

Scalable Machine Learning

9. Graphical Models

Alex Smola Yahoo! Research and ANU

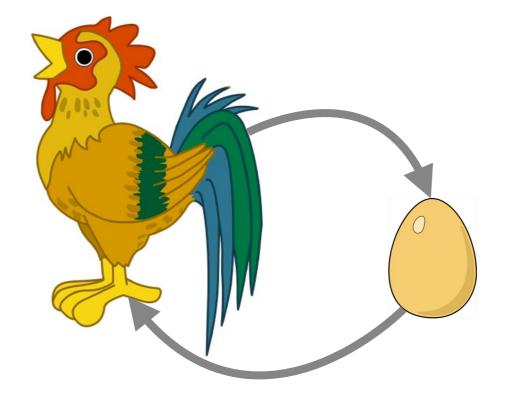
http://alex.smola.org/teaching/berkeley2012 Stat 260 SP 12

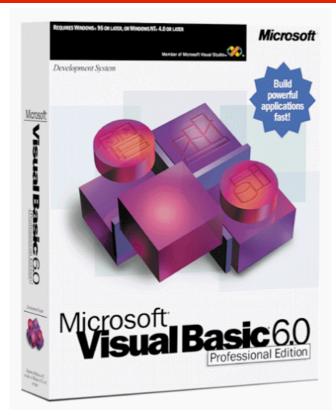
Significant content courtesy of Yehuda Koren

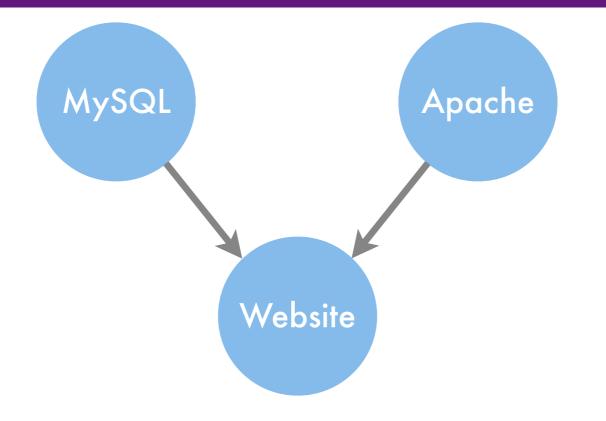
Outline

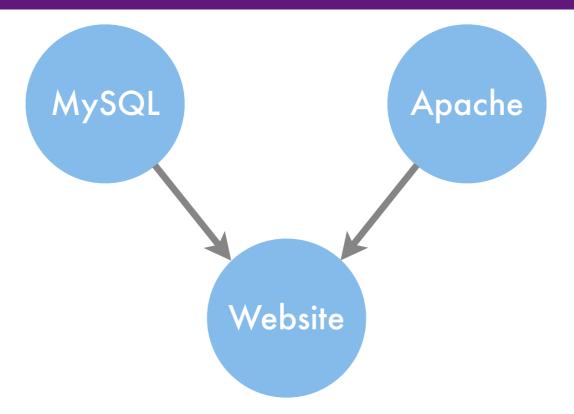
- Directed Graphical Models
 - Dependence
 - Inference for fully observed models
 - Incomplete information / variational and sampling inference
- Undirected Graphical Models
 - Hammersley Clifford decomposition
 - Conditional independence
 - Junction trees
- Dynamic Programming
 - Generalized Distributive Law
 - Naive Message Passing
- Inference techniques
 - Sampling (Gibbs and Monte Carlo)
 - Variational methods (EM, extensions, dual decomposition)

Directed Graphical Models

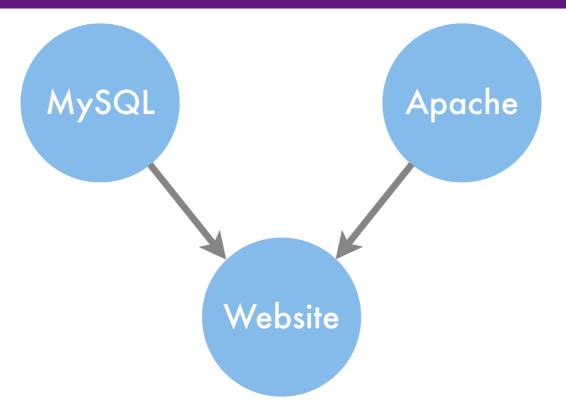






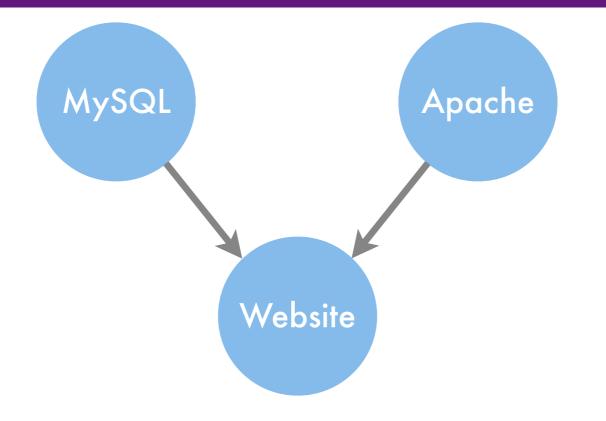


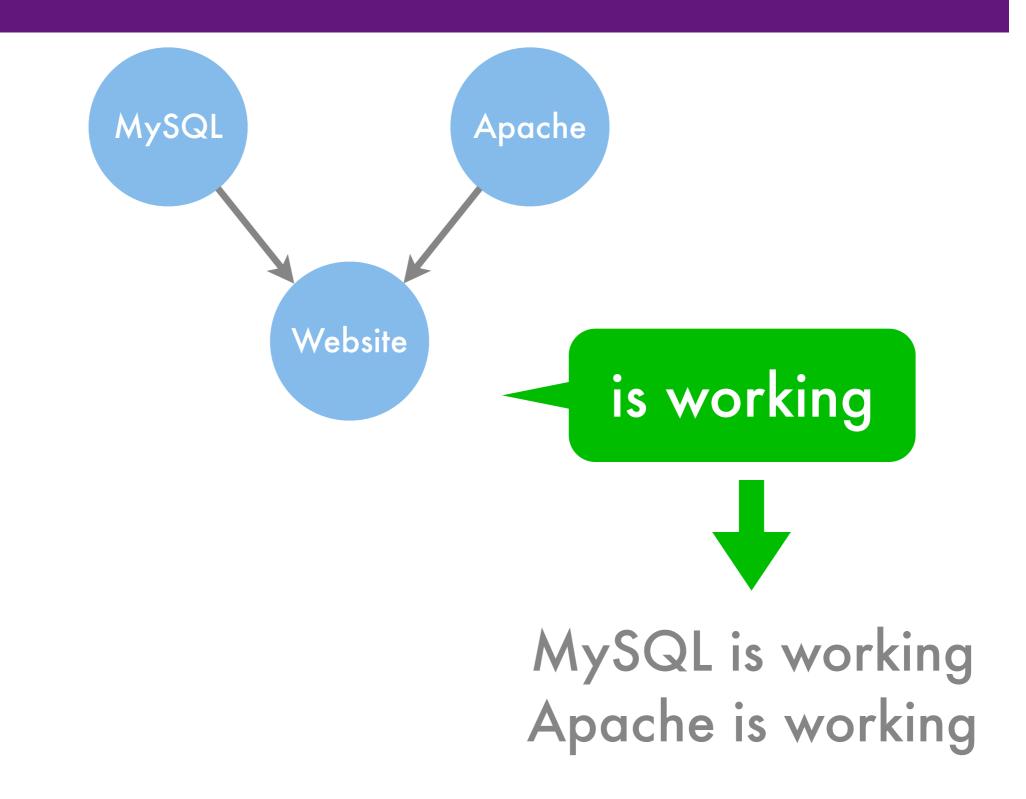
• Joint distribution (assume a and m are independent) p(m, a, w) = p(w|m, a)p(m)p(a)

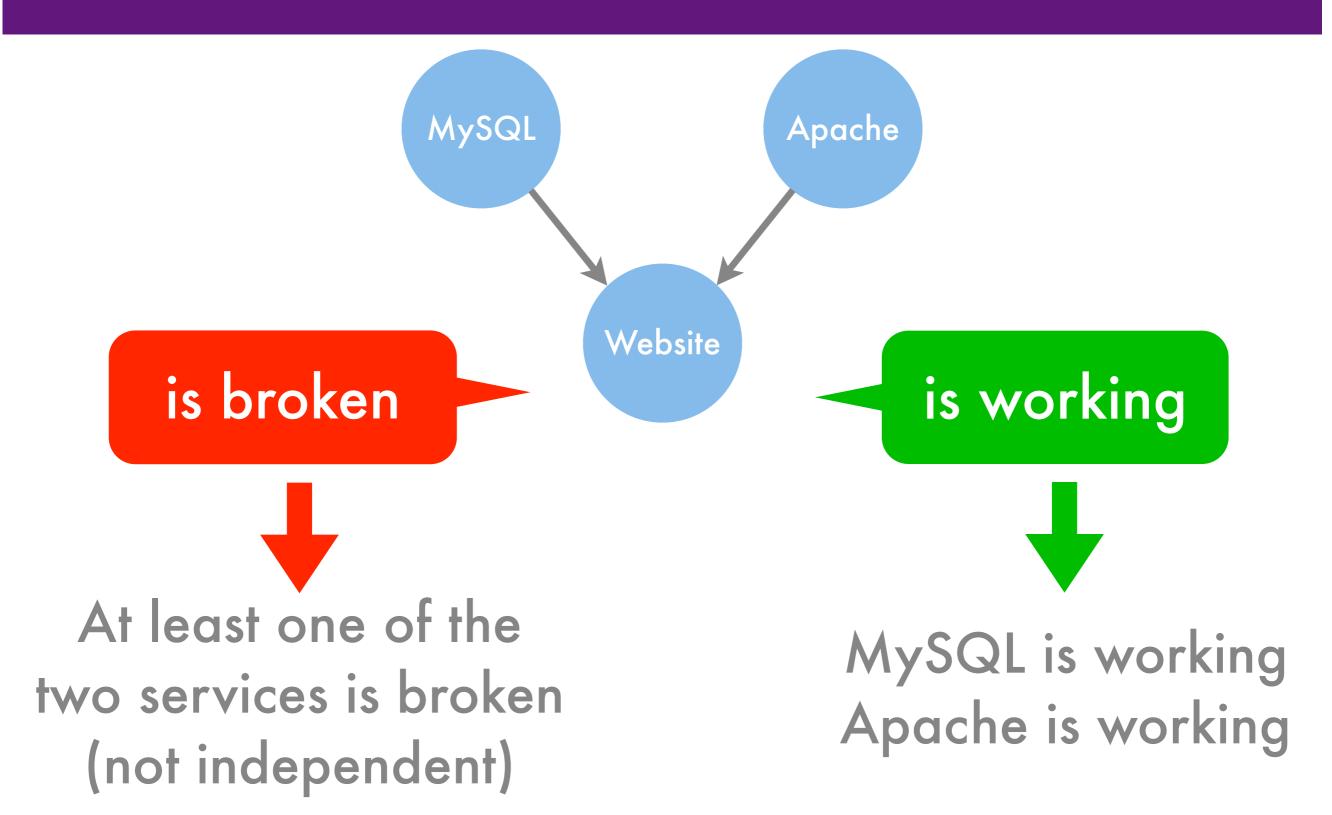


- Joint distribution (assume a and m are independent) p(m, a, w) = p(w|m, a)p(m)p(a)
- Explaining away

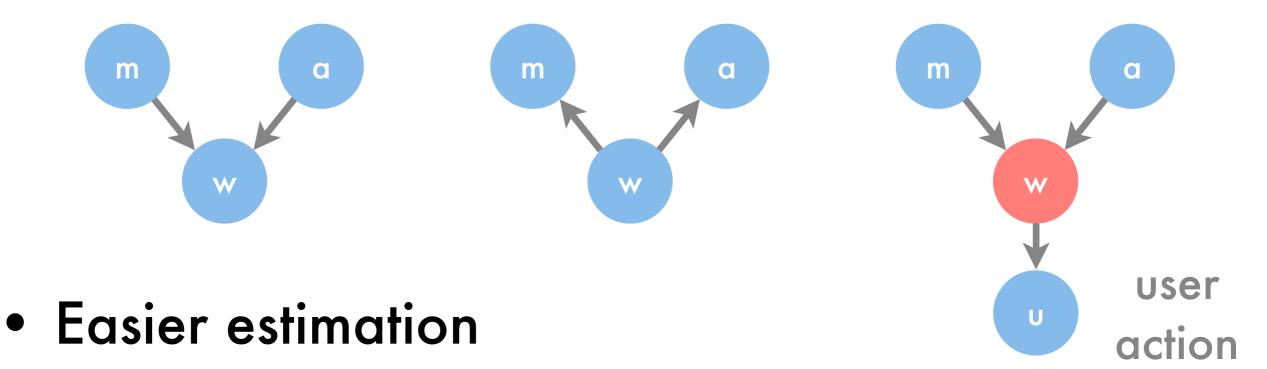
 $p(m,a|w) = \frac{p(w|m,a)p(m)p(a)}{\sum_{m',a'} p(w|m',a')p(m')p(a')}$ a and m are dependent conditioned on w



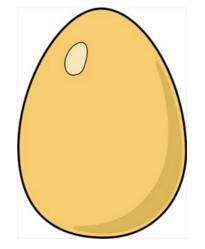


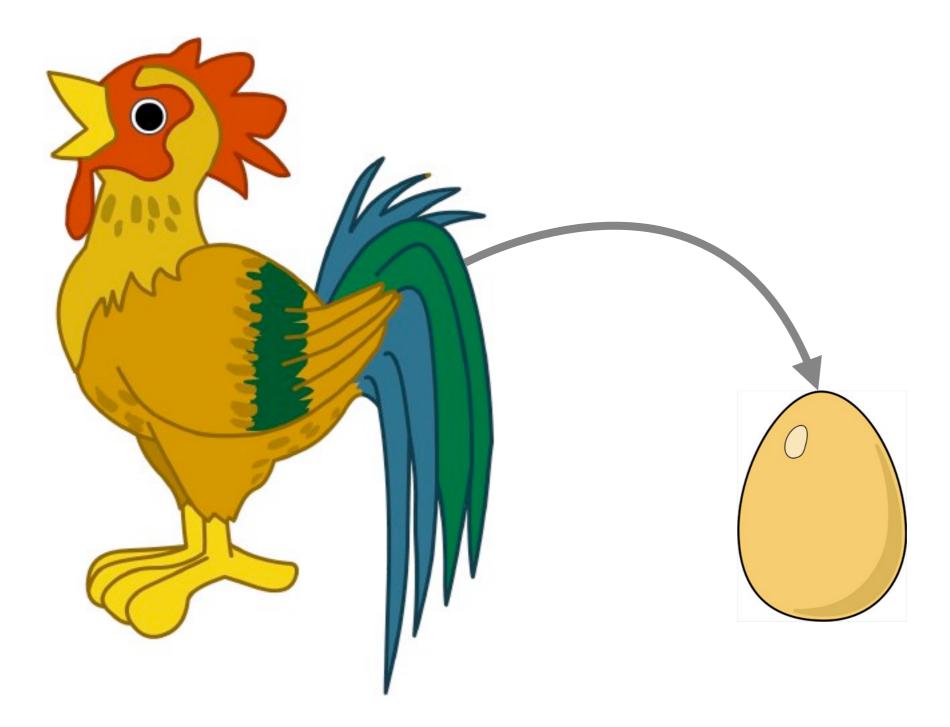


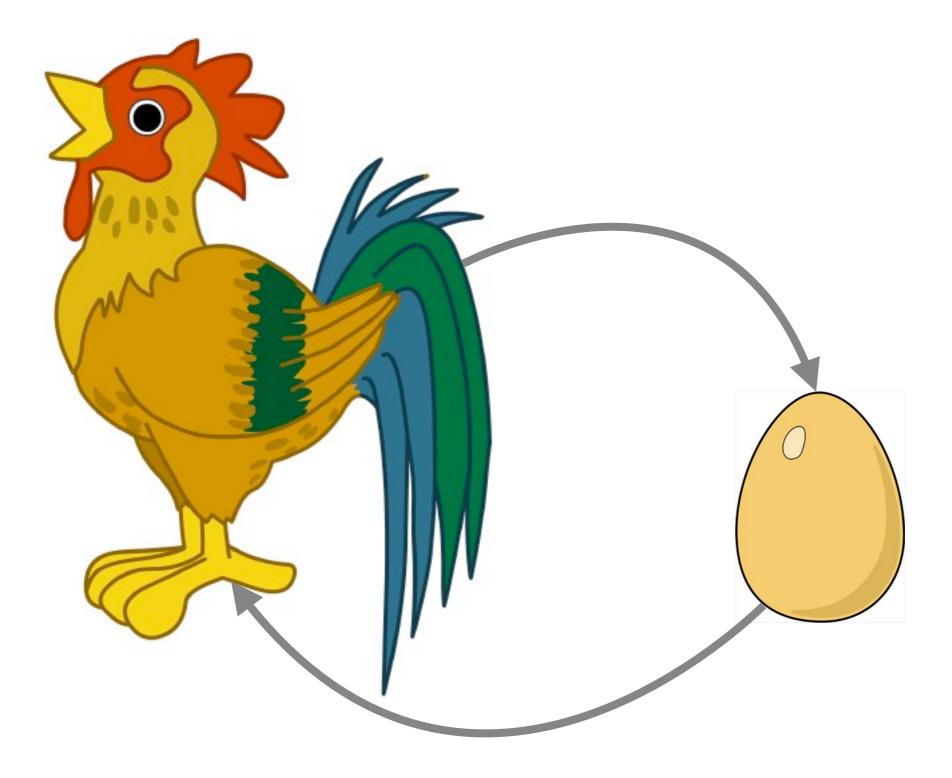
Directed graphical model

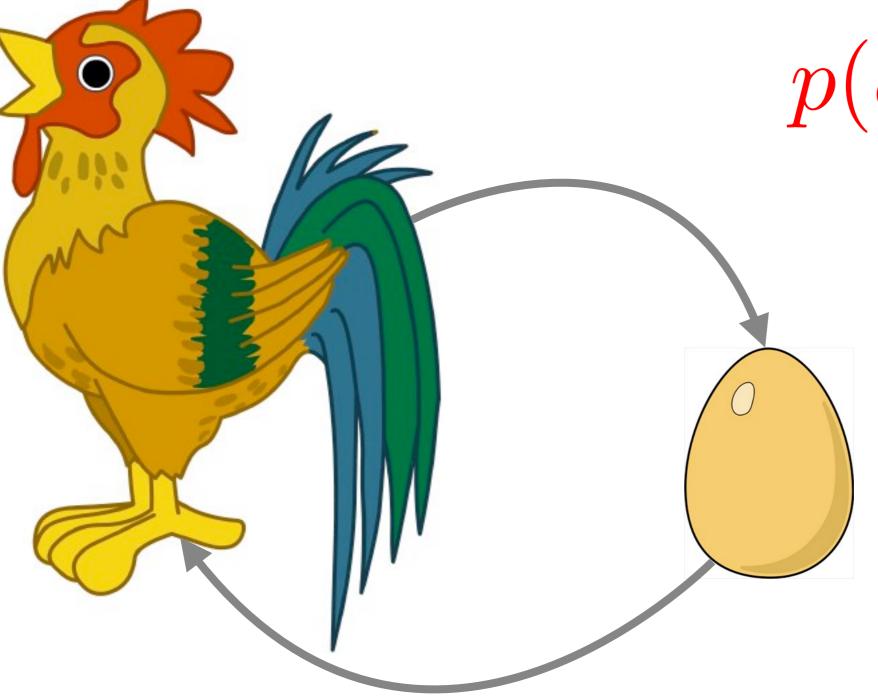


- 15 parameters for full joint distribution
- 1+1+4+1 for factorizing distribution
- Causal relations
- Inference for unobserved variables

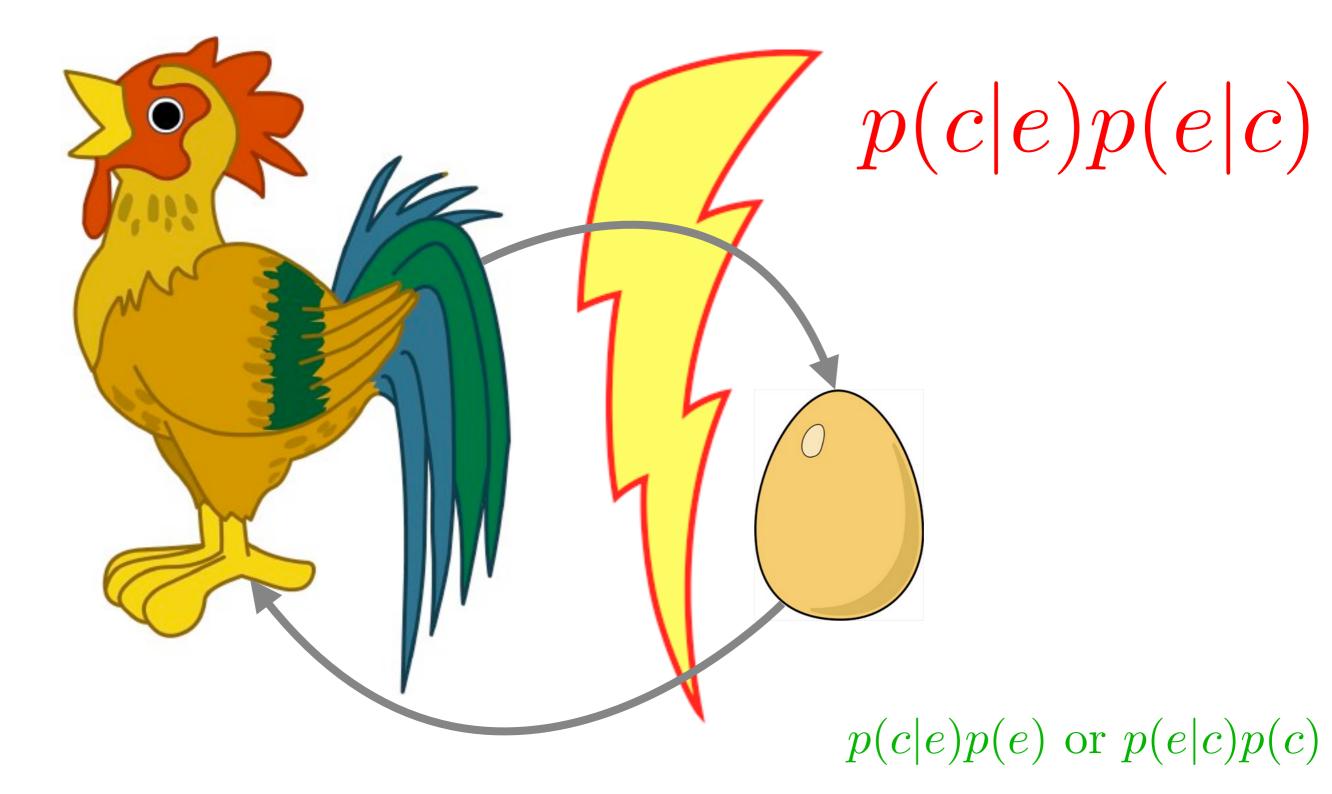








p(c|e)p(e|c)

