dual path following methods are certainly not the only algorithms that

can be employed for minimizing constrained quadratic problems. Other variants,
for instance, are Barrier Methods [266, 45, 545], which minimize the unconstrained
problem

f(x) + µ
n
∑

i=1

log (−ci(x)) for µ > 0. (6.90)

9. Interior point codes are very precise. They usually achieve up to 8 significant figures,
whereas iterative approximation methods do not normally exceed more than 3 significant
figures on large optimization problems.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.5 Maximum Search Problems 185

Active set methods have also been used with success in machine learning [350, 268].
These select subsets of variables x for which the constraints ci are not active, i.e.,
where the we have a strict inequality, and solve the resulting restricted quadratic
program, for instance by conjugate gradient descent. We will encounter subset
selection methods in Chapter 10.

6.5 Maximum Search Problems

In several cases the task of finding an optimal function for estimation purposes
means finding the best element from a finite set, or sometimes finding an optimal
subset from a finite set of elements. These are discrete (sometimes combinatorial)Approximations
optimization problems which are not so easily amenable to the techniques pre-
sented in the previous two sections. Furthermore, many commonly encountered
problems are computationally expensive if solved exactly. Instead, by using proba-
bilistic methods, it is possible to find almost optimal approximate solutions. These
probabilistic methods are the topic of the present section.

6.5.1 Random Subset Selection

Consider the following problem: given a set of m functions, say M := {f1, . . . , fm},
and some criterion Q[f], find the function f̂ that maximizes Q[f]. More formally,

f̂ := argmax
f∈M

Q[f]. (6.91)

Clearly, unless we have additional knowledge about the values Q[fi], we have to
compute all terms Q[fi] if we want to solve (6.91) exactly. This will cost O(m)
operations. If m is large, which is often the case in practical applications, this
operation is too expensive. In sparse greedy approximation problems (Section 10.2)
or in Kernel Feature Analysis (Section 14.4), m can easily be of the order of 105

or larger (here, m is the number of training patterns). Hence we have to look for
cheaper approximate solutions.
The key idea is to pick a random subset M ′ ⊂ M that is sufficiently large, and

take the maximum over M ′ as an approximation of the maximum over M . Provided
the distribution of the values of Q[fi] is “well behaved”, i.e., there exists not a small
fraction of Q[fi] whose values are significantly smaller or larger than the average,
we will obtain a solution that is close to the optimum with high probability. To
formalize these ideas, we need the following result.

Lemma 6.30 (Maximum of Random Variables) Denote by ξ, ξ′ two indepen-
dent random variables on R with corresponding distributions Pξ,Pξ′ and distribu-
tion functions Fξ, Fξ′ . Then the random variable ξ̄ := max(ξ, ξ′) has the distribution
function Fξ̄ = Fξ Fξ′ .

Proof Note that for a random variable, the distribution function F (ξ0) is given

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

186 Optimization

by the probability P{ξ ≤ ξ0}. Since ξ and ξ′ are independent, we may write

Fξ̄(ξ̄) = P
{

max(ξ, ξ′) ≤ ξ̄
}

= P
{

ξ ≤ ξ̄ and ξ′ ≤ ξ̄
}

= P
{

ξ ≤ ξ̄
}

P
{

ξ′ ≤ ξ̄
}

= Fξ(ξ̄)Fξ′(ξ̄), (6.92)

which proves the claim.

Repeated application of Lemma 6.30 leads to the following corollary.Distribution Over
ξ̄ is More Peaked

Corollary 6.31 (Maximum Over Identical Random Variables) Denote by
ξ1, . . . , ξm̃ a set of m̃ independent and identically distributed (iid) random vari-
ables, with corresponding distribution function Fξ. Then the random variable

ξ̄ := max(ξ1, . . . , ξm̃) has the distribution function Fξ̄(ξ̄) =
(

Fξ(ξ̄)
)m̃

.