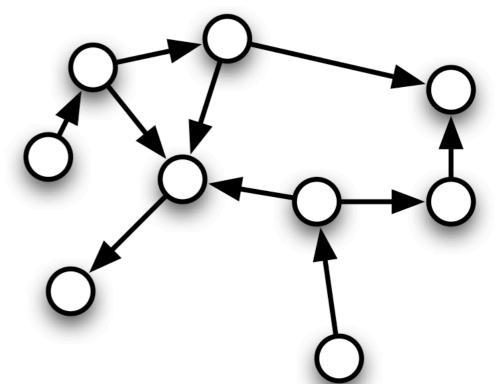


Directed Graphical Model

Joint probability distribution

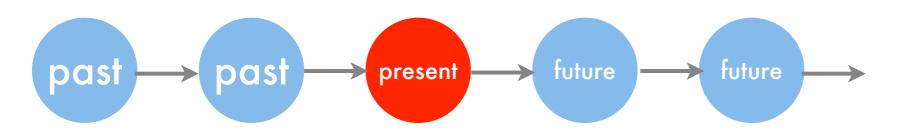
$$p(x) = \prod_{i} p(x_i | x_{\text{parents(i)}})$$

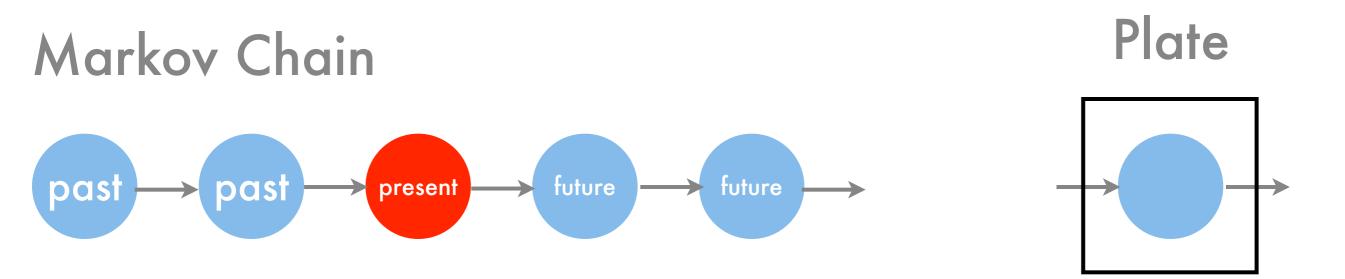
• Parameter estimation

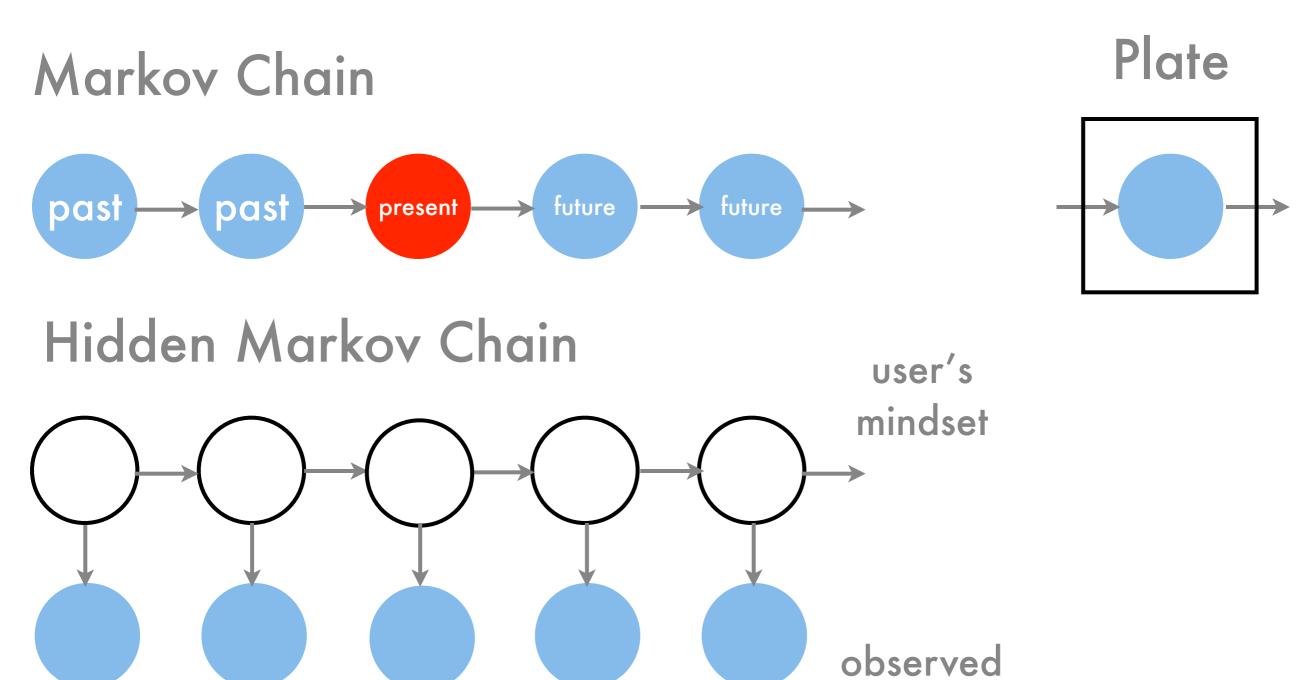


- If x is fully observed the likelihood breaks up $\log p(x|\theta) = \sum \log p(x_i|x_{\text{parents}(i)}, \theta)$
- If x is partially obⁱ erved things get interesting maximization, EM, variational, sampling ...

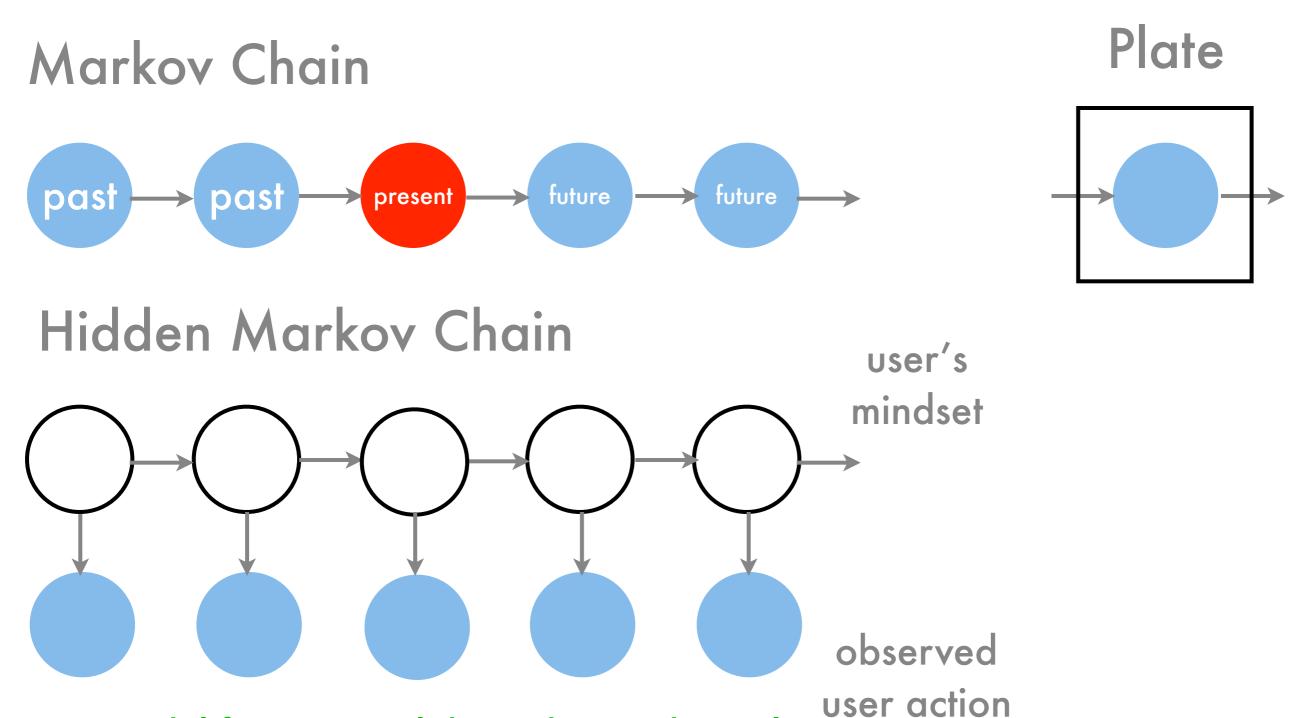
Markov Chain



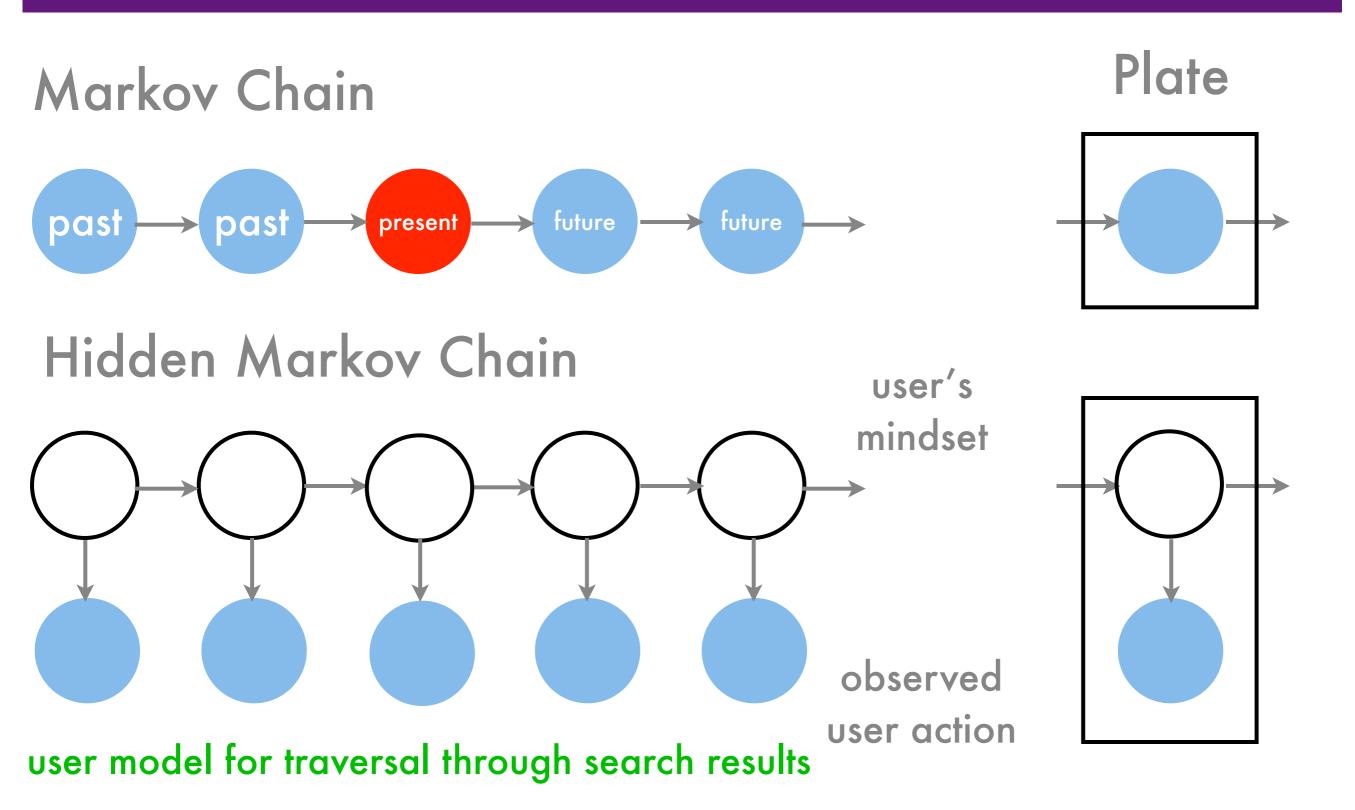




user action



user model for traversal through search results



Markov Chain

$$p(x;\theta) = p(x_0;\theta) \prod_{i=1}^{n-1} p(x_{i+1}|x_i;\theta)$$

$$p(x, y; \theta) = p(x_0; \theta) \prod_{i=1}^{n-1} p(x_{i+1} | x_i; \theta) \prod_{i=1}^{n} p(y_i | x_i)$$

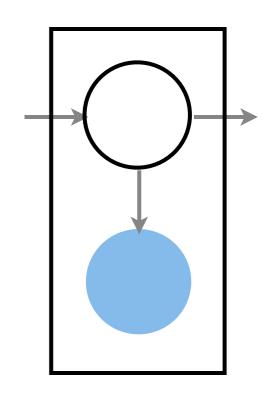
$$p(x, y; \theta) = p(x_0; \theta) \prod_{i=1}^{n-1} p(x_{i+1} | x_i; \theta) \prod_{i=1}^{n} p(y_i | x_i)$$

$$p(x, y; \theta) = p(x_0; \theta) \prod_{i=1}^{n-1} p(x_{i+1} | x_i; \theta) \prod_{i=1}^{n} p(y_i | x_i)$$

$$p(x, y; \theta) = p(x_0; \theta) \prod_{i=1}^{n-1} p(x_{i+1} | x_i; \theta) \prod_{i=1}^{n} p(y_i | x_i)$$

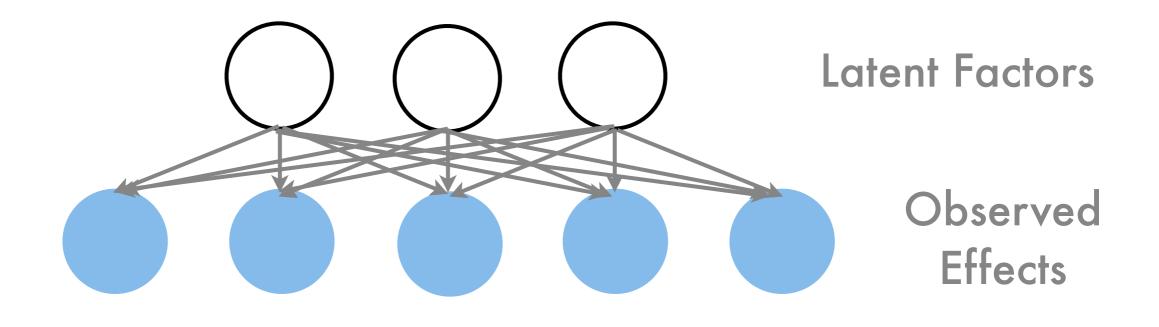
$$p(x, y; \theta) = p(x_0; \theta) \prod_{i=1}^{n-1} p(x_{i+1} | x_i; \theta) \prod_{i=1}^{n} p(y_i | x_i)$$

Plate

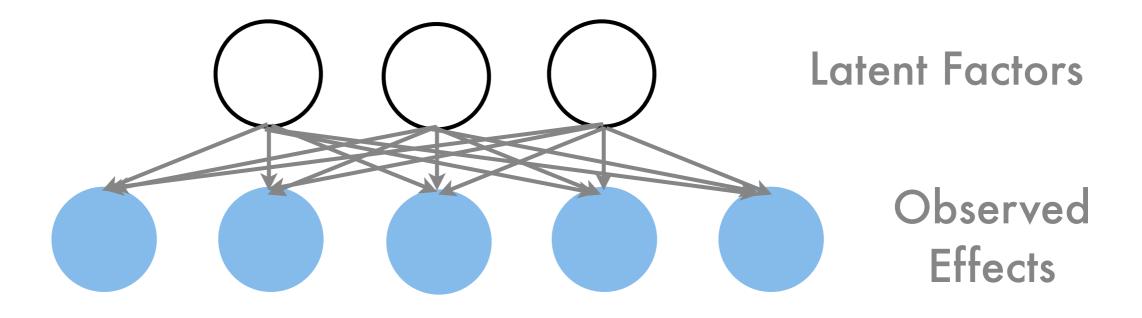


user's

Factor Graphs

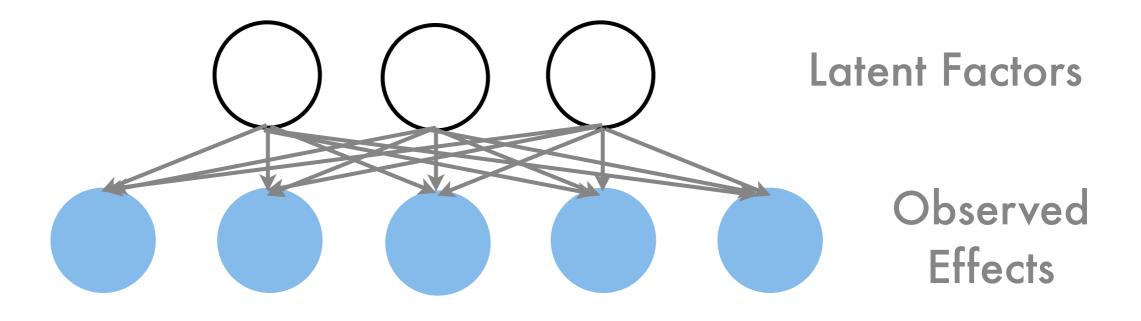


Factor Graphs

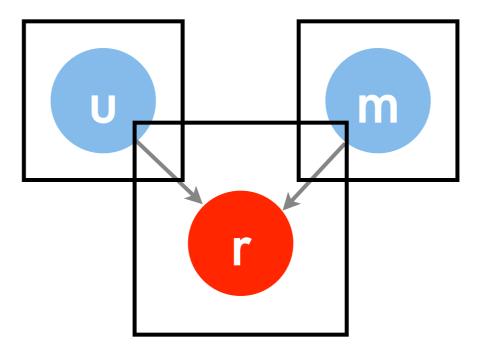


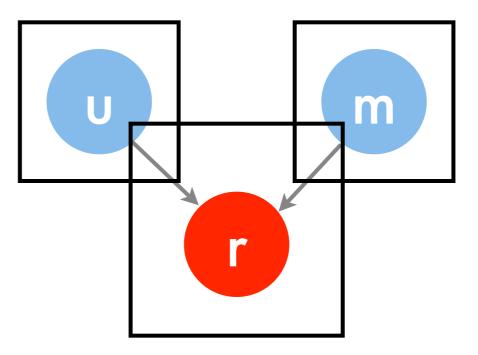
Observed effects
 Click behavior, queries, watched news, emails

Factor Graphs

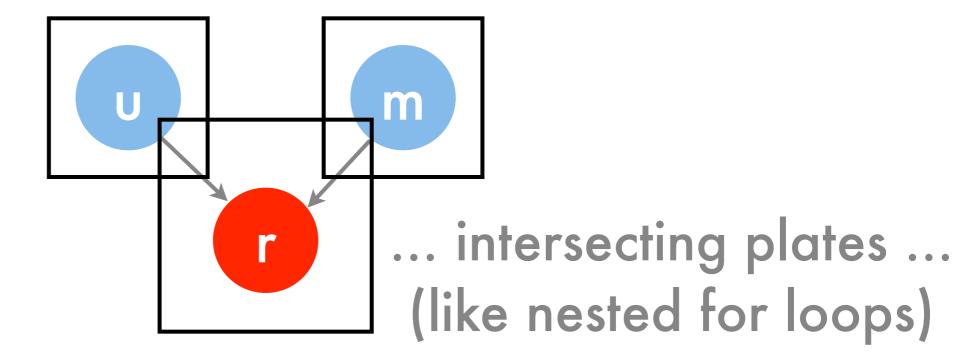


- Observed effects
 Click behavior, queries, watched news, emails
- Latent factors
 User profile, news content, hot keywords, social connectivity graph, events

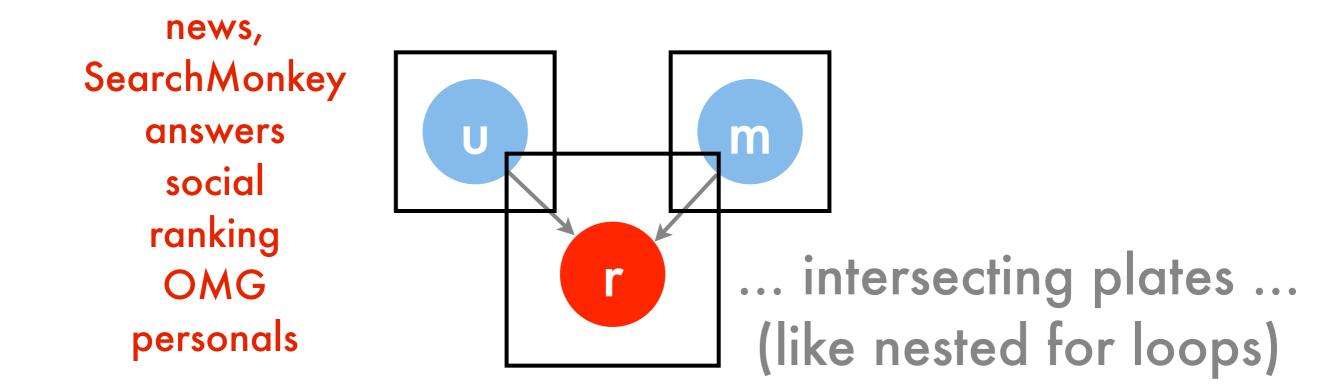




- Users u
- Movies m
- Ratings r (but only for a subset of users)



- Users u
- Movies m
- Ratings r (but only for a subset of users)



- Users u
- Movies m
- Ratings r (but only for a subset of users)

• How to design models

- engineering
- Common (engineering) sense
- Computational tractability

- How to design models
 - Common (engineering) sense
 - Computational tractability
- Dependency analysis
 - Bayes ball (not in this lecture)

engineering

- How to design models
 - Common (engineering) sense
 - Computational tractability
- Dependency analysis
 - Bayes ball (not in this lecture)
- Inference
 - Easy for fully observed situations
 - Many algorithms if not fully observed
 - Dynamic programming / message passing

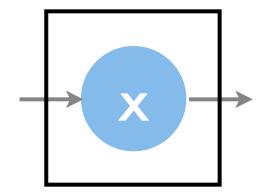
engineering

Dynamic Programming

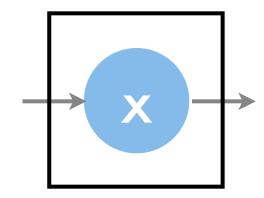
Chains and Trees



$$p(x;\theta) = p(x_0;\theta) \prod_{i=1}^{n-1} p(x_{i+1}|x_i;\theta) \qquad (\mathbf{x}_0 \to \mathbf{x}_1 \to \mathbf{x}_2 \to \mathbf{x}_3)$$



$$p(x_i) = \sum_{x_0, \dots, x_{i-1}, x_{i+1}, \dots, x_n} \underbrace{p(x_0)}_{i=1} \prod_{j=1}^n p(x_j | x_{j-1}) \sum_{i=1}^n p(x_i | x_{j-1})$$



$$p(x;\theta) = p(x_0;\theta) \prod_{i=1}^{n-1} p(x_{i+1}|x_i;\theta) \qquad \mathbf{x}_0 \rightarrow \mathbf{x}_1 \rightarrow \mathbf{x}_2 \rightarrow \mathbf{x}_3$$

$$p(x_i) = \sum_{x_0,\dots,x_{i-1},x_{i+1}\dots,x_n} \underbrace{p(x_0)}_{:=l_0(x_0)} \prod_{j=1}^n p(x_j|x_{j-1}) \\ = \sum_{x_1,\dots,x_{i-1},x_{i+1}\dots,x_n} \underbrace{\sum_{x_0} [l_0(x_0)p(x_1|x_0)]}_{:=l_1(x_1)} \prod_{j=2}^n p(x_j|x_{j-1}) \rightarrow \mathbf{x}_1 \rightarrow \mathbf{x}_2 \rightarrow \mathbf{x}_3$$

$$p(x;\theta) = p(x_{0};\theta) \prod_{i=1}^{n-1} p(x_{i+1}|x_{i};\theta) \qquad \mathbf{x}_{0} \rightarrow \mathbf{x}_{1} \rightarrow \mathbf{x}_{2} \rightarrow \mathbf{x}_{3}$$

$$p(x_{i}) = \sum_{x_{0},\dots,x_{i-1},x_{i+1}\dots,x_{n}} \underbrace{p(x_{0})}_{:=l_{0}(x_{0})} \prod_{j=1}^{n} p(x_{j}|x_{j-1})$$

$$= \sum_{x_{1},\dots,x_{i-1},x_{i+1}\dots,x_{n}} \underbrace{\sum_{x_{0}} [l_{0}(x_{0})p(x_{1}|x_{0})]}_{:=l_{1}(x_{1})} \prod_{j=2}^{n} p(x_{j}|x_{j-1}) \rightarrow \mathbf{x}_{1}$$

$$p(x;\theta) = p(x_0;\theta) \prod_{i=1}^{n-1} p(x_{i+1}|x_i;\theta)$$

$$x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow x_3$$

• Forward recursion

$$l_0(x_0) := p(x_0)$$
 and $l_i(x_i) := \sum_{x_{i-1}} l_{i-1}(x_{i-1})p(x_i|x_{i-1})$

• Backward recursion

$$r_n(x_n) := 1$$
 and $r_i(x_i) := \sum r_{i+1}(x_{i+1})p(x_{i+1}|x_i)$

 x_{i+1}

• Marginalization & conditioning

$$p(x_i) = l_i(x_i)r_i(x_i)$$
$$p(x_{-i}|x_i) = \frac{p(x)}{p(x_i)}$$
$$p(x_i, x_{i+1}) = l_i(x_i)p(x_{i+1}|x_i)r_i(x_{i+1})$$

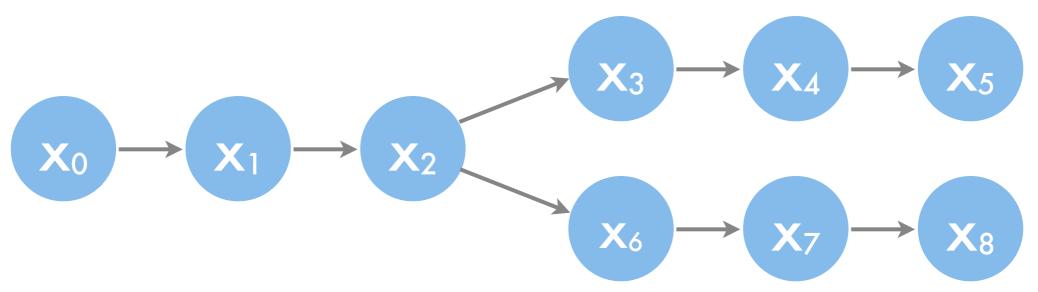
$$x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5$$

Send forward messages starting from left node

$$m_{i-1 \to i}(x_i) = \sum_{x_{i-1}} m_{i-2 \to i-1}(x_{i-1}) f(x_{i-1}, x_i)$$

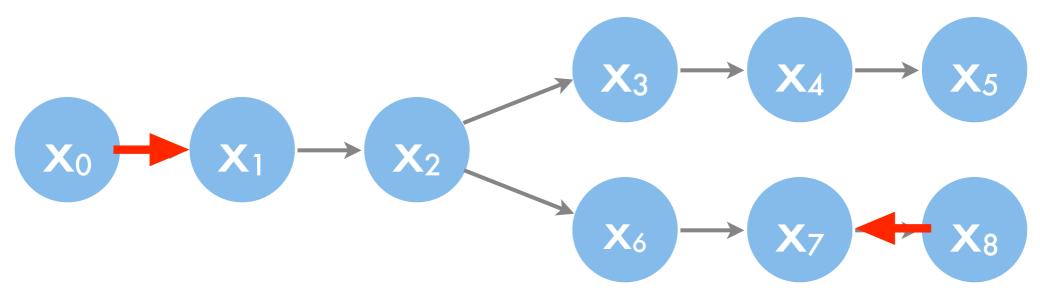
Send backward messages starting from right node

$$m_{i+1 \to i}(x_i) = \sum_{x_{i+1}} m_{i+2 \to i+1}(x_{i+1}) f(x_i, x_{i+1})$$



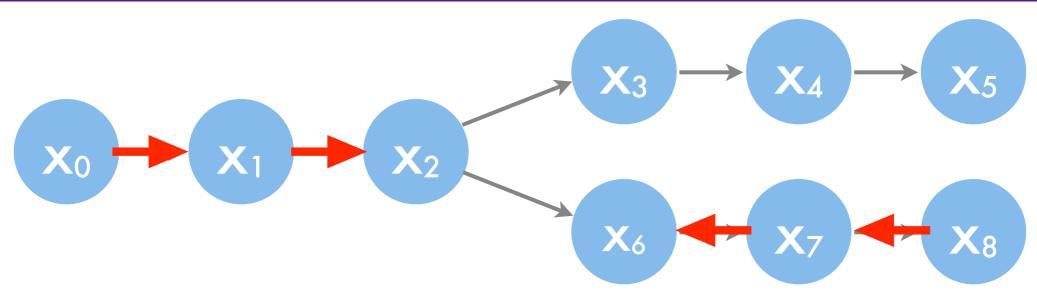
- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$m_{2\to3}(x_3) = \sum_{x_2} m_{1\to2}(x_2) m_{6\to2}(x_2) f(x_2, x_3)$$
$$m_{2\to6}(x_6) = \sum_{x_2} m_{1\to2}(x_2) m_{3\to2}(x_2) f(x_2, x_6)$$
$$m_{2\to1}(x_1) = \sum_{x_2} m_{3\to2}(x_2) m_{6\to2}(x_2) f(x_1, x_2)$$



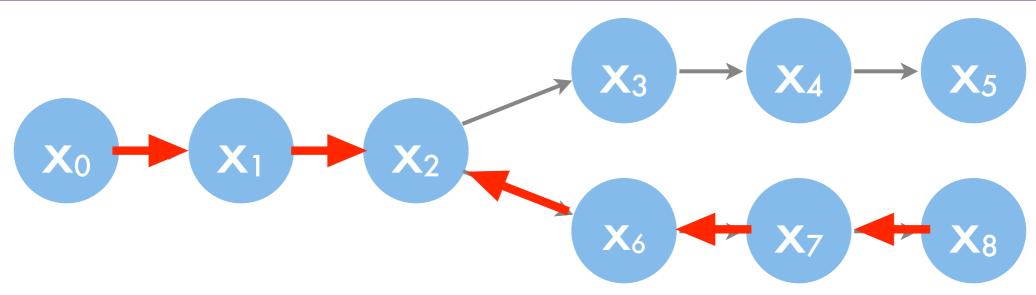
- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$m_{2\to3}(x_3) = \sum_{x_2} m_{1\to2}(x_2) m_{6\to2}(x_2) f(x_2, x_3)$$
$$m_{2\to6}(x_6) = \sum_{x_2} m_{1\to2}(x_2) m_{3\to2}(x_2) f(x_2, x_6)$$
$$m_{2\to1}(x_1) = \sum_{x_2} m_{3\to2}(x_2) m_{6\to2}(x_2) f(x_1, x_2)$$



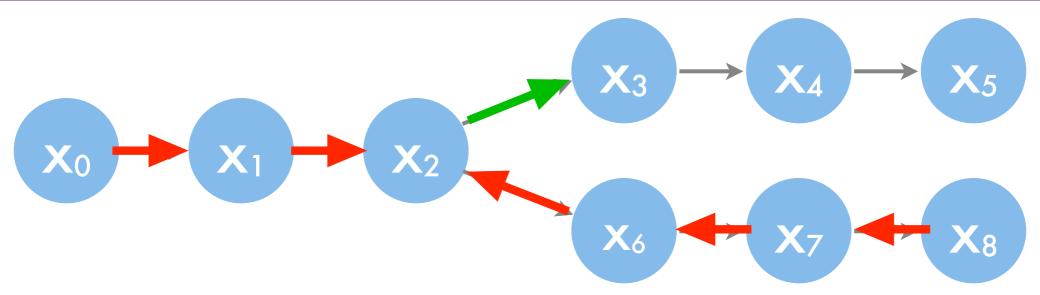
- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$m_{2\to3}(x_3) = \sum_{x_2} m_{1\to2}(x_2) m_{6\to2}(x_2) f(x_2, x_3)$$
$$m_{2\to6}(x_6) = \sum_{x_2} m_{1\to2}(x_2) m_{3\to2}(x_2) f(x_2, x_6)$$
$$m_{2\to1}(x_1) = \sum_{x_2} m_{3\to2}(x_2) m_{6\to2}(x_2) f(x_1, x_2)$$



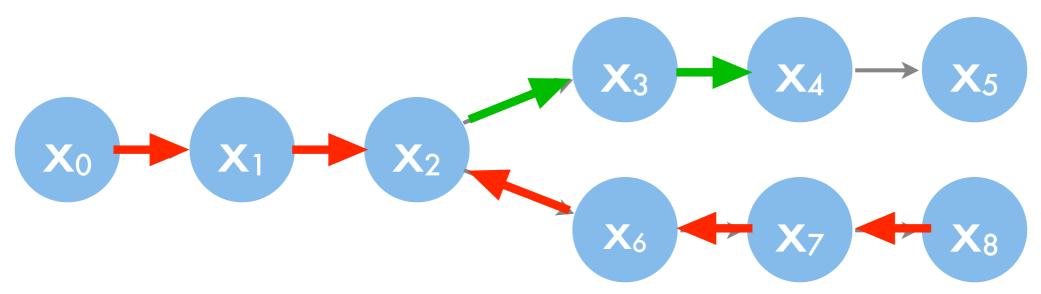
- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$m_{2\to3}(x_3) = \sum_{x_2} m_{1\to2}(x_2) m_{6\to2}(x_2) f(x_2, x_3)$$
$$m_{2\to6}(x_6) = \sum_{x_2} m_{1\to2}(x_2) m_{3\to2}(x_2) f(x_2, x_6)$$
$$m_{2\to1}(x_1) = \sum_{x_2} m_{3\to2}(x_2) m_{6\to2}(x_2) f(x_1, x_2)$$



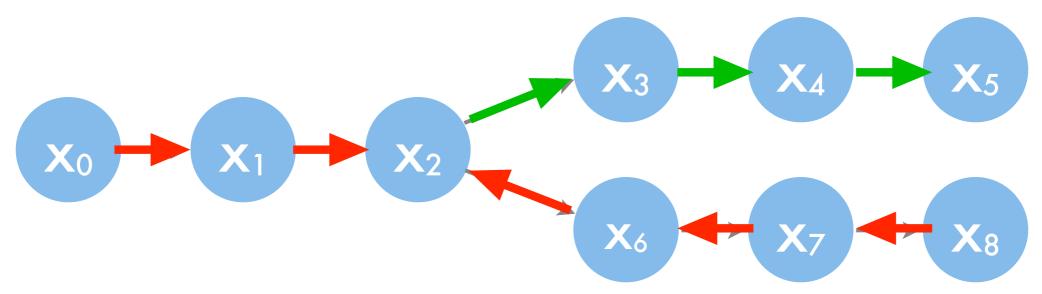
- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

$$m_{2\to3}(x_3) = \sum_{x_2} m_{1\to2}(x_2) m_{6\to2}(x_2) f(x_2, x_3)$$
$$m_{2\to6}(x_6) = \sum_{x_2} m_{1\to2}(x_2) m_{3\to2}(x_2) f(x_2, x_6)$$
$$m_{2\to1}(x_1) = \sum_{x_2} m_{3\to2}(x_2) m_{6\to2}(x_2) f(x_1, x_2)$$



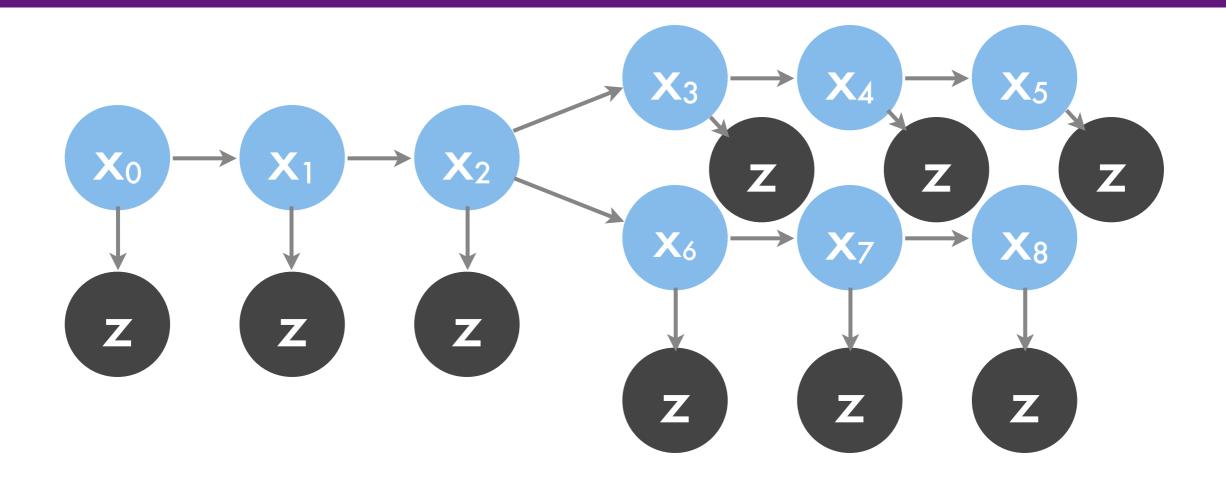
- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

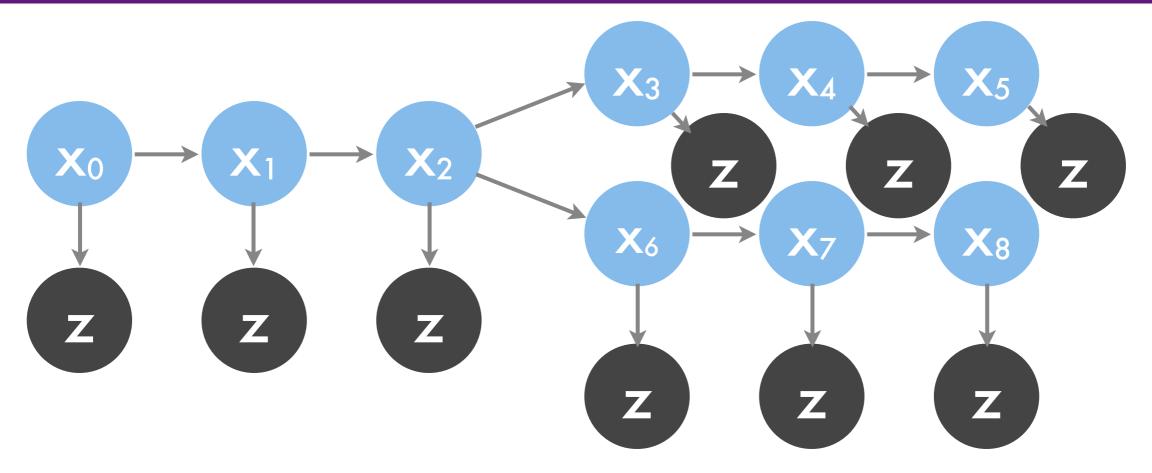
$$m_{2\to3}(x_3) = \sum_{x_2} m_{1\to2}(x_2)m_{6\to2}(x_2)f(x_2, x_3)$$
$$m_{2\to6}(x_6) = \sum_{x_2} m_{1\to2}(x_2)m_{3\to2}(x_2)f(x_2, x_6)$$
$$m_{2\to1}(x_1) = \sum_{x_2} m_{3\to2}(x_2)m_{6\to2}(x_2)f(x_1, x_2)$$



- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use ...

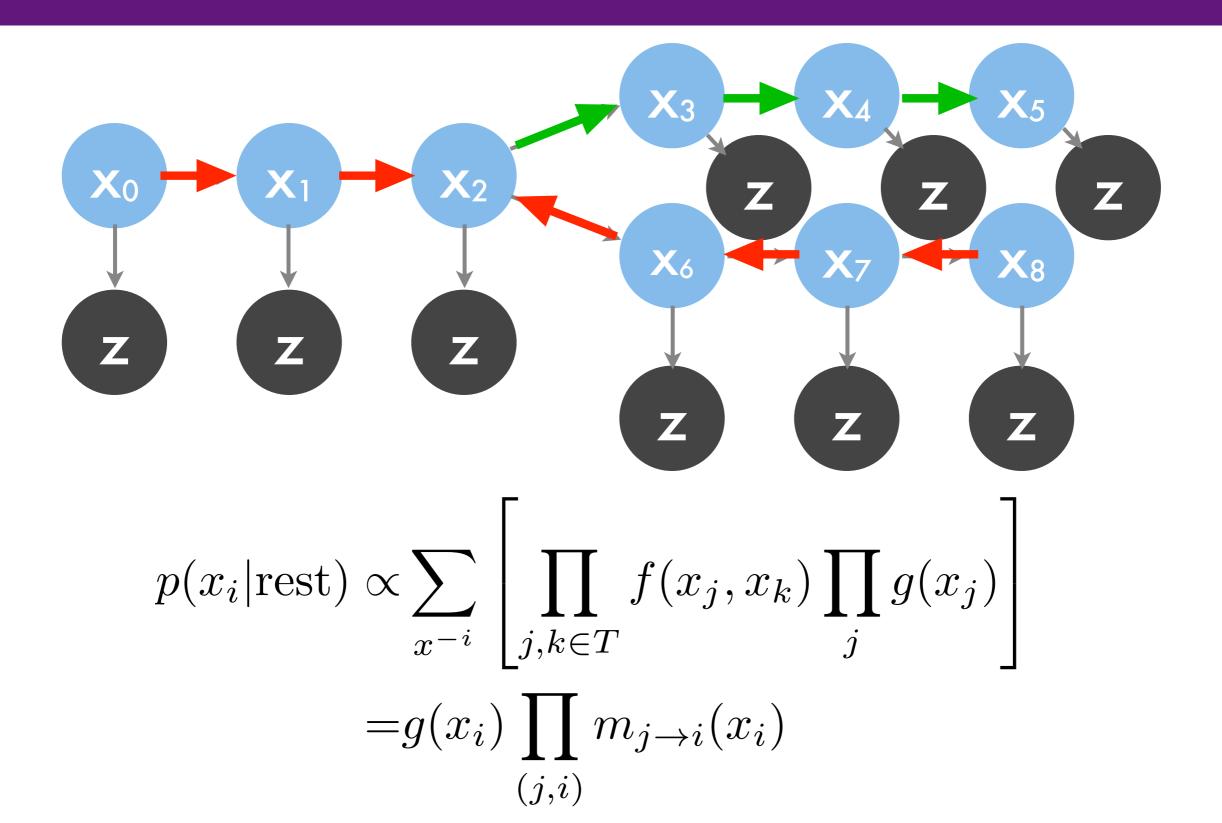
$$m_{2\to3}(x_3) = \sum_{x_2} m_{1\to2}(x_2) m_{6\to2}(x_2) f(x_2, x_3)$$
$$m_{2\to6}(x_6) = \sum_{x_2} m_{1\to2}(x_2) m_{3\to2}(x_2) f(x_2, x_6)$$
$$m_{2\to1}(x_1) = \sum_{x_2} m_{3\to2}(x_2) m_{6\to2}(x_2) f(x_1, x_2)$$

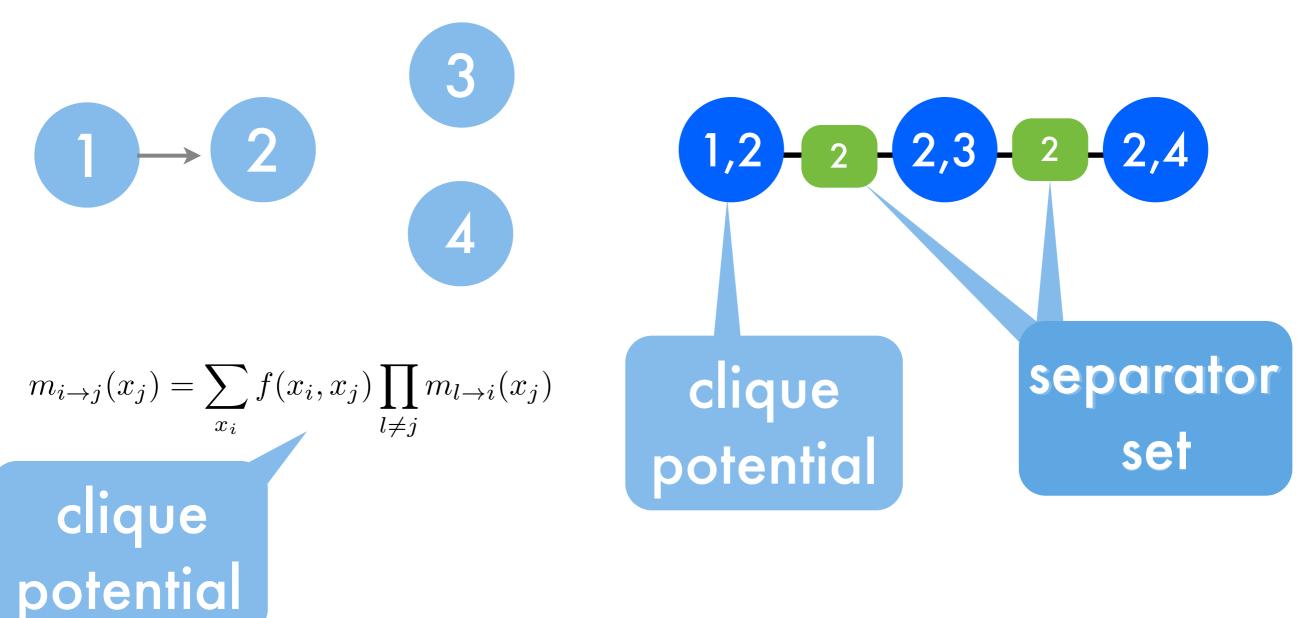


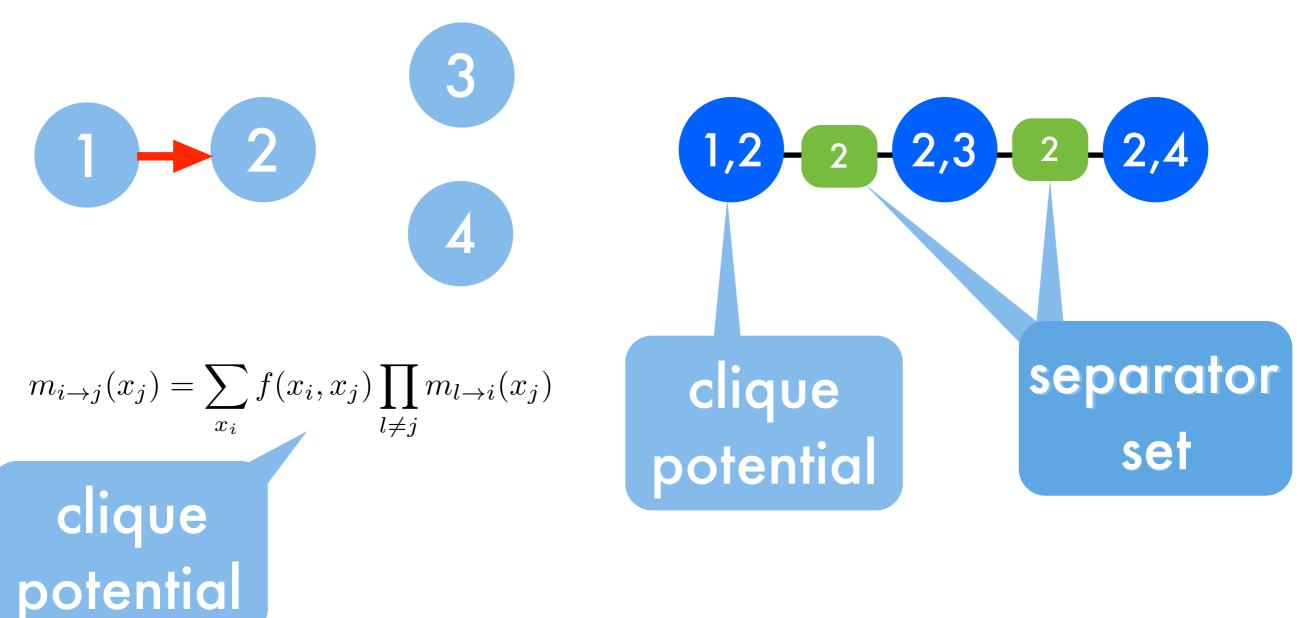


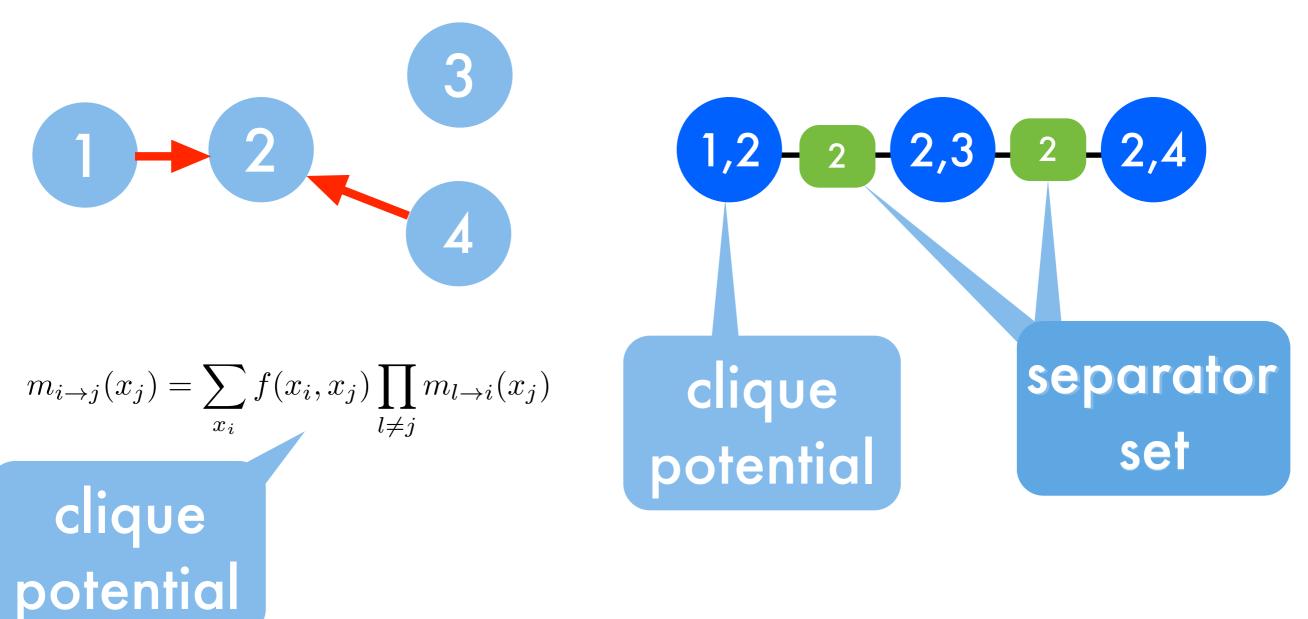
- Joint distribution over latent state and observations
- To compute conditional probability we need to normalize