In practice, the random variables ξi will be the values of Q[fi], where the fi are
drawn from the set M . If we draw them without replacement (i.e. none of the
functions fi appears twice), however, the values after each draw are dependent and
we cannot apply Corollary 6.31 directly. Nonetheless, we can see that the maximum
over draws without replacement will be larger than the maximum with replacement,
since recurring observations can be understood as reducing the effective size of the
set to be considered. Thus Corollary 6.31 gives us a lower bound on the value of
the distribution function for draws without replacement. Moreover, for large m the
difference between draws with and without replacement is small.
If the distribution of Q[fi] is known, we may use the distribution directly to

determine the size m̃ of a subset to be used to find some Q[fi] that is almost as
good as the solution to (6.91). In all other cases, we have to resort to assessing the
relative quality of maxima over subsets. The following theorem tells us how.Best Element of a

Subset

Theorem 6.32 (Ranks on Random Subsets) Denote by M := {x1, . . . , xm} ⊂
R a set of cardinality m, and by M̃ ⊂ M a random subset of size m̃. Then the
probability that max M̃ is greater equal than n elements of M is at least 1−

(
n
m

)m̃
.

Proof We prove this by assuming the converse, namely that max M̃ is smaller
than (m − n) elements of M . For m̃ = 1 we know that this probability is n

m ,
since there are n elements to choose from. For m̃ > 1, the probability is the one of
choosing m̃ elements out of a subset Mlow of n elements, rather than all m elements.
Therefore we have that

P(M̃ ⊂Mlow) =

(n
m̃

)

(m
m̃

) =
n

m
· n− 1

m− 1
· . . . · n− m̃+ 1

m− m̃+ 1
<
(n

m

)m̃
.

Consequently the probability that the maximum over M̃ will be larger than n
elements of M is given by 1− P(M̃ ⊂Mlow) ≥ 1−

(
n
m

)m̃
.

The practical consequence is that we may use 1 −
(
n
m

)m̃
to compute the required

size of a random subset to achieve the desired degree of approximation. If we want
to obtain results in the n

m percentile range with 1 − η confidence, we must solve

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.5 Maximum Search Problems 187

for m̃ = log(1−η)
log n/m . To give a numerical example, if we desire values that are better

than 95% of all other estimates with 1− 0.05 probability, then κ = 59 samples are
sufficient. This (95%, 95%, 59) rule is very useful in practice.10 A similar method
was used to speed up the process of boosting classifiers in the MadaBoost algorithm
[136]. Furthermore, one could think whether it might not be useful to recycle old
observations rather than computing all 59 values from scratch. If this can be done
cheaply, and under some additional independence assumptions, subset selection
methods can be improved further. For details see [409] who use the method in the
context of memory management for operating systems.

6.5.2 Random Evaluation

Quite often, the evaluation of the term Q[f] itself is rather time consuming,
especially if Q[f] is the sum of many (m, for instance) iid random variables. Again,
we can speed up matters considerably by using probabilistic methods. The key idea
is that averages over independent random variables are concentrated, which is to
say that averages over subsets do not differ too much from averages over the whole
set.Approximating

Sums by Partial
Sums

Hoeffding’s Theorem (Section 5.2) quantifies the size of the deviations between
the expectation of a sum of random variables and their values at individual trials.
We will use this to bound deviations between averages over sets and subsets. All
we have to do is translate Theorem 5.1 into a statement regarding sample averages
over different sample sizes. This can be readily constructed as follows:

Corollary 6.33 (Maximum Deviation Bounds for Empirical Means [489])
Let ξ1, . . . , ξm be iid bounded random variables, falling into the interval [a, a + b]
with probability one. Denote their average by Qm = 1

m

∑

i ξi. Furthermore, de-
note by ξs(1), . . . , ξs(m̃) with m̃ < m a subset of the same random variables (with
s : {1, . . . , m̃} → {1, . . . ,m} being an injective map, i.e. s(i) = s(j) only if i = j),
and Qm̃ = 1

m̃

∑

i ξs(i). Then for any ε > 0,Deviation of
Subsets

P{Qm −Qm̃ ≥ ε}

P{Qm̃ −Qm ≥ ε}






≤ exp

(

− 2mm̃ε2

(m− m̃)b2

)

= exp

(

−2mε2

b2

m̃
m

1− m̃
m

)

(6.93)

Proof By construction E [Qm −Qm̃] = 0, since Qm and Qm̃ are both averages
over sums of random variables drawn from the same distribution. Hence we only
have to rewrite Qm −Qm̃ as an average over (different) random variables to apply
Hoeffding’s bound. Since all Qi are identically distributed, we may pick the first
m̃ random variables, without loss of generality. In other words, we assume that

10. During World War I tanks were often numbered in continuous increasing order.
Unfortunately this “feature” allowed the enemy to estimate the number of tanks. How?