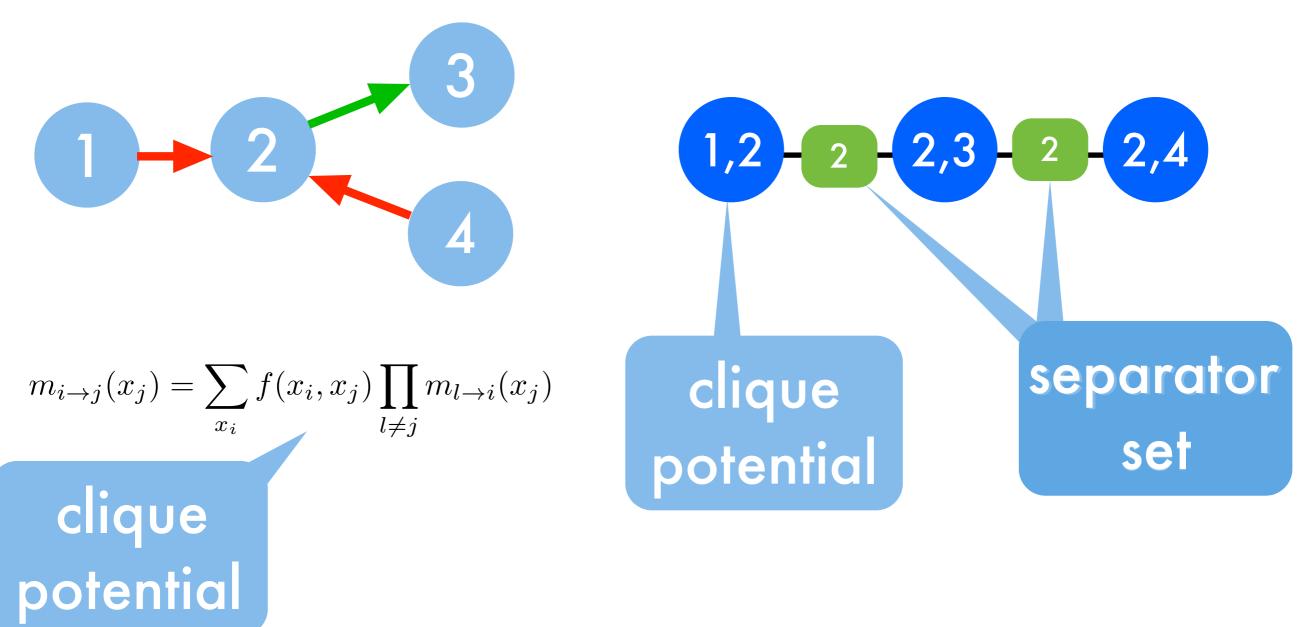
$$p(x,z) = p(x) \prod_{i} p(z_i | x_i) = \prod_{i,j \in T} f(x_i, x_j) \prod_{i} g(x_i, z_i)$$

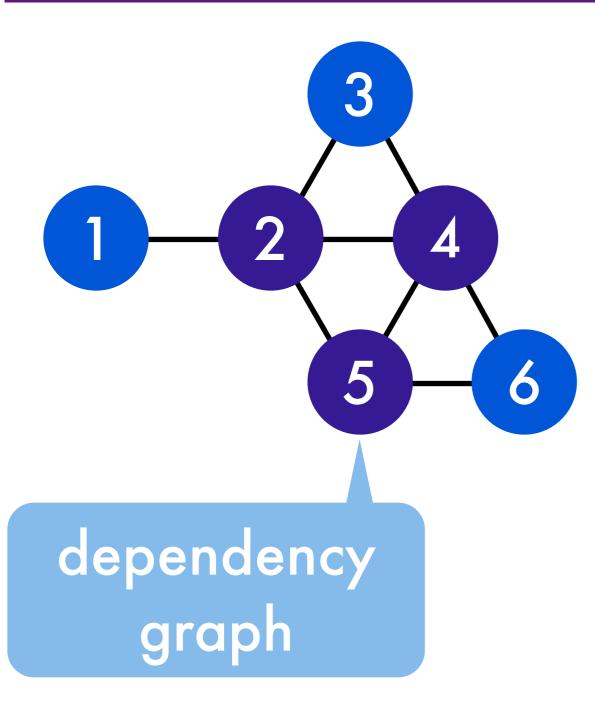


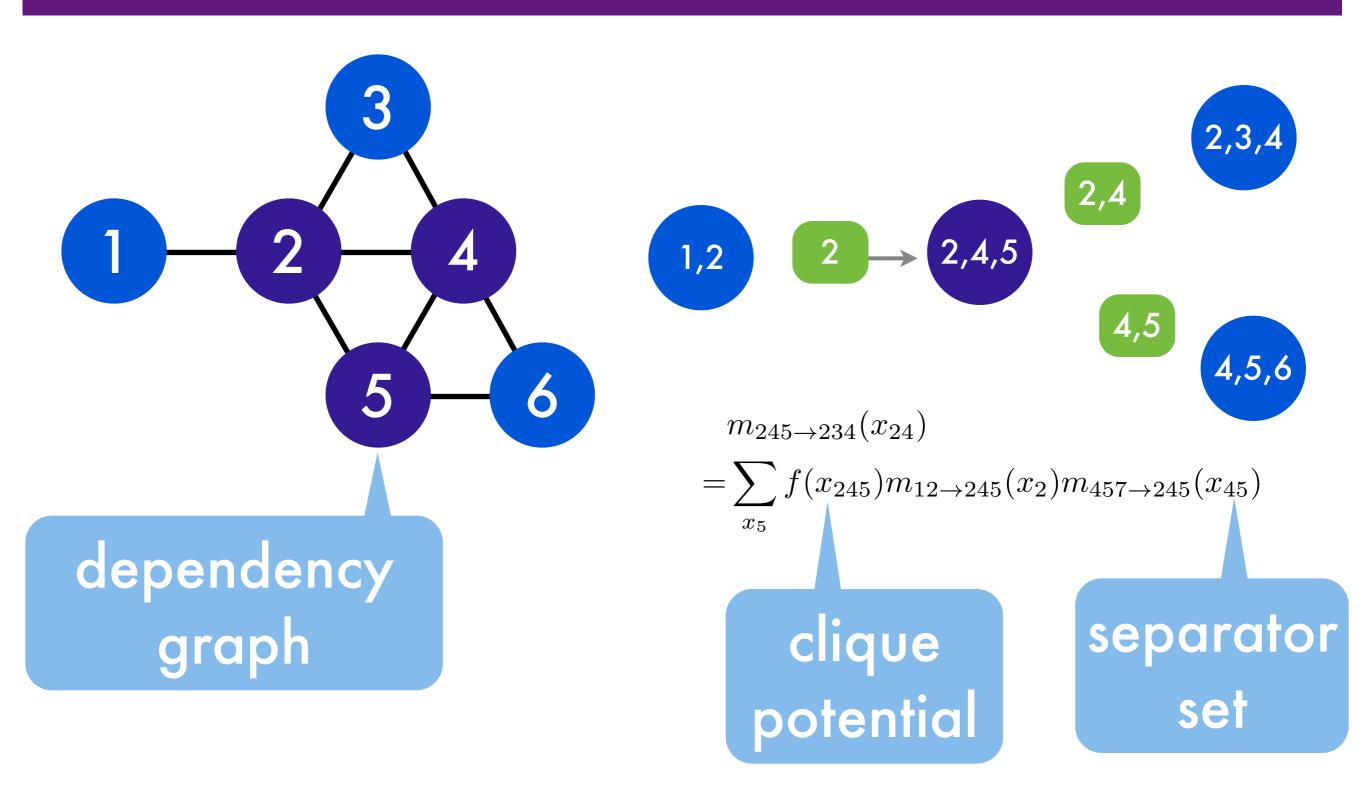


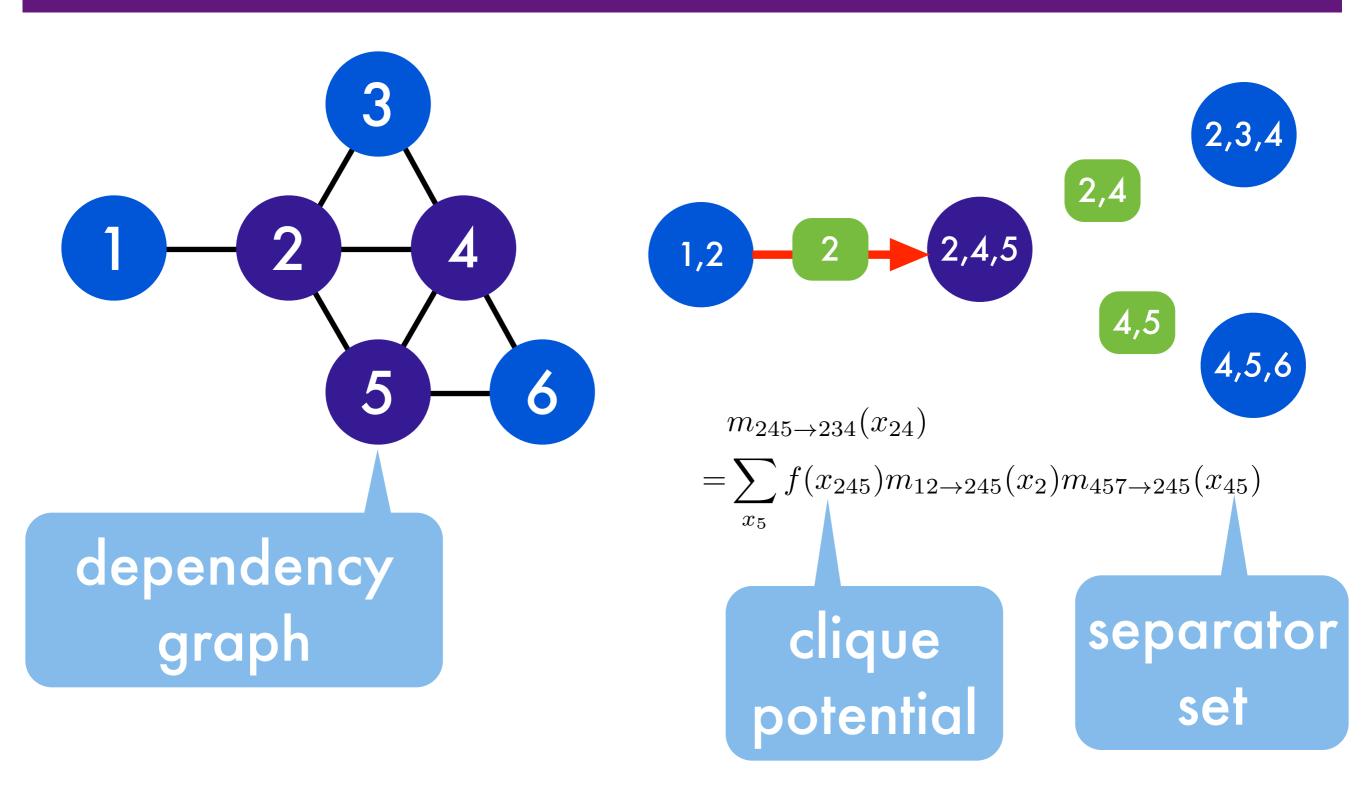


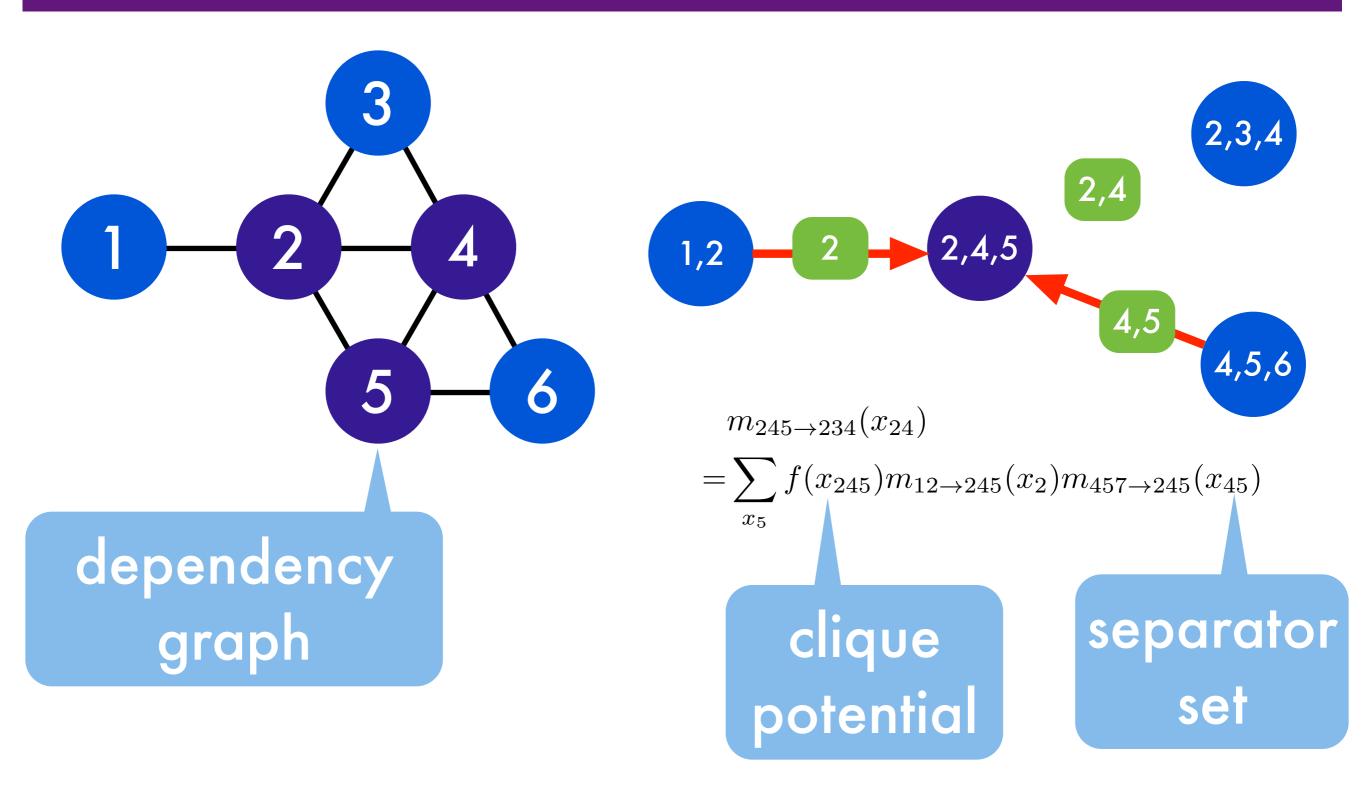


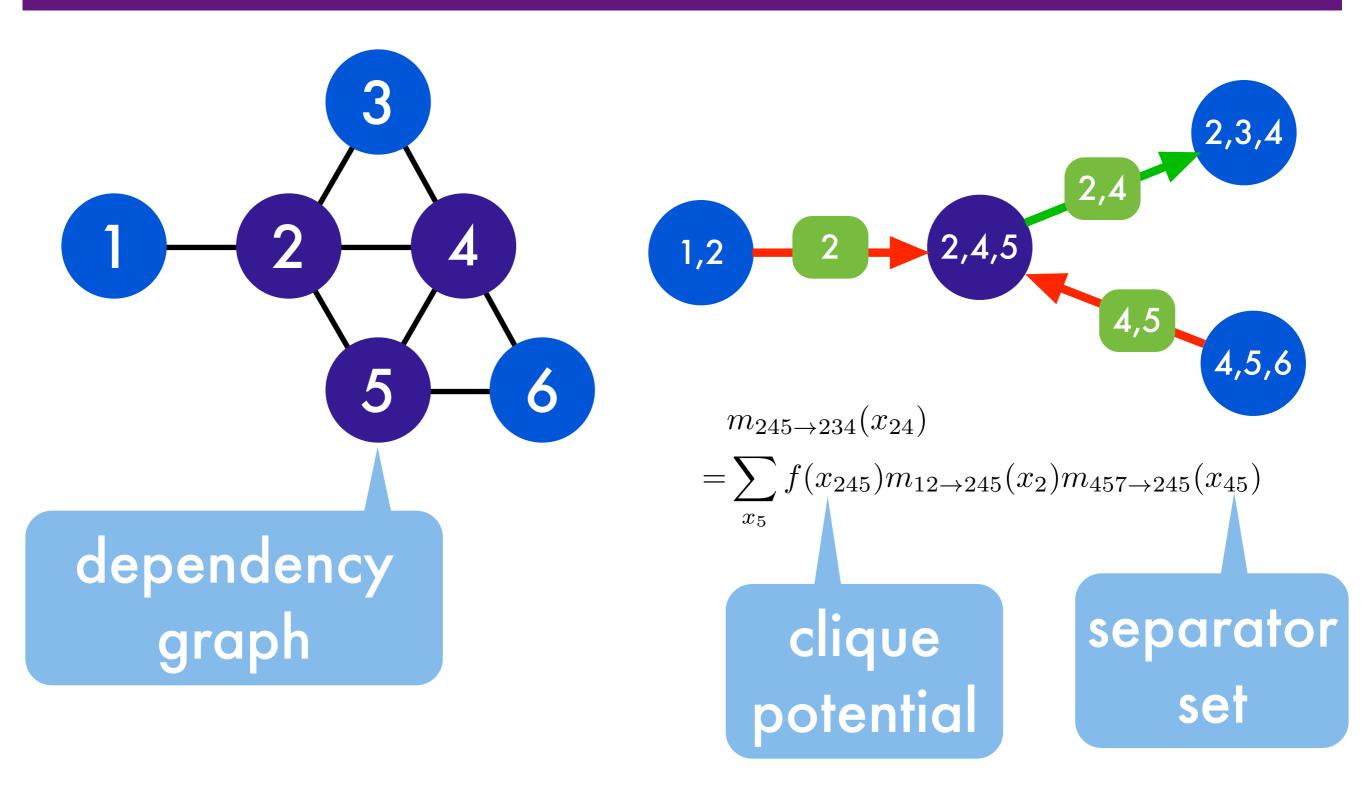


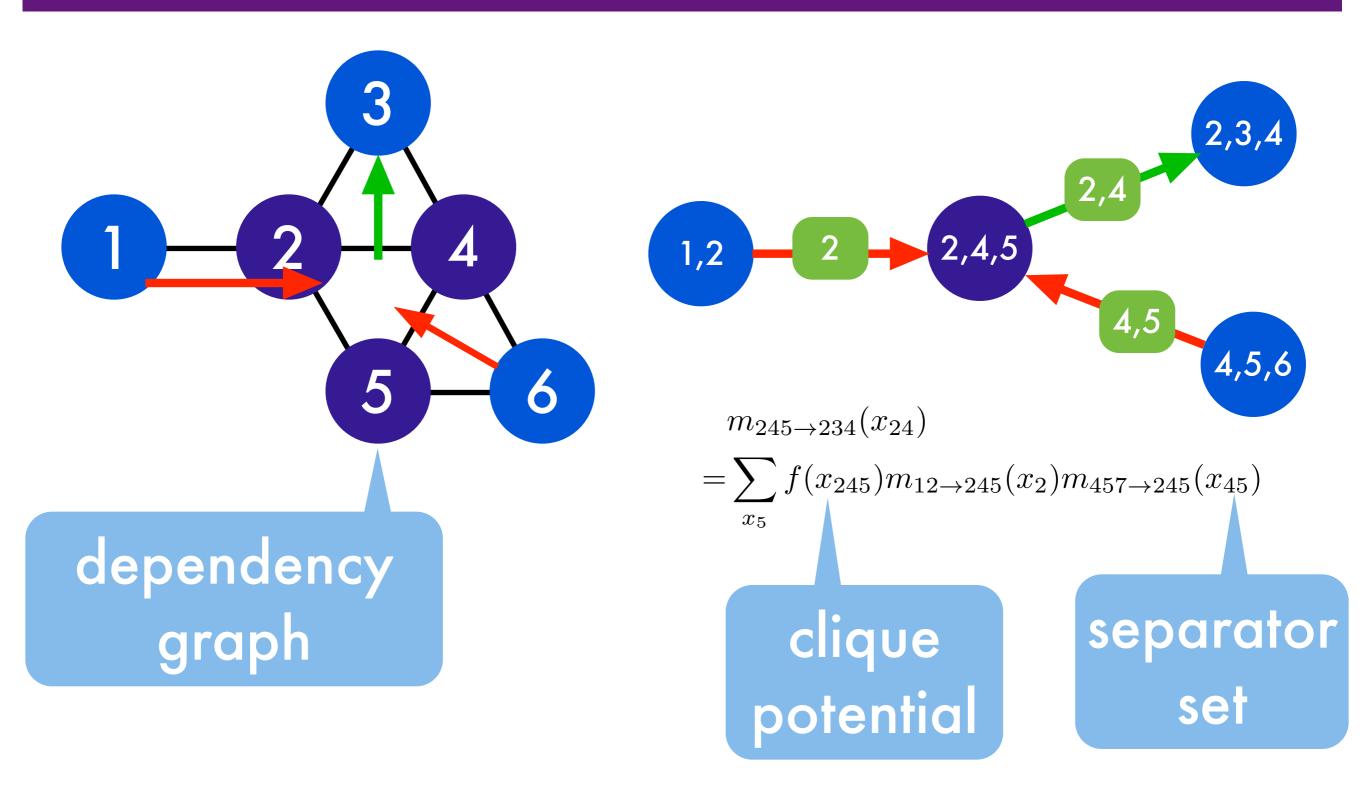






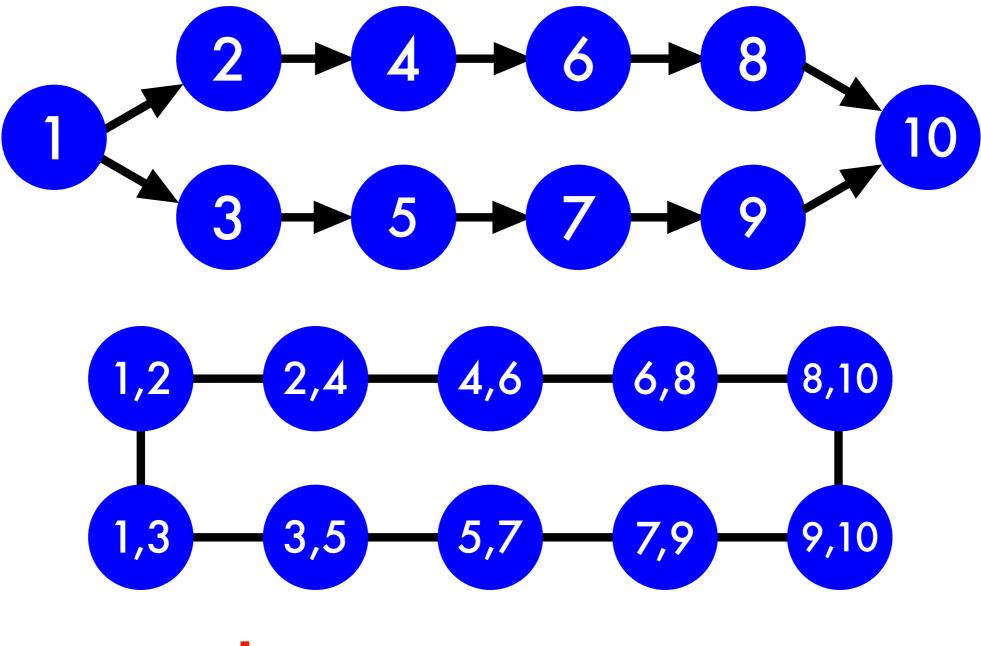




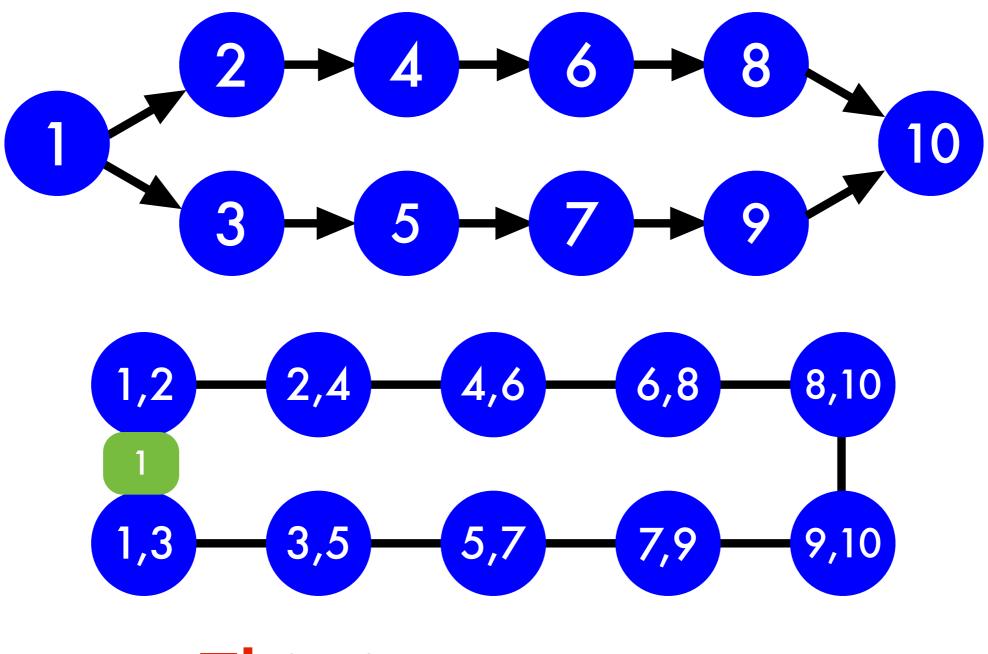


-6

8 6 4 10 1 5 9 3 4,6 1,2 2,4 6,8 8,10 5,7 1,3 3,5 7,9 9,10



This is not a tree

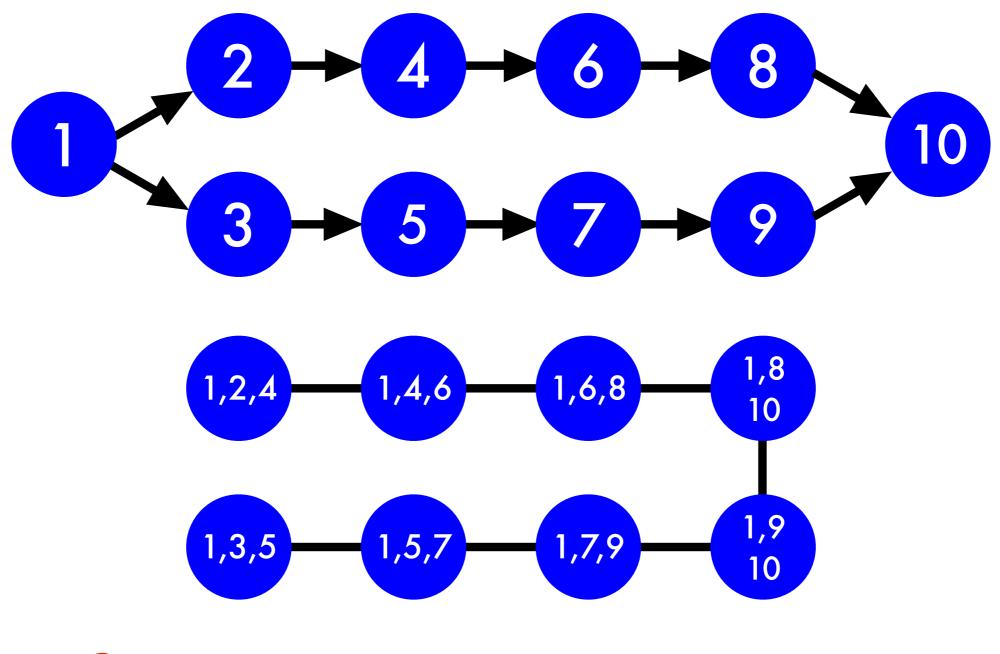


This is not a tree

Graph triangulation

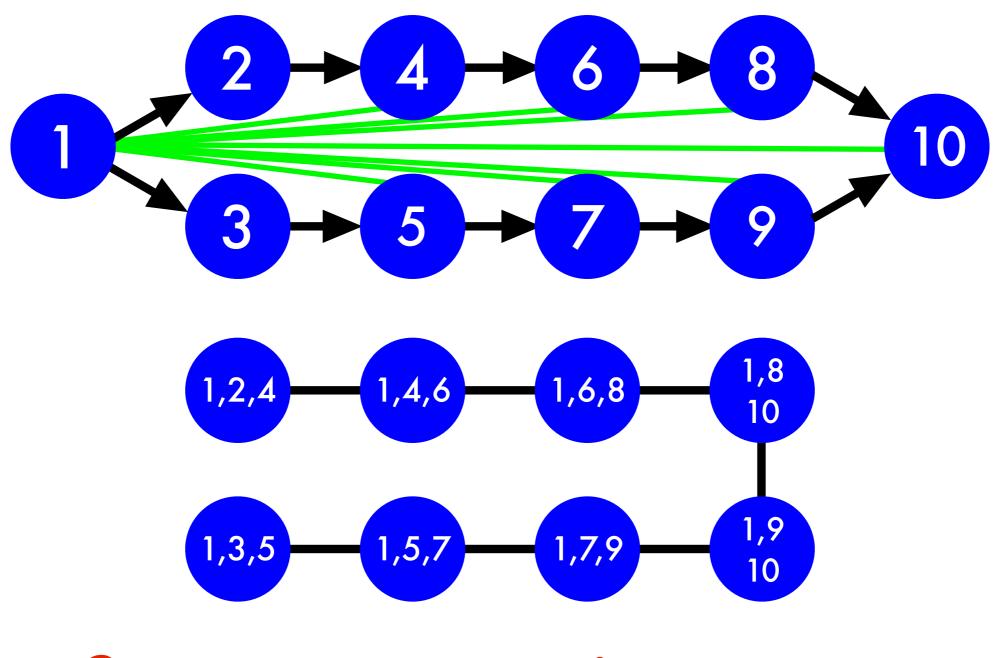
6 8 10 5 1,8 1,2,4 1,4,6 1,6,8 10 1,9 1,3,5 1,7,9 1,5,7 10

Graph triangulation

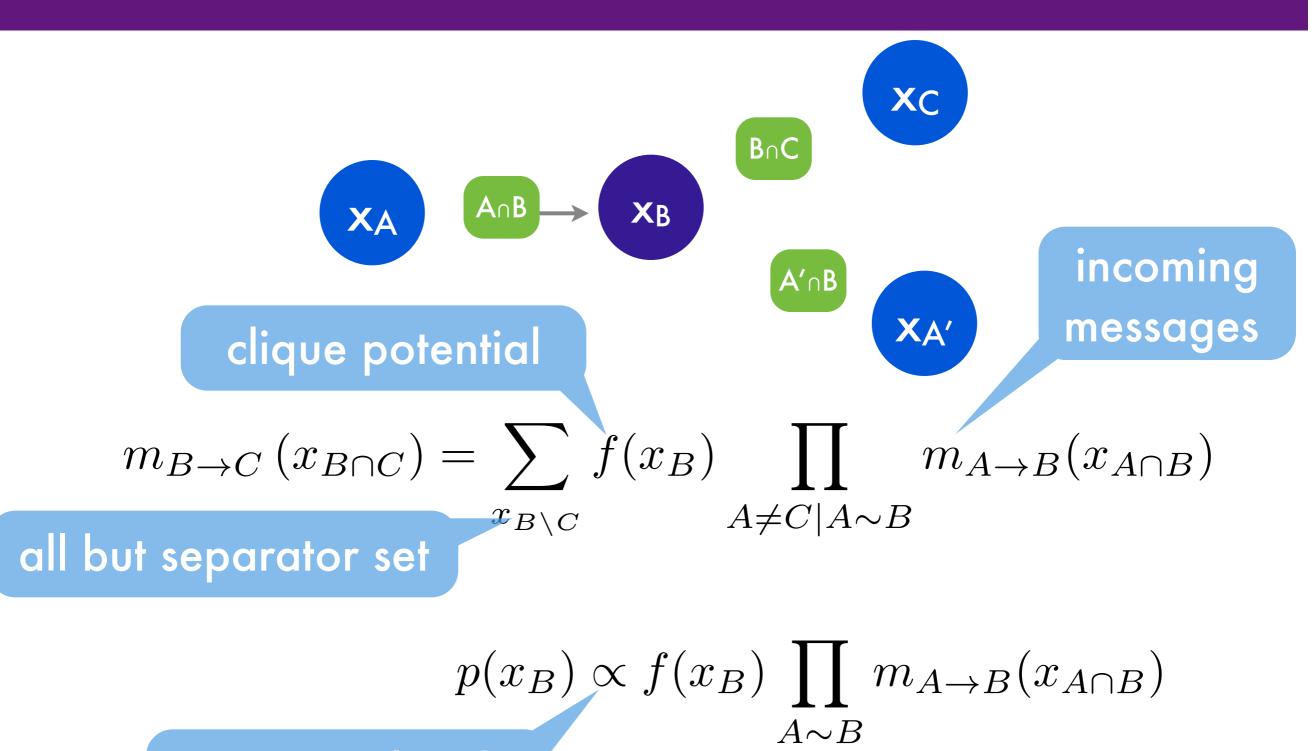


Separator set increases

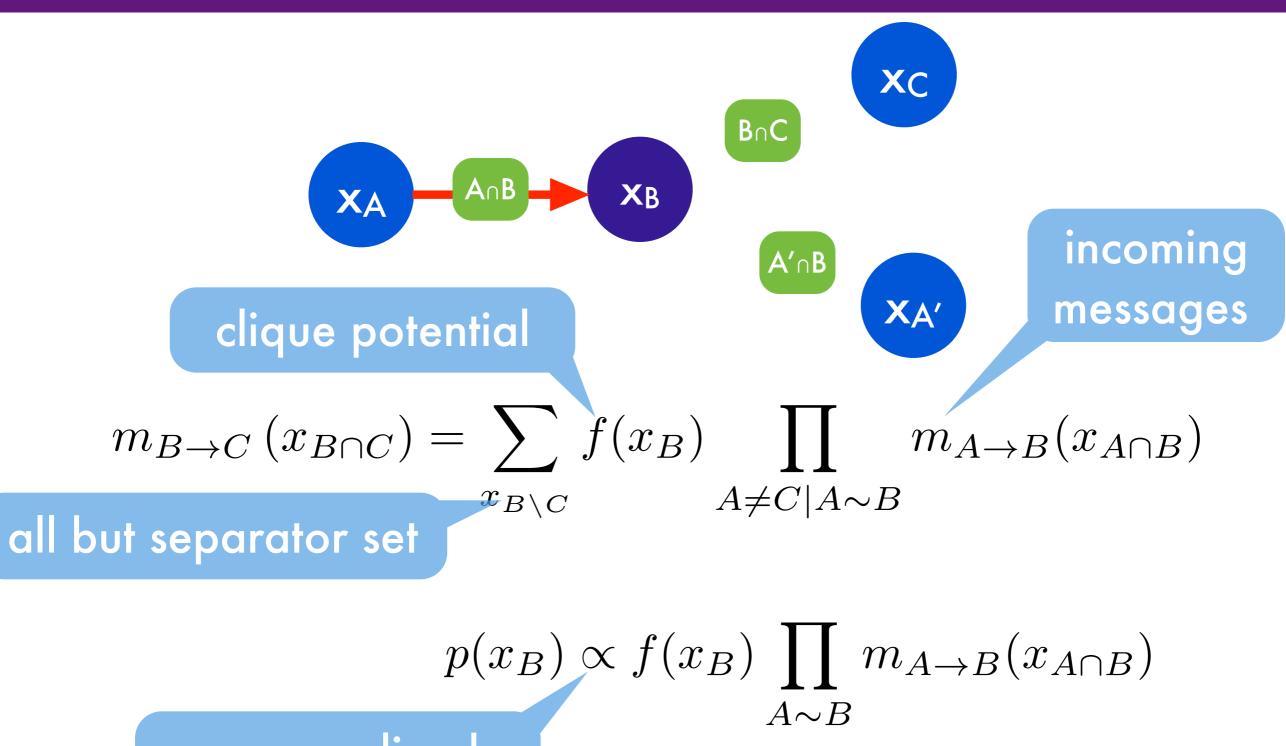
Graph triangulation



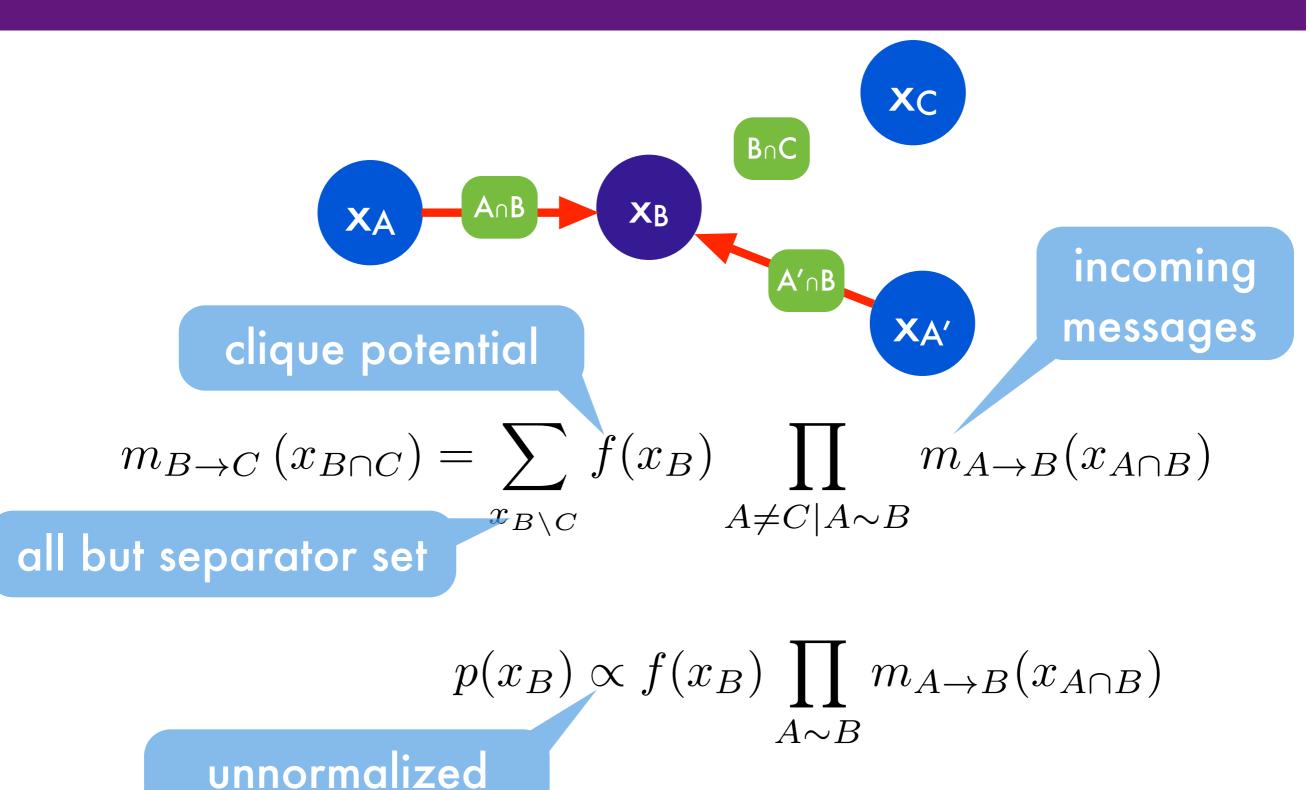
Separator set increases

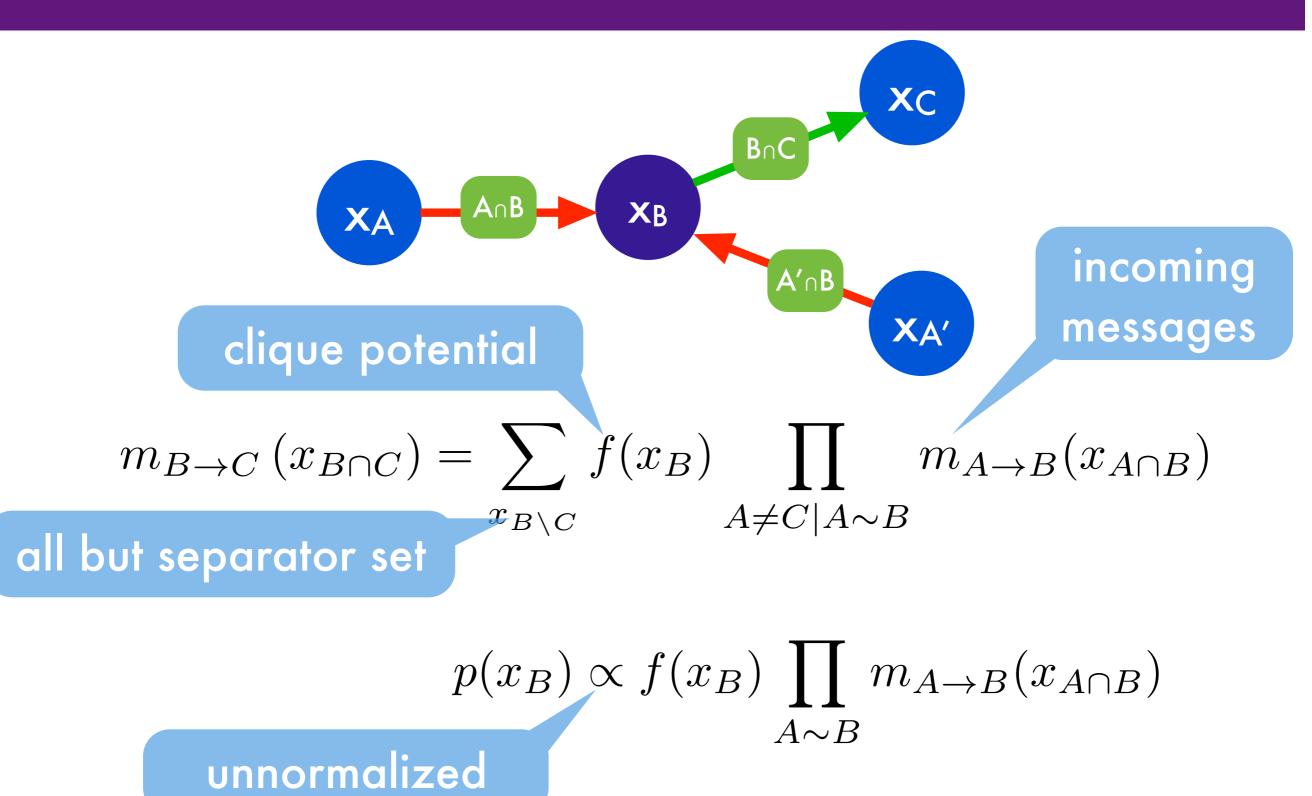


unnormalized

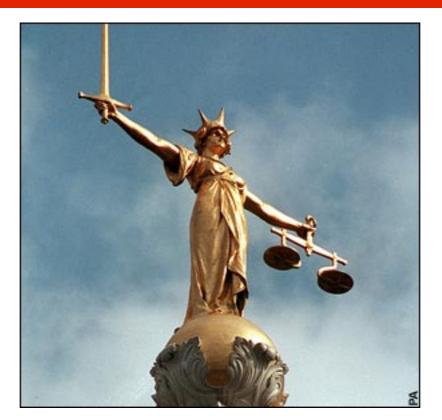


unnormalized





Generalize Distributive Law



Generalized Distributive Law

Key Idea

Dynamic programming uses only sums and multiplications, hence replace them with equivalent operations from other semirings

- Semiring
 - 'addition' and 'summation' equivalent
 - Associative law (a+b) + c = a + (b+c)
 - Distributive law a(b+c) = ab + ac

Generalized Distributive Law

- Integrating out probabilities (sum, product) $a \cdot (b + c) = a \cdot b + a \cdot c$
- Finding the maximum (max, +)

 $a + \max(b, c) = \max(a + b, a + c)$

- Set algebra (union, intersection) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- Boolean semiring (AND, OR)
- Probability semiring (log +, +)
- Tropical semiring (min, +)