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

188 Optimization

s(i) = i for i = 1, . . . , m̃. Then

Qm −Qm̃ = 1
m

m
∑

i=1

ξi − 1
m̃

m̃
∑

i=1

ξi =
1
m

m̃
∑

i=1

(

1− m
m̃

)

ξi +
1
m

m
∑

i=m̃+1

ξi. (6.94)

Thus we may split up Qm − Qm̃ into a sum of m̃ random variables with range
bi = (mm̃ − 1)b, and m− m̃ random variables with range bi = b. We obtain

m
∑

i=1

b2i = b2m̃
(m

m̃
− 1
)2

+ (m− m̃)b2 = b2(m− m̃)
m

m̃
. (6.95)

Substituting this into (5.8) and noting that Qm −Qm̃ −E [Qm −Qm̃] = Qm −Qm̃

completes the proof.

For small m̃
m the RHS in (6.93) reduces to exp

(

− 2m̃ε2

b2

)

. In other words, deviations

on the subsample m̃ dominate the overall deviation of Qm−Qm̃ from 0. This allows
us to compute a cutoff criterion for evaluating Qm by computing only a subset of
its terms.Cutoff Criterion
We need only solve (6.93) for m̃

m . Hence, in order to ensure that Qm̃ is within ε
of Qm with probability 1− η, we have to take a fraction m̃

m of samples that satisfies

m̃
m

1− m̃
m

=
b2(log 2− log η)

2mε2
=: c, and therefore

m̃

m
=

c

1 + c
. (6.96)

The fraction m̃
m can be small for large m, which is exactly the case where we need

methods to speed up evaluation.

6.5.3 Greedy Optimization Strategies

Quite often the overall goal is not necessarily to find the single best element xi from
a set X to solve a problem, but to find a good subset X̃ ⊂ X of size m̃ according to
some quality criterion Q[X̃]. Problems of this type include approximating a matrix
by a subset of its rows and columns (Section 10.2), finding approximate solutionsApplications
to Kernel Fisher Discriminant Analysis (Chapter 15) and finding a sparse solution
to the problem of Gaussian Process Regression (Section 16.3.4). These all have a
common structure:

(i) Finding an optimal set X̃ ⊂ X is quite often a combinatorial problem, or it even
may be NP-hard, since it means selecting m̃ = |X̃| elements from a set of m = |X|
elements. There are

(m
m̃

)

different choices, which clearly prevents an exhaustive
search over all of them. Additionally, the size of m̃ is often not known beforehand.
Hence we need a fast approximate algorithm.

(ii) The evaluation of Q[X̃∪{xi}] is inexpensive, provided Q[X̃] has been computed
before. This indicates that an iterative algorithm can be useful.

(iii) The value of Q[X], or equivalently how well we would do by taking the whole
set X, can be bounded efficiently by using Q[X̃] (or some by-products of the
computation of Q[M̃]) without actually computing Q[X].

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.6 Summary 189

(iv) The set of functions X is typically very large (i.e. more than 105 elements), yet
the individual improvements by fi via Q[X̃ ∪{xi}] do not differ too much, meaning
that specific xı̂ for which Q[X̃ ∪ {xı̂}] deviate by a large amount from the rest of
Q[X̃ ∪ {xi}] do not exist.

In this case we may use a sparse greedy algorithm to find close to optimal
solutions among the remaining X\X̃ elements. This combines the idea of an
iterative enlargement of X̃ by one more element at a time (which is feasible sinceIterative

Enlargement of
X̃

we can compute Q[X̃ ∪ {fi}] cheaply) with the idea that we need not consider all
fi as possible candidates for the enlargement. This uses the reasoning in Section
6.5.1 combined with the fact that the distribution of the improvements is not too
long tailed (cf. (iv)). The overall strategy is described in Algorithm 6.6.