Chains ... again

$$\bar{s} = \max_{x} s(x_{0}) + \sum_{i=1}^{n-1} s(x_{i+1}|x_{i}) \quad x_{0} \rightarrow x_{1} \rightarrow x_{2} \rightarrow x_{3}$$

$$\bar{s} = \max_{x_{0...n}} \underbrace{s(x_{0})}_{:=l_{0}(x_{0})} + \sum_{j=1}^{n} s(x_{j}|x_{j-1})$$

$$= \max_{x_{1...n}} \max_{x_{0}} \frac{[l_{0}(x_{0})s(x_{1}|x_{0})]}{:=l_{1}(x_{1})} + \sum_{j=2}^{n} s(x_{j}|x_{j-1})$$

$$= \max_{x_{2...n}} \max_{x_{1}} \frac{[l_{1}(x_{1})s(x_{2}|x_{1})]}{:=l_{2}(x_{2})} + \sum_{j=3}^{n} s(x_{j}|x_{j-1})$$

Junction Trees

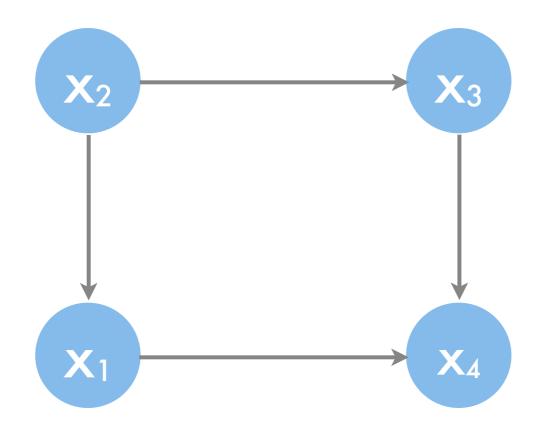
$$m_{i \to j}(x_j) = \max_{x_i} f(x_i, x_j) + \sum_{l \neq j} m_{l \to i}(x_j)$$

clique potential

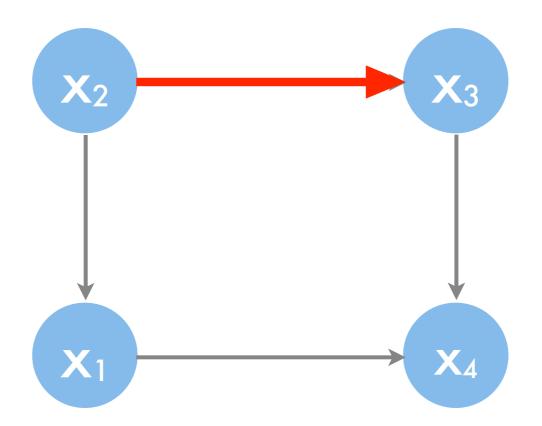
Junction Trees



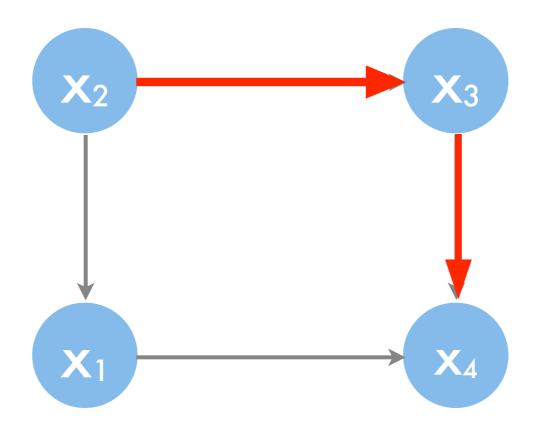
$$s(x_1, x_2) + s(x_2, x_3) + s(x_3, x_4) + s(x_4, x_1)$$



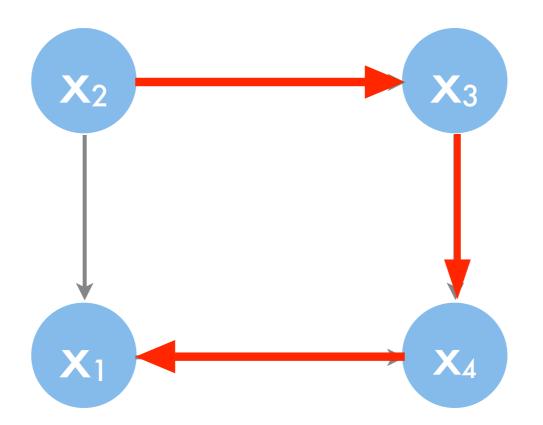
 $s(x_1, x_2) + s(x_2, x_3) + s(x_3, x_4) + s(x_4, x_1)$



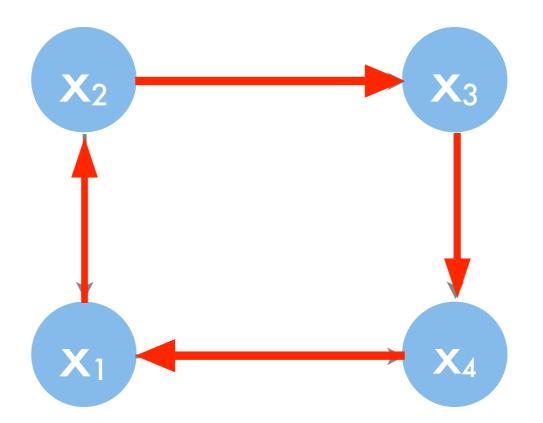
 $s(x_1, x_2) + s(x_2, x_3) + s(x_3, x_4) + s(x_4, x_1)$



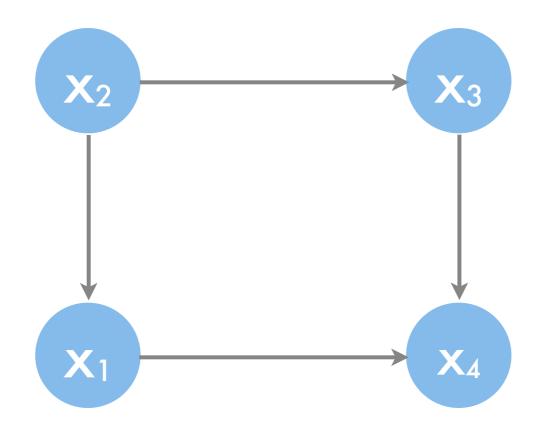
 $s(x_1, x_2) + s(x_2, x_3) + s(x_3, x_4) + s(x_4, x_1)$



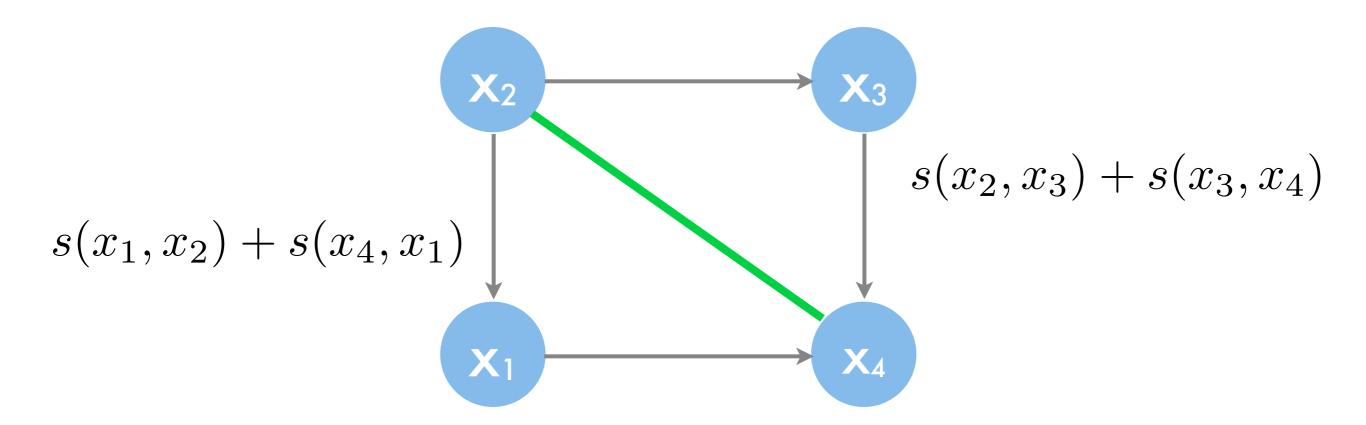
 $s(x_1, x_2) + s(x_2, x_3) + s(x_3, x_4) + s(x_4, x_1)$



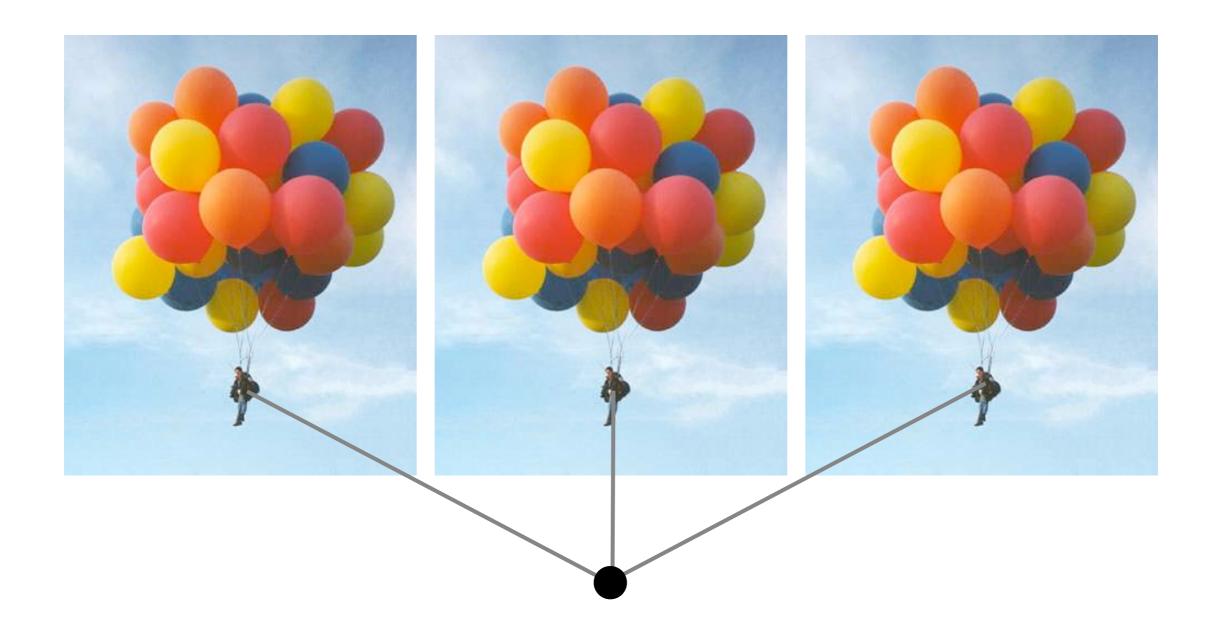
$$s(x_1, x_2) + s(x_2, x_3) + s(x_3, x_4) + s(x_4, x_1)$$



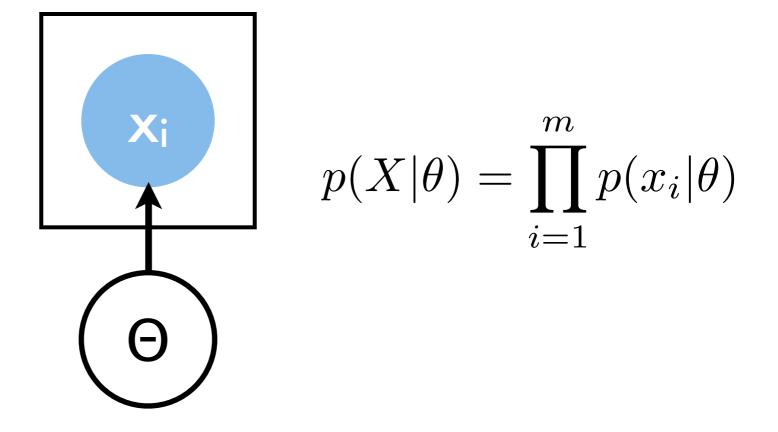
$$s(x_1, x_2) + s(x_2, x_3) + s(x_3, x_4) + s(x_4, x_1)$$



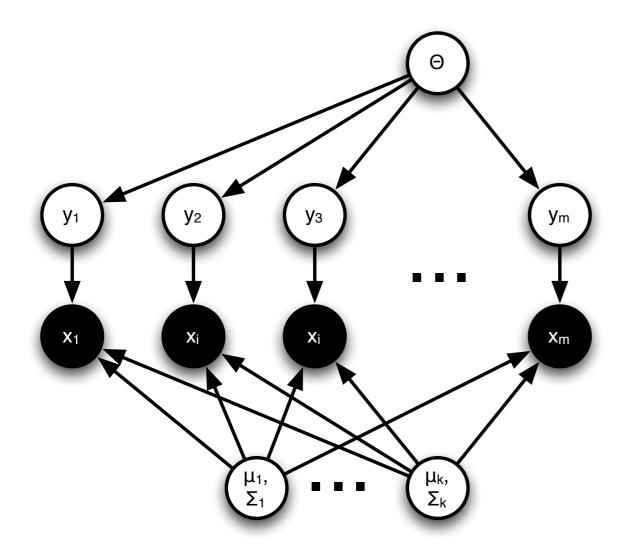
Clustering

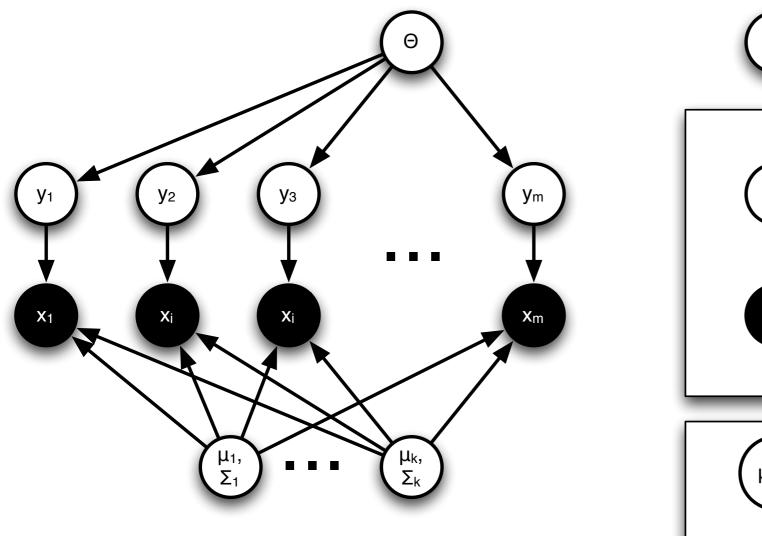


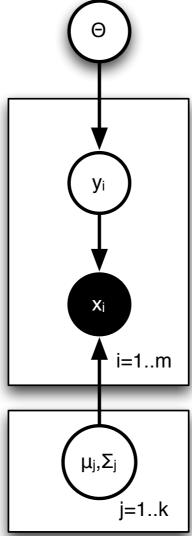
Density Estimation

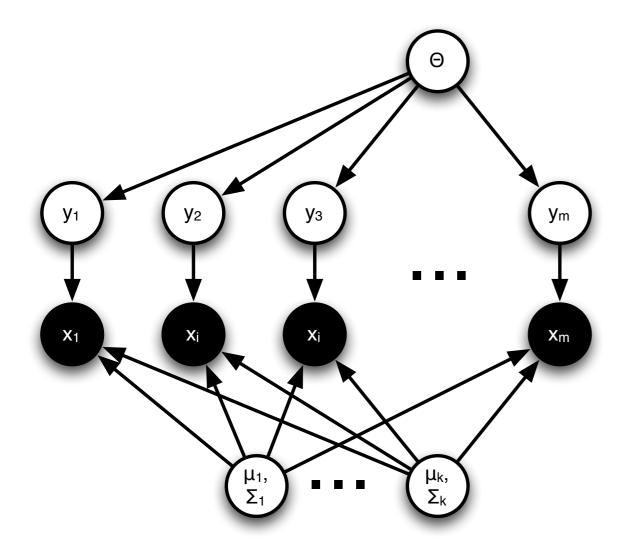


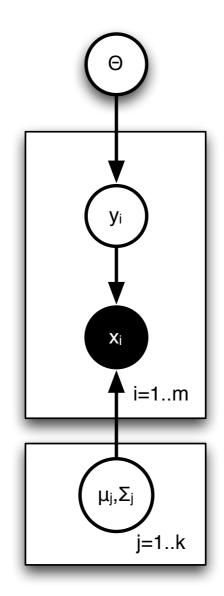
- Draw latent parameter Θ
- For all i draw observed x_i given Θ
- What if the basic model doesn't fit all data?

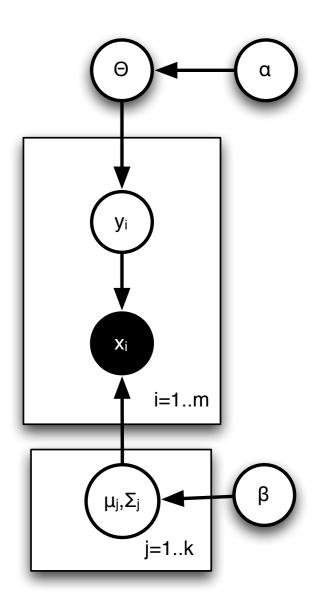


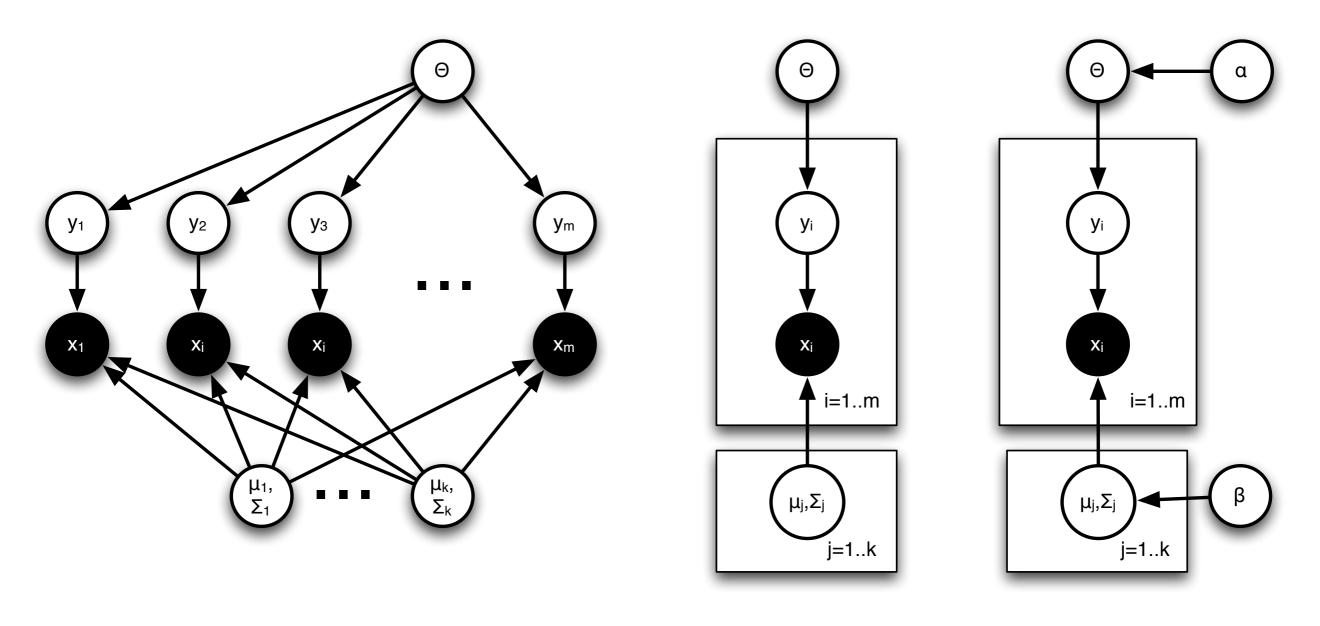


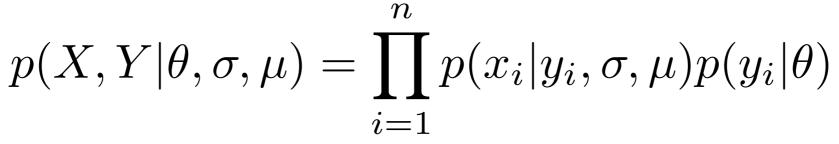






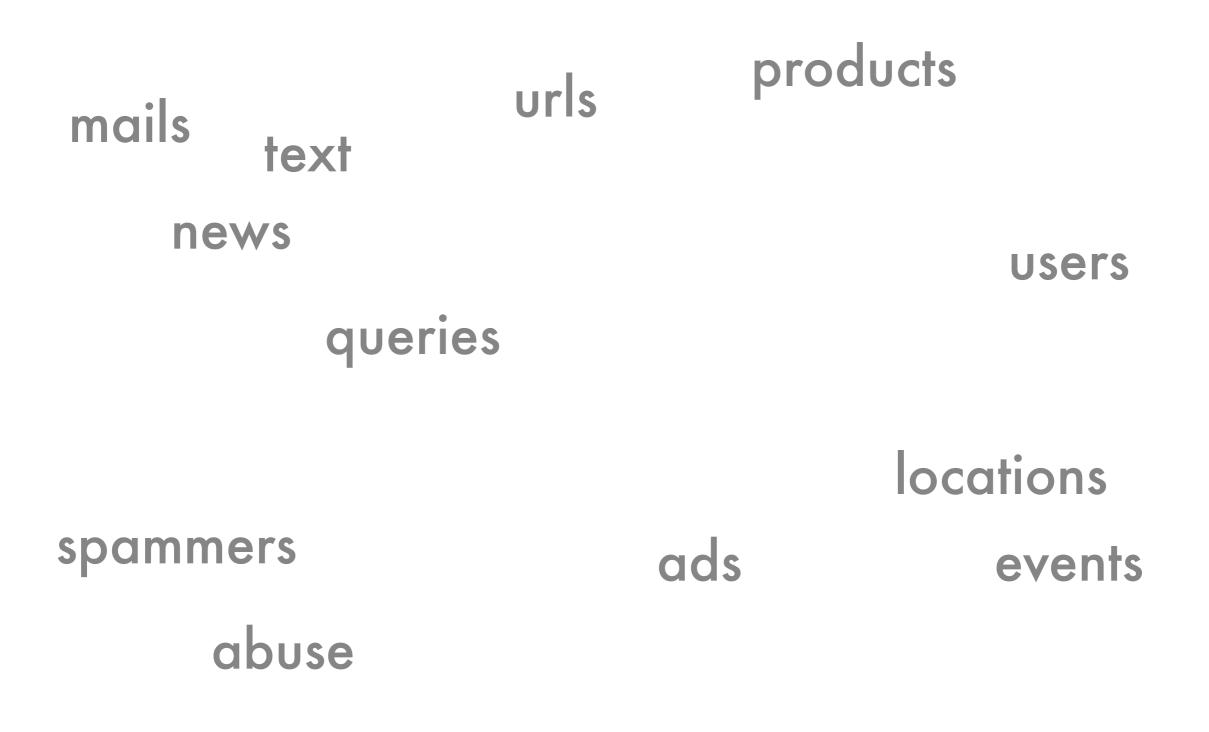






What can we cluster?

What can we cluster?