Algorithm 6.6 Sparse Greedy Algorithm

Require: Set of functions X, Precision ε, Criterion Q[·]
Set X̃ = ∅
repeat

Choose random subset X ′ of size m′ from X\X̃.
Pick x̂ = argmax x∈X′ Q[X ′ ∪ {x}]
X ′ = X ′ ∪ {x̂}
If needed, (re)compute bound on Q[X].

until Q[X̃] + ε ≥ Bound on Q[X]
Output: X̃,Q[X̃]

Problems 6.9 and 6.10 contain more examples of sparse greedy algorithms.

6.6 Summary

This chapter gave an overview of different optimization methods, which form the
basic toolbox for solving the problems arising in learning with kernels. The main
focus was on convex and differentiable problems, hence the overview of properties
of convex sets and functions defined on them.
The key insights in Section 6.1 are that convex sets can be defined by level sets of

convex functions and that convex optimization problems have one global minimum.
Furthermore, the fact that the solutions of convex maximization over polyhedral
sets can be found on the vertices will prove useful in some unsupervised learning
applications (Section 14.4).
Basic tools for unconstrained problems (Section 6.2) include interval cut-

ting methods, the Newton method, Conjugate Gradient descent, and Predictor-
Corrector methods. These techniques are often used as building blocks to solve
more advanced constrained optimization problems.
Since constrained minimization is a fairly complex topic, we only presented a

selection of fundamental results, such as necessary and sufficient conditions in the

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

190 Optimization

general case of nonlinear programming. The Kuhn-Tucker conditions for differen-
tiable convex functions then followed immediately from the previous reasoning. The
main results are dualization, meaning the transformation of optimization problems
via the Lagrange function mechanism into possibly simpler problems, and that
optimality properties can be estimated via the KKT gap (Theorem 6.27).

Interior point algorithms are practical applications of the duality reasoning;
these seek to find a solution to optimization problems by satisfying the Kuhn-
Tucker optimality conditions. Here we were able to employ some of the concepts
introduced at an earlier stage, such as predictor corrector methods and numerical
ways of finding roots of equations. These algorithms are robust tools to find optimal
solutions on moderately sized problems (103 − 104 examples). Larger problems
require decomposition methods, to be discussed in Section 10.4, or randomized
methods. The chapter concluded with an overview of randomized methods for
maximizing functions or finding the best subset of elements. These techniques are
useful once datasets are so large that we cannot reasonably hope to find exact
solutions to optimization problems. The random subset selection strategy and
sparse greedy methods are examples of such algorithms.

6.7 Problems

6.1 (Level Sets •) Given the function f : R2 → R with f(x) := |x1|p + |x2|p, for
which p do we obtain a convex function?
Now consider the sets {x|f(x) ≤ c} for some c > 0. Can you give an explicit

parameterization of the boundary of the set? Is it easier to deal with this parame-
terization? Can you find other examples (see also [474] and Chapter 8 for details)?

6.2 (Convex Hulls •) Show that for any set X, its convex hull coX is convex.
Furthermore, show that coX = X if X is convex.

6.3 (Method of False Position [315] •••) Given a unimodal (posessing one
minimum) differentiable function f : R → R, develop a quadratic method for
minimizing f .
Hint: Recall the Newton method. There we used f ′′(x) to make a quadratic ap-

proximation of f . Two values of f ′(x) are also sufficient to obtain this information,
however.
What happens if we may only use f? What does the iteration scheme look like?

See Figure 6.8 for a hint.

6.4 (Convex Minimization in one Variable ••) Denote by f a convex func-
tion on [a, b]. Show that the algorithm below finds the minimum of f . What is the
rate of convergence in x to argmin x f(x)? Can you obtain a bound in f(x) wrt.
minx f(x)?

input a, b, f and threshold ε

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.7 Problems 191

0 5 10
−50

0

50

100

150

200

0 5 10
−50

0

50

100

150

200

0 5 10
−50

0

50

100

150

200

Figure 6.8 From left to right: Newton method, method of false position, quadratic
interpolation through 3 points. Solid line: f(x), dash-dotted line: interpolation.

x1 = a, x2 = a+b
2 , x3 = b and compute f(x1), f(x2), f(x3)

repeat
if x3 − x2 > x2 − x1 then

x4 = x2+x3
2 and compute f(x4)

else
x4 = x1+x2

2 and compute f(x4)
end if
Keep the two points closest to the point with the minimum value of f(xi) and
rename them such that x1 < x2 < x3.

until x3 − x1 ≥ ε

6.5 (Newton Method in Rd ••) Extend the Newton method to functions on Rd.
What does the iteration rule look like? Under which conditions does the algorithm
converge? Do you have to extend Theorem 6.13 to prove convergence?