Mixture of Gaussians

- Draw cluster label y from discrete distribution
- Draw data x from Gaussian for given cluster y
- Prior for discrete distribution Dirichlet
- Prior for Gaussians Gauss-Wishart distribution
- Problem: we don't know y
 - If we knew the parameters we could get y
 - If we knew y we could get the parameters

k-means

- Fixed uniform variance for all Gaussians
- Fixed uniform distribution over clusters
- Initialize centers with random subset of points
- Find most likely cluster y for x

 $y_i = \operatorname{argmax} p(x_i | y, \sigma, \mu)$

• Find most likely center for given cluster

$$\mu_y = \frac{1}{n_y} \sum_i \left\{ y_i = y \right\} x_i$$

Repeat until converged

k-means

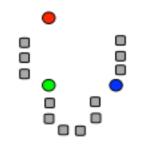
• Pro

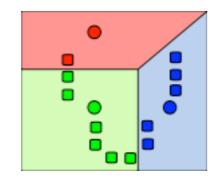
- simple algorithm
- can be implemented by MapReduce passes

• Con

- no proper probabilistic representation
- can get stuck easily in local minima

partitioning

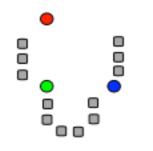


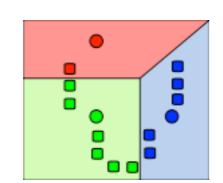


initialization

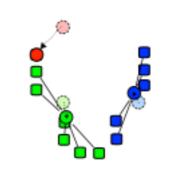
k-means

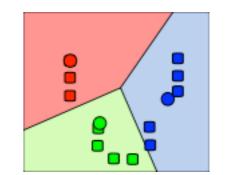
partitioning





partitioning





initialization

update

Variational Inference

Expectation Maximization

Optimization Problem

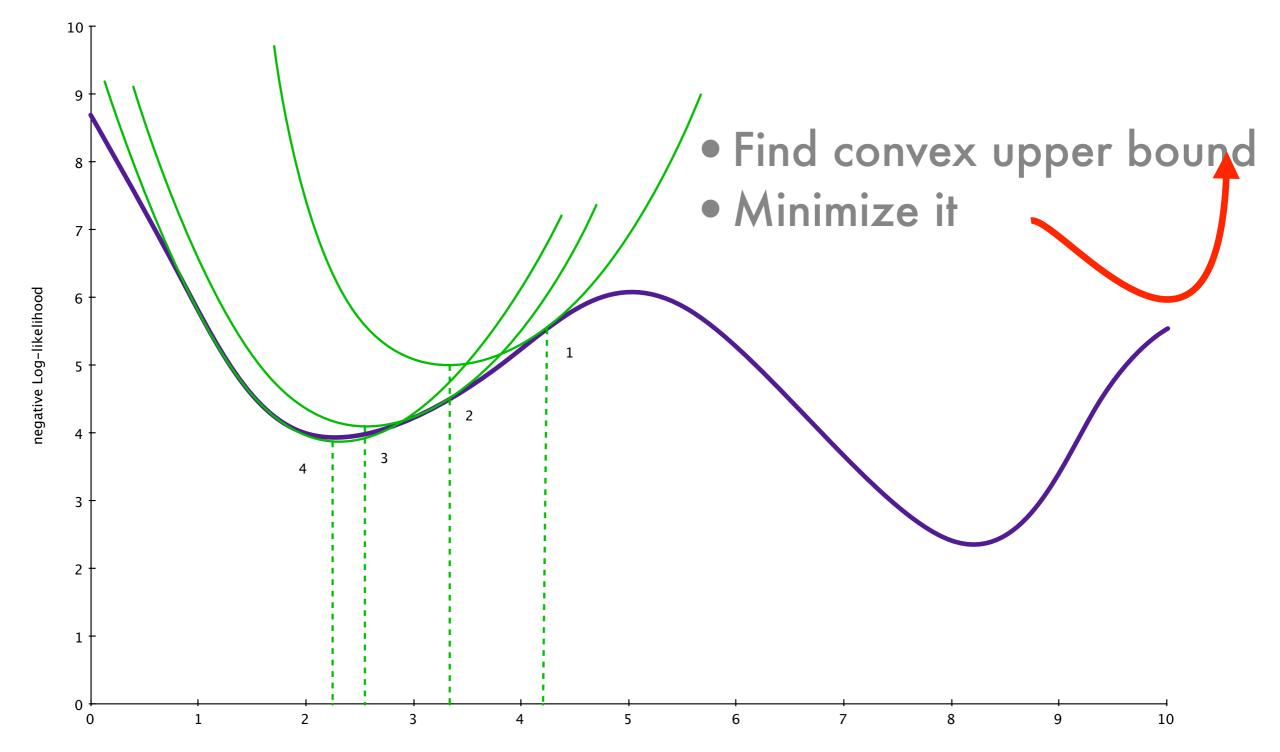
 $\underset{\theta,\mu,\sigma}{\operatorname{maximize}} p(X|\theta,\sigma,\mu) = \underset{\theta,\mu,\sigma}{\operatorname{maximize}} \sum_{Y} \prod_{i=1}^{n} p(x_i|y_i,\sigma,\mu) p(y_i|\theta)$

This problem is nonconvex and difficult to solve

n

Key idea
 If we knew p(y|x) we could estimate the
 remaining parameters easily and vice versa

Nonconvex Minimization



Expectation Maximization

Variational Bound

$$\begin{split} \log p(x;\theta) &\geq \log p(x;\theta) - D(q(y) || p(y|x;\theta)) \\ &= \int dq(y) \left[\log p(x;\theta) + \log p(y|x;\theta) - \log q(y) \right] \\ &= \int dq(y) \log p(x,y;\theta) - \int dq(y) \log q(y) \end{split}$$
This inequality is tight for p(y|x) = q(y)

Variational Bound

$$\begin{split} \log p(x;\theta) &\geq \log p(x;\theta) - D(q(y) \| p(y|x;\theta)) \\ &= \int dq(y) \left[\log p(x;\theta) + \log p(y|x;\theta) - \log q(y) \right] \\ &= \int dq(y) \log p(x,y;\theta) - \int dq(y) \log q(y) \end{split}$$
This inequality is tight for p(y|x) = q(y)

• Expectation step

 $q(y) = p(y|x;\theta)$

Variational Bound

$$\begin{split} \log p(x;\theta) &\geq \log p(x;\theta) - D(q(y)||p(y|x;\theta)) \\ &= \int dq(y) \left[\log p(x;\theta) + \log p(y|x;\theta) - \log q(y) \right] \\ &= \int dq(y) \log p(x,y;\theta) - \int dq(y) \log q(y) \end{split}$$
This inequality is tight for p(y|x) = q(y)

• Expectation step

find bound

$$q(y) = p(y|x;\theta)$$

Variational Bound

 $\log p(x;\theta) \ge \log p(x;\theta) - D(q(y)||p(y|x;\theta))$ $= \int dq(y) \left[\log p(x;\theta) + \log p(y|x;\theta) - \log q(y)\right]$ $= \int dq(y) \log p(x,y;\theta) - \int dq(y) \log q(y)$

- This inequality is tight for p(y|x) = q(y)
- Expectation step

$$q(y) = p(y|x;\theta)$$

find bound

Maximization step

$$\theta^* = \operatorname*{argmax}_{\theta} \int dq(y) \log p(x, y; \theta)$$

Variational Bound

 $\log p(x;\theta) \ge \log p(x;\theta) - D(q(y)||p(y|x;\theta))$ $= \int dq(y) [\log p(x;\theta) + \log p(y|x;\theta) - \log q(y)]$ $= \int dq(y) \log p(x,y;\theta) - \int dq(y) \log q(y)$ This inequality is tight for p(y|x) = q(y)

• Expectation step

find bound

$$q(y) = p(y|x;\theta)$$

Maximization step

maximize if $\theta^* = \underset{\theta}{\operatorname{argmax}} \int dq(y) \log p(x, y; \theta)$

Expectation Step

• Factorizing distribution

$$q(Y) = \prod_i q_i(y$$
-Step

• E-Step

$$q_i(y) \propto p(x_i|y_i, \mu, \sigma) p(y_i|\theta) \text{ hence}$$
$$m_{iy} := \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma_y|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(x_i - \mu_y)\Sigma_y^{-1}(x_i - \mu_y)\right] p(y)$$
$$q_i(y) = \frac{m_{iy}}{\sum_{y'} m_{iy'}}$$

Maximization Step

 \boldsymbol{n}

Log-likelihood

$$\log p(X, Y|\theta, \mu, \sigma) = \sum_{i=1}^{n} \log p(x_i|y_i, \mu, \sigma) + \log p(y_i|\theta)$$

 Cluster distribution (weighted Gaussian MLE)

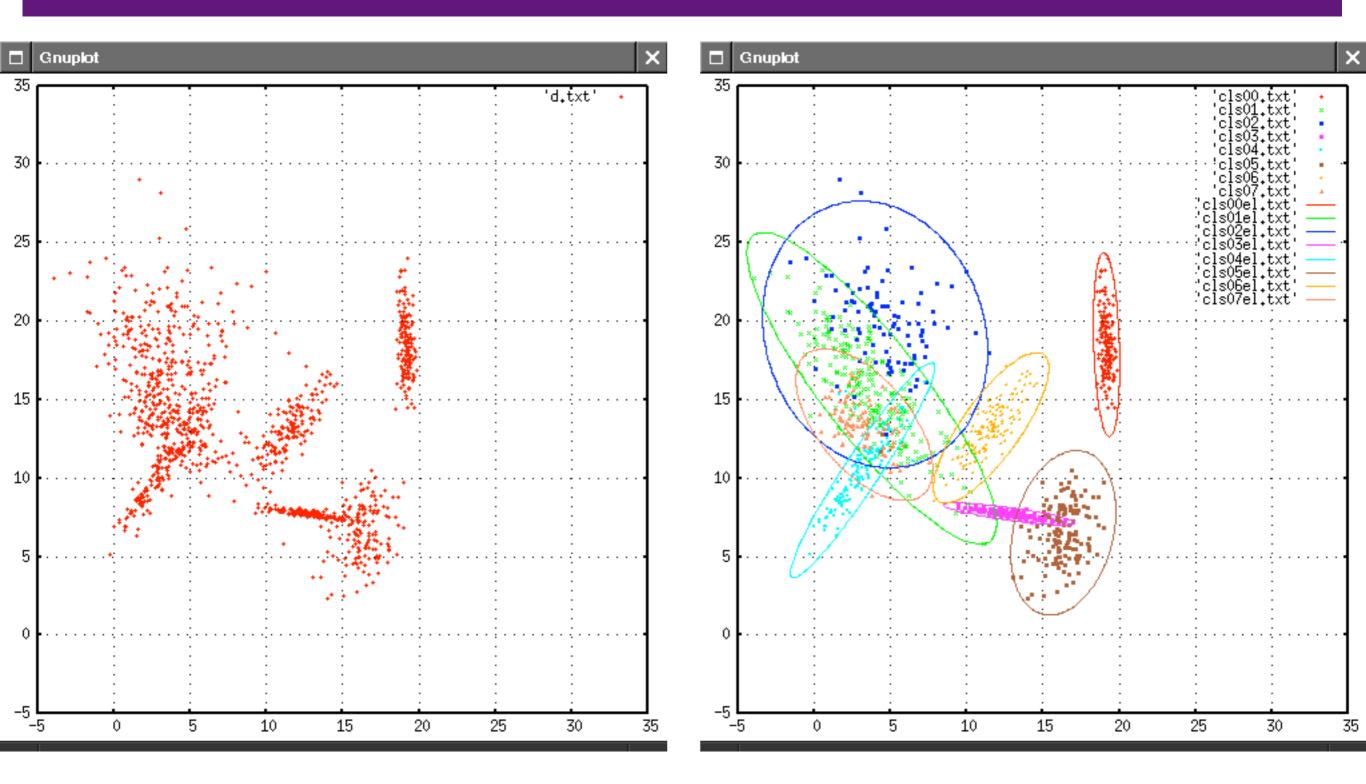
$$n_y = \sum_i q_i(y)$$

$$\mu_y = \frac{1}{n_y} \sum_{i=1}^n q_i(y) x_i$$

$$\Sigma_y = \frac{1}{n_y} \sum_{i=1}^n q_i(y) x_i x_i^\top - \mu_y \mu_y^\top$$

• Cluster probabilities $\theta^* = \operatorname*{argmax}_{\theta} \sum_{i=1}^{n} \sum_{y} q_i(y) \log p(y_i|\theta) \text{ hence } p(y|\theta) = \frac{n_y}{n}$

EM Clustering in action



Problem

Estimates will diverge (infinite variance, zero probability, tiny clusters)

Solution

- Use priors for μ, σ, θ
 - Dirichlet distribution for cluster probabilities
 - Gauss-Wishart for Gaussian
- Cluster distribution

• Cluster distribution

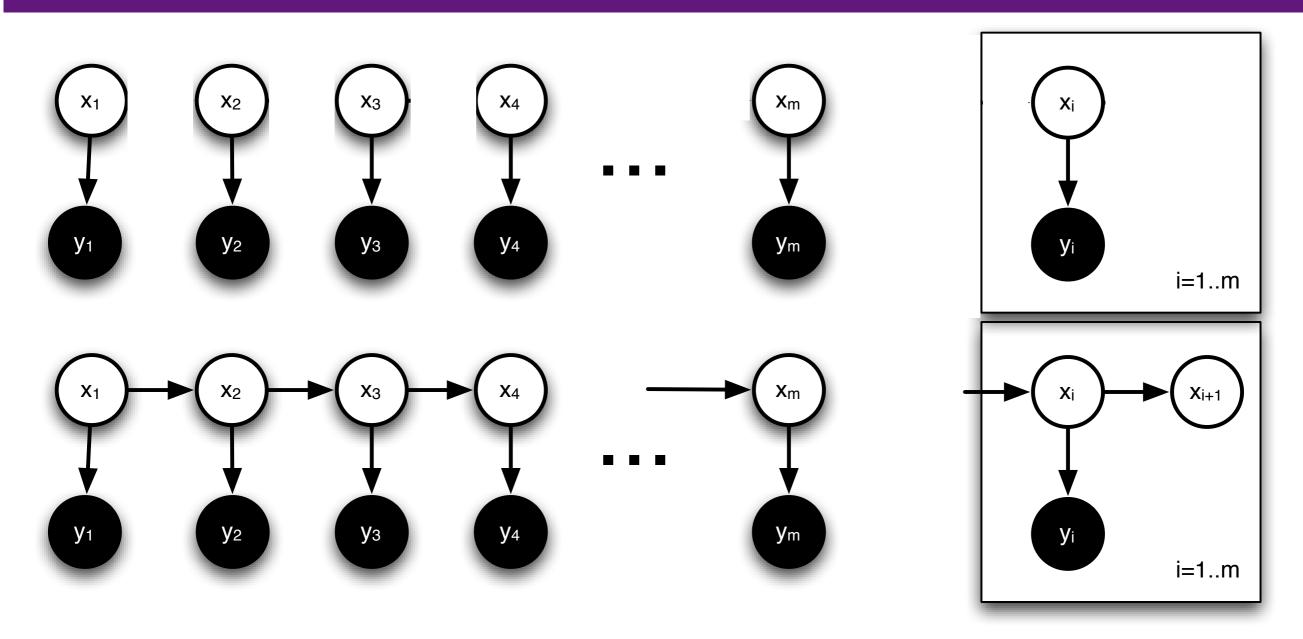
$$\mu_{y} = \frac{1}{n_{y}} \sum_{i=1}^{n} q_{i}(y) x_{i}$$

$$n_{y} = n_{0} + \sum_{i} q_{i}(y) \sum_{i=1}^{n} q_{i}(y) x_{i} x_{i}^{\top} + \frac{n_{0}}{n_{y}} \mathbf{1} - \mu_{y} \mu_{y}^{\top}$$
• Cluster probabilities

$$p(y|\theta) = \frac{n_{y}}{n+k \cdot n_{0}}$$

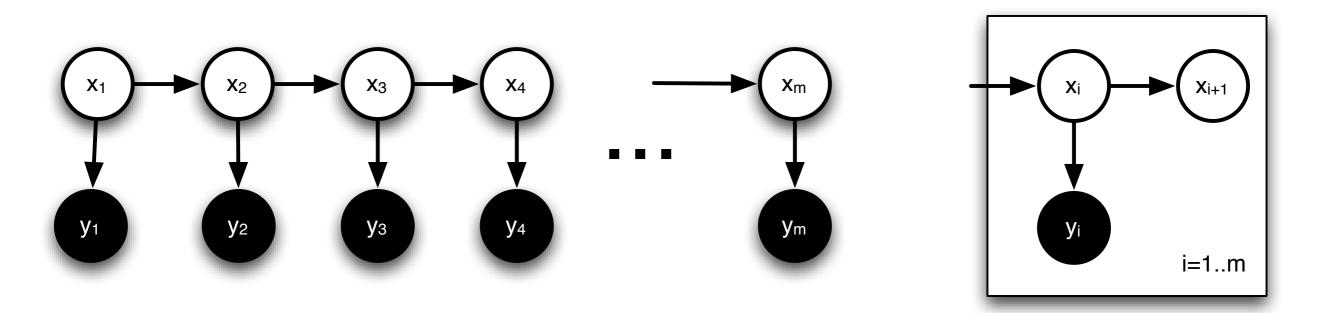
Hidden Markov Models

Clustering and Hidden Markov Models



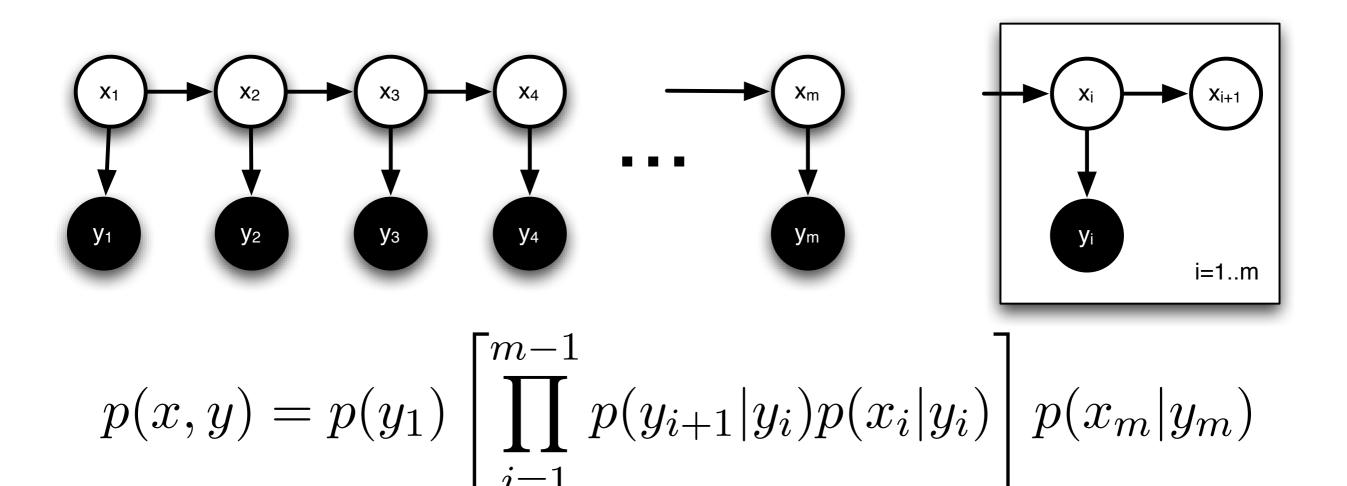
- Clustering no dependence between observations
- Hidden Markov Model dependence between states

Applications



- Speech recognition (sound|text)
- Optical character recognition (writing | text)
- Gene finding (DNA sequence | genes)
- Activity recognition (accelerometer | activity)

Inference

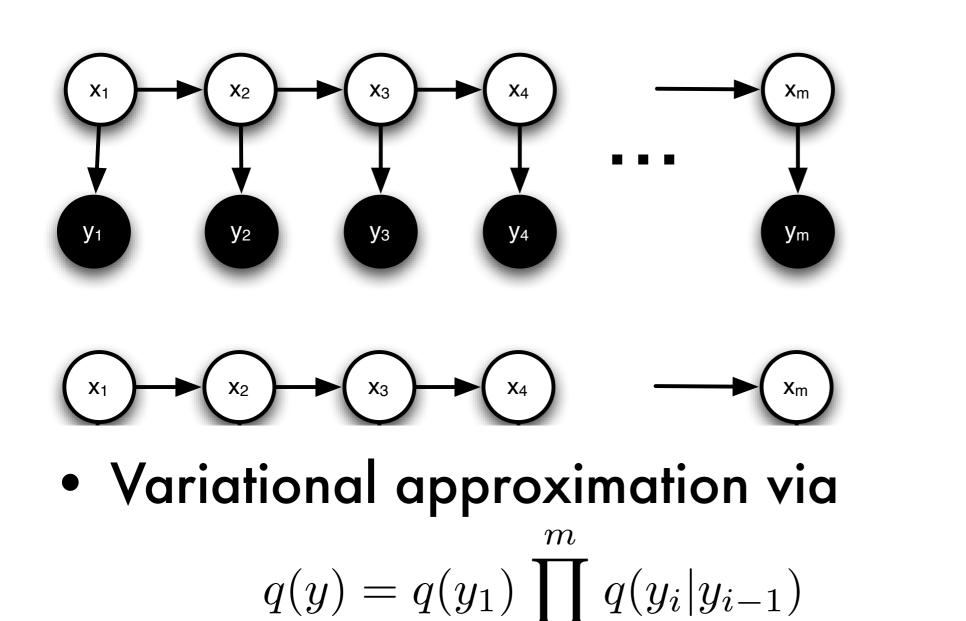


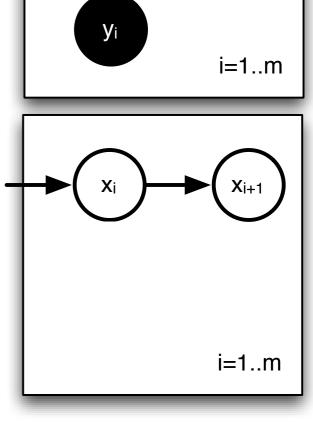
- Summing over y possible via dynamic programming
- Log-likelihood is nonconvex

Variational Approximation

- Lower bound on log-likelihood $\log p(x;\theta) \ge \int dq(y) \log p(x,y;\theta) - \int dq(y) \log q(y)$
- Key insight inequality holds for any q
 - Find q within subset Q to tighten inequality
 - Find parameters to maximize for fixed q
- Inference for graphical models where joint probability computation is infeasible

Variational Approximation





Xi

Xi+1

Compute p(x|y) via dynamic programming

x=2

Variational Method

- Initialize parameters somehow
- Set q(x) = p(x|y)Dynamic programming yields chain
- Maximizing the log-likelihod w.r.t. q

$$\log p(x;\theta) \ge \int dq(y) \log p(x,y;\theta) - \int dq(y) \log q(y)$$

$$p(x,y) = p(y_1) \begin{bmatrix} \prod_{i=1}^{m-1} p(y_{i+1}|y_i) p(x_i|y_i) \end{bmatrix} p(x_m|y_m)$$

$$q(y_1) \qquad q(y_{i+1}|y_i) \qquad q(y_i)$$

Parameter Estimation

$$\mathbf{E}_{y \sim q} \left[\log p(x, y; \theta) \right] = \mathbf{E}_{y_1 \sim q} \log p(y_1; \theta) + \sum_{i=1}^{n} \mathbf{E}_{y_i \sim q} \log p(x_i | y_i; \theta)$$

+
$$\sum_{i=1}^{m-1} \mathbf{E}_{y_{i+1}, y_i \sim q} \log p(y_{i+1}|y_i; \theta)$$