6.6 (Rewriting Quadratic Functionals •) Given a function

f(x) = x%Qx+ c%x+ d, (6.97)

rewrite it into the form of (6.18). Give explicit expressions for x∗ = argmin x f(x)
and the difference in the additive constants.

6.7 (Kantorovich Inequality [262] •••) Prove Theorem 6.16. Hint: note that
without loss of generality we may require ‖x‖2 = 1. Second, perform a transfor-
mation of coordinates into the eigensystem of K. Finally, note that in the new
coordinate system we are dealing with convex combinations of eigenvalues λi and
1
λi
. First show (6.24) for only two eigenvalues. Then argue that only the largest and

smallest eigenvalues matter.

6.8 (Random Subsets •) Generate m random numbers drawn uniformly from
the interval [0, 1]. Plot their distribution function. Plot the distribution of maxima
of subsets of random numbers. What can you say about the distribution of the
maxima? What happens if you draw randomly from the Laplace distribution, with
density p(ξ) = e−ξ (for ξ ≥ 0)?

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

192 Optimization

6.9 (Matching Pursuit [324] ••) Denote by f1, . . . , fM a set of functions X →
R, by {x1, . . . , xm} ⊂ X a set of locations and by {y1, . . . , ym} ⊂ Y a set of
corresponding observations.
Design a sparse greedy algorithm that finds a linear combination of functions

f :=
∑

i αifi minimizing the squared loss between f(xi) and yi.

6.10 (Reduced Set Approximation [456] ••) Let f(x) =
∑m

i=1 αik(xi, x) be a
kernel expansion in a Reproducing Kernel Hilbert Space Hk (see Section 2.2.4).
Give a sparse greedy algorithm that finds an approximation to f in Hk by using
fewer terms. See also Chapter 18 for more detail.

6.11 (Equality Constraints in LP and QP ••) Find the dual optimization
problem and the necessary Kuhn-Tucker conditions for the following optimization
problem:

minimize
x

c%x,

subject to Ax+ b ≤ 0,

Cx+ d = 0,

(6.98)

where c, x ∈ Rm, b ∈ Rn, d ∈ Rn′
, A ∈ Rn×m and C ∈ Rn′

. Hint: split up the
equality constraints into two inequality constraints. Note that you may combine the
two Lagrange multipliers again to obtain a free variable. Derive the corresponding
conditions for

minimize
x

1
2x

%Kx+ c%x,

subject to Ax+ b ≤ 0,

Cx+ d = 0,

(6.99)

where K is a strictly positive definite matrix.

6.12 (Semidefinite Quadratic Parts •••) How do you have to change the dual
of (6.99) if K does not have full rank? Is it better not to dualize in this case? Do
the Kuhn-Tucker conditions still hold?

6.13 (Dual Problems of Quadratic Programs ••) Denote by P a quadratic
optimization problem of type (6.72) and by (·)D the dualization operation. Prove
that the following is true,

((PD)D)D = PD and (((PD)D)D)D = (PD)D, (6.100)

where in general (PD)D $= P . Hint: use (6.80). Caution: you have to check whether
KA% has full rank.

6.14 (Interior Point Equations for Linear Programs [318] •••) Derive the
interior point equations for linear programs. Hint: use the expansions for the
quadratic programs and note that the reduced KKT system has only a diagonal
term where we had K before.

Schölkopf and Smola: Learning with Kernels — Confidential draft, please do not circulate — 2012/01/14 15:35

6.7 Problems 193

How does the complexity of the problem scale with the size of A?

6.15 (Update Step in Interior Point Codes •) Show that the maximum value
of λ satisfying (6.84) can be found by

1

λ
= max

(

1, (ε− 1)−1 min
i∈[n]

∆αi

αi
, (ε− 1)−1 min

i∈[n]

∆ξi
ξi

)

. (6.101)