- $p(y_1)$ Since we have $\mathbf{E}_{q(y_1)}[\log p(y_1)]$ set $p(y_1) = q(y_1)$
- p(x_i|y_i)
 Same as clustering
 e.g. for Gaussians

$$\mu_y = \frac{1}{n_y} \sum_{i=1}^n q_i(y) x_i$$

$$\Sigma_y = \frac{1}{n_y} \sum_{i=1}^n q_i(y) x_i x_i^\top - \mu_y \mu_y^\top$$

Parameter Estimation

$$\begin{split} \mathbf{E}_{y \sim q} \left[\log p(x, y; \theta) \right] = & \mathbf{E}_{y_1 \sim q} \log p(y_1; \theta) + \sum_{i=1}^{m-1} \mathbf{E}_{y_i \sim q} \log p(x_i | y_i; \theta) \\ &+ \sum_{i=1}^{m-1} \mathbf{E}_{y_{i+1}, y_i \sim q} \log p(y_{i+1} | y_i; \theta) \end{split}$$

Maximum likelihood estimate for p(y'|y)

i=1

$$\sum_{i=1}^{m-1} q(y_{i+1} = a, y_i = b) \log p(a|b)$$

hence $p(a|b) = \frac{\sum_{i=1}^{m-1} q(y_{i+1} = a, y_i = b)}{\sum_{i=1}^{m-1} q(y_i = b)}$

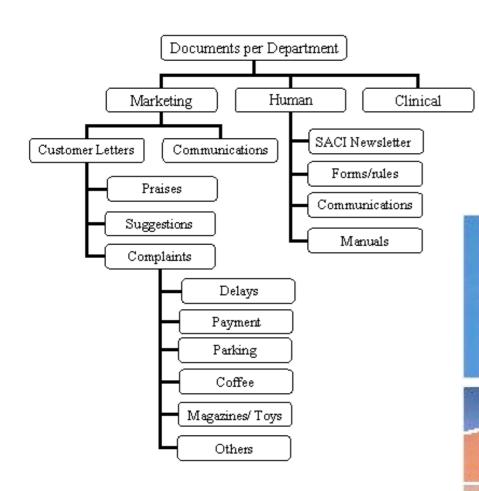
Smoothed Estimates

- Laplace prior on latent state distribution
 - Uniform distribution over states
 - Alternatively assume that state remains

$$p(a|b) = \frac{n_{a|b} + \sum_{i=1}^{m-1} q(y_{i+1} = a, y_i = b)}{n_b + \sum_{i=1}^{m-1} q(y_i = b)}$$

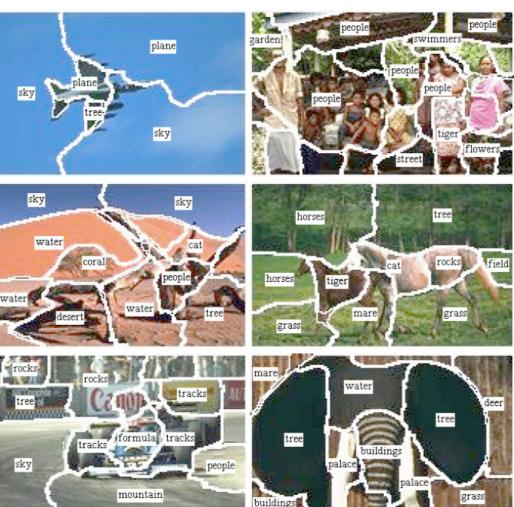
transition
smoother
aggregate
mass

Beyond mixtures



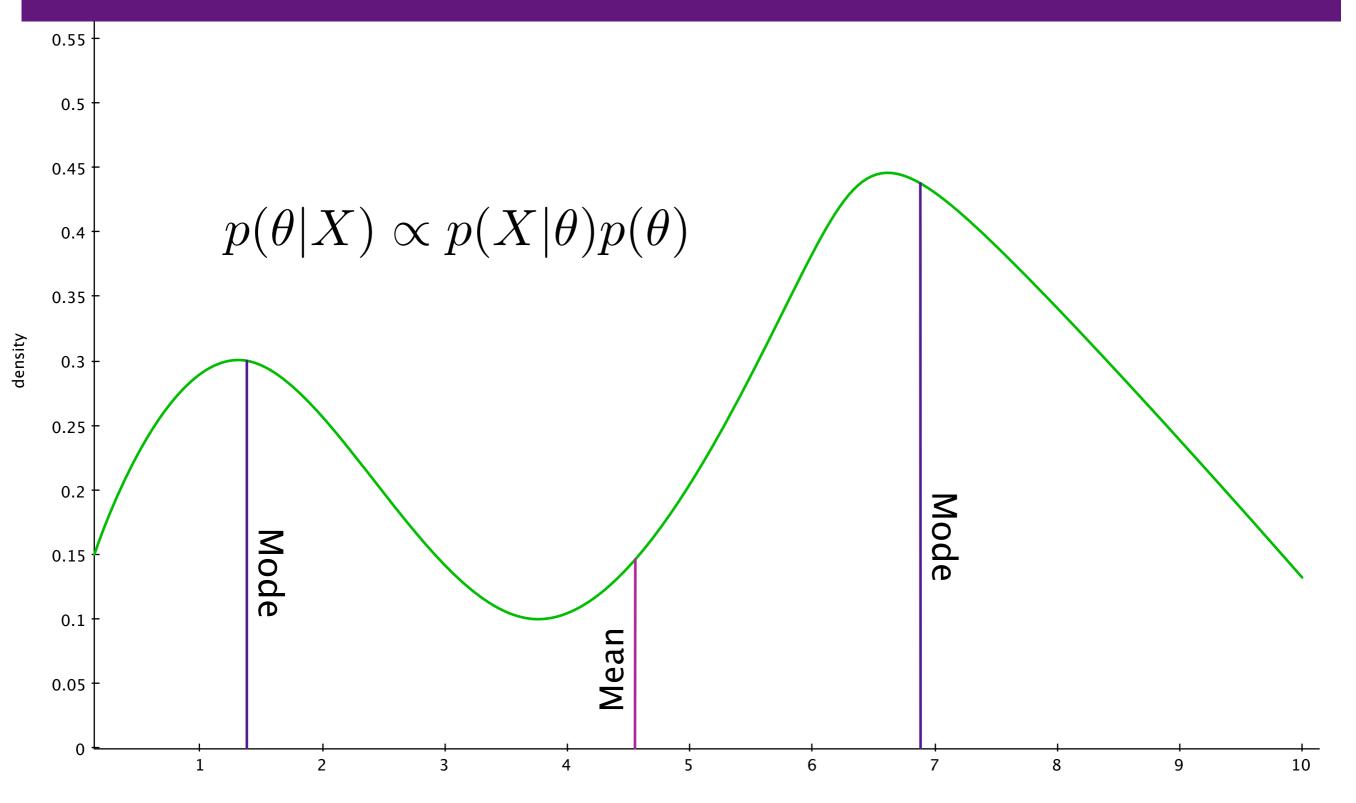
taxonomies

topics



chains

Is maximization (always) good?



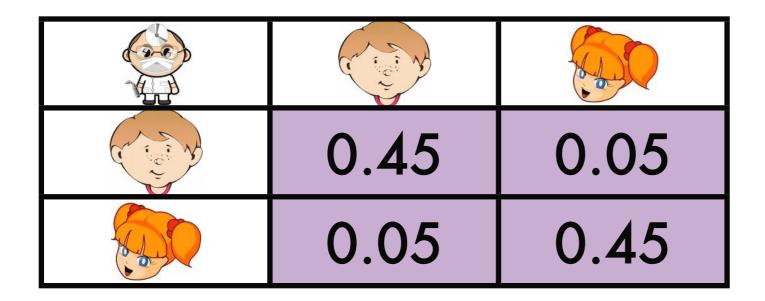
parameter1

Sampling

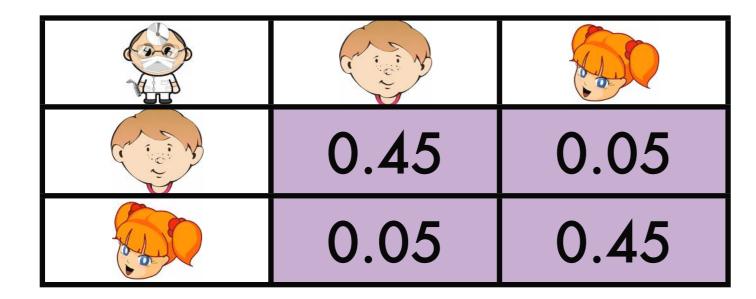
- Key idea
 - Want accurate distribution of the posterior
 - Sample from posterior distribution rather than maximizing it
- Problem direct sampling is usually intractable
- Solutions
 - Markov Chain Monte Carlo (complicated)
 - Gibbs Sampling (somewhat simpler)

) $x \sim p(x|x')$ and then $x' \sim p(x'|x)$

- Gibbs sampling:
 - In most cases direct sampling not possible
 - Draw one set of variables at a time

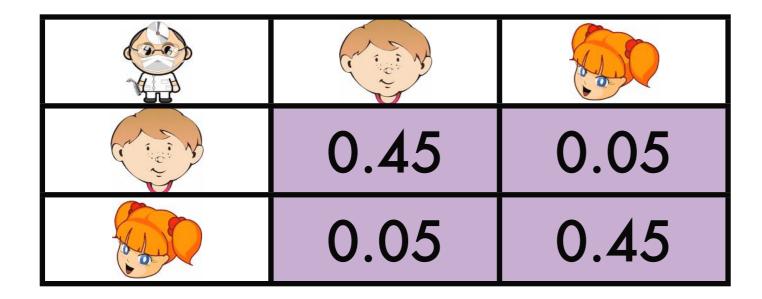


- Gibbs sampling:
 - In most cases direct sampling not possible
 - Draw one set of variables at a time



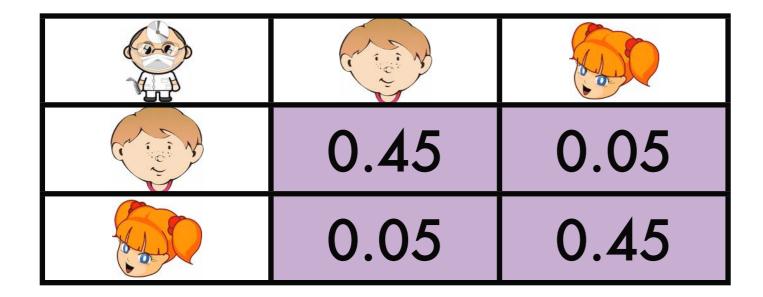
(b,g) - draw p(.,g)

- Gibbs sampling:
 - In most cases direct sampling not possible
 - Draw one set of variables at a time



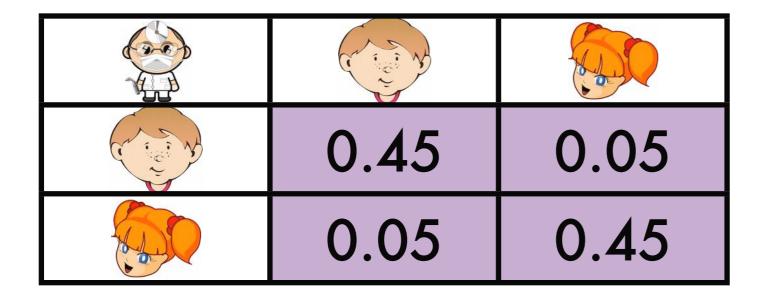
(b,g) - draw p(.,g) (g,g) - draw p(g,.)

- Gibbs sampling:
 - In most cases direct sampling not possible
 - Draw one set of variables at a time



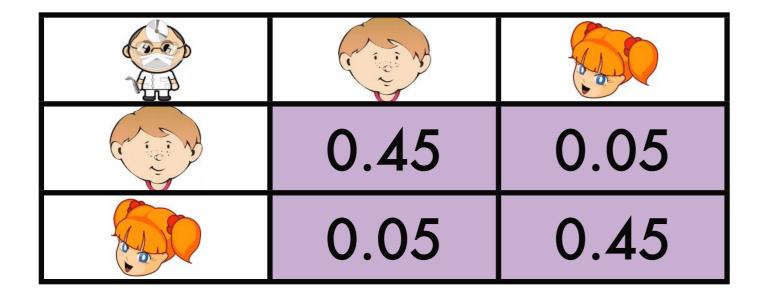
(b,g) - draw p(.,g) (g,g) - draw p(g,.) (g,g) - draw p(.,g)

- Gibbs sampling:
 - In most cases direct sampling not possible
 - Draw one set of variables at a time

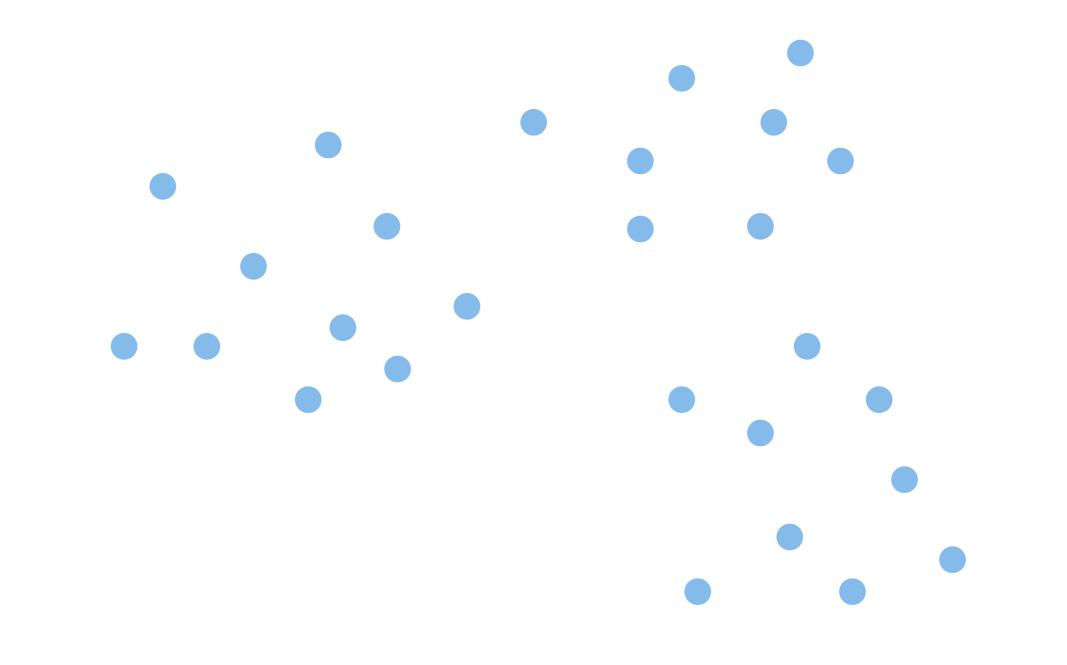


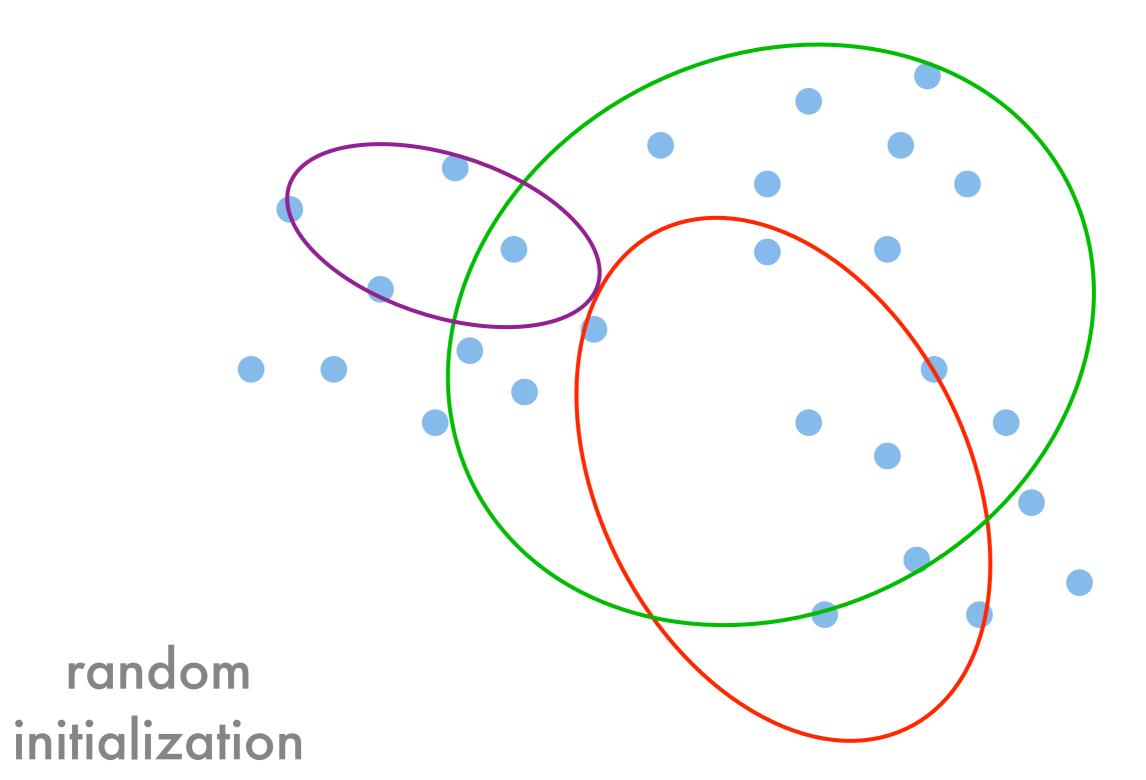
(b,g) - draw p(.,g) (g,g) - draw p(g,.) (g,g) - draw p(.,g) (b,g) - draw p(b,.)

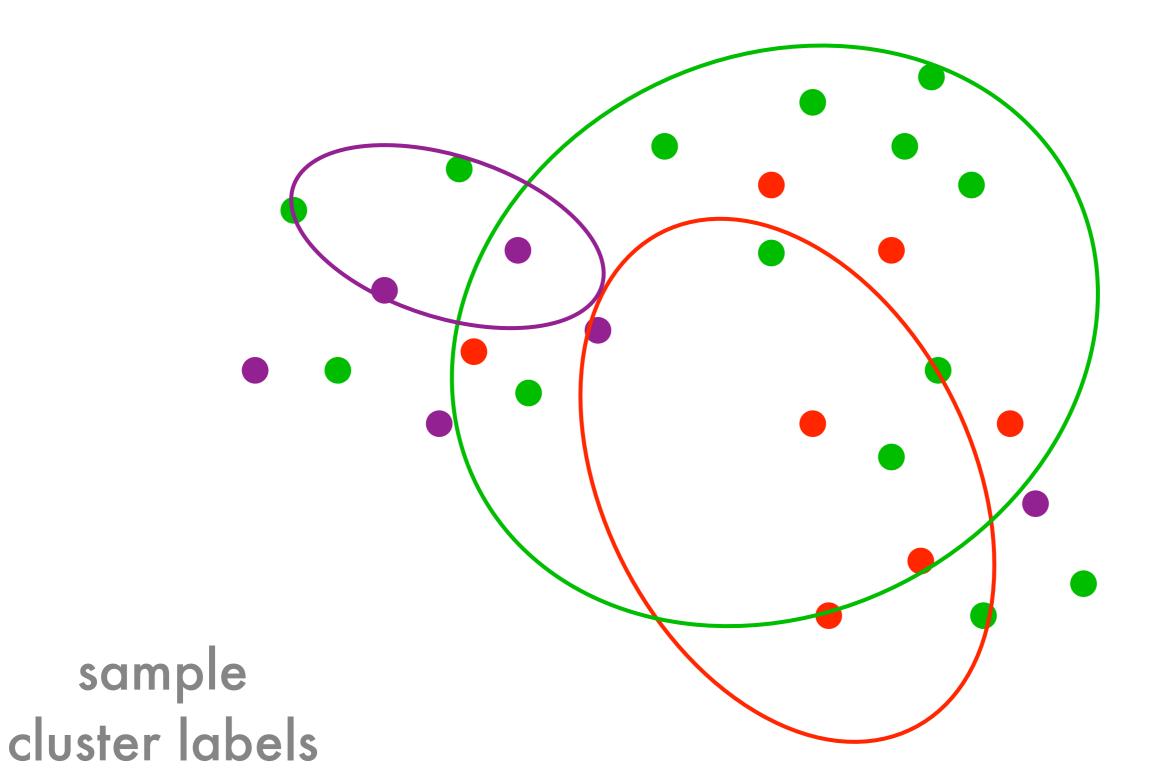
- Gibbs sampling:
 - In most cases direct sampling not possible
 - Draw one set of variables at a time

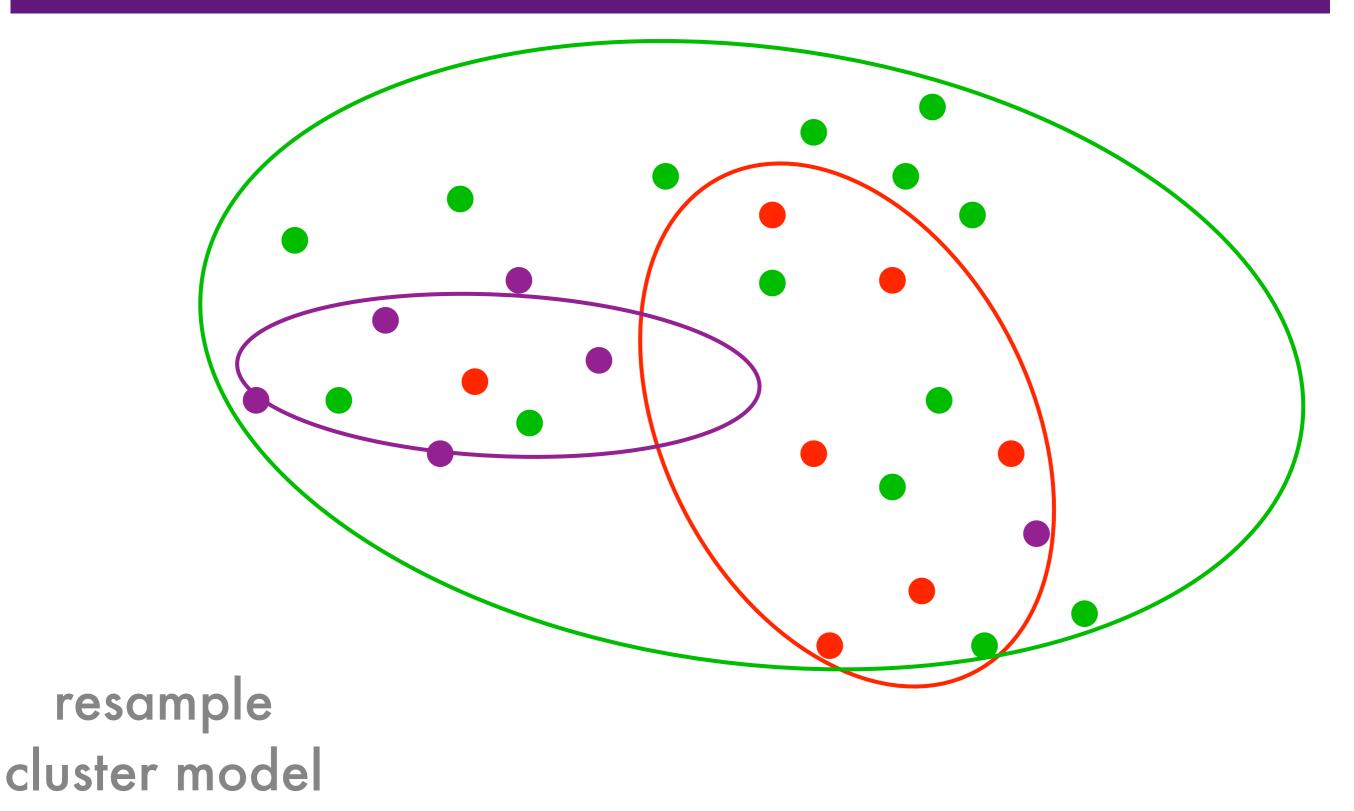


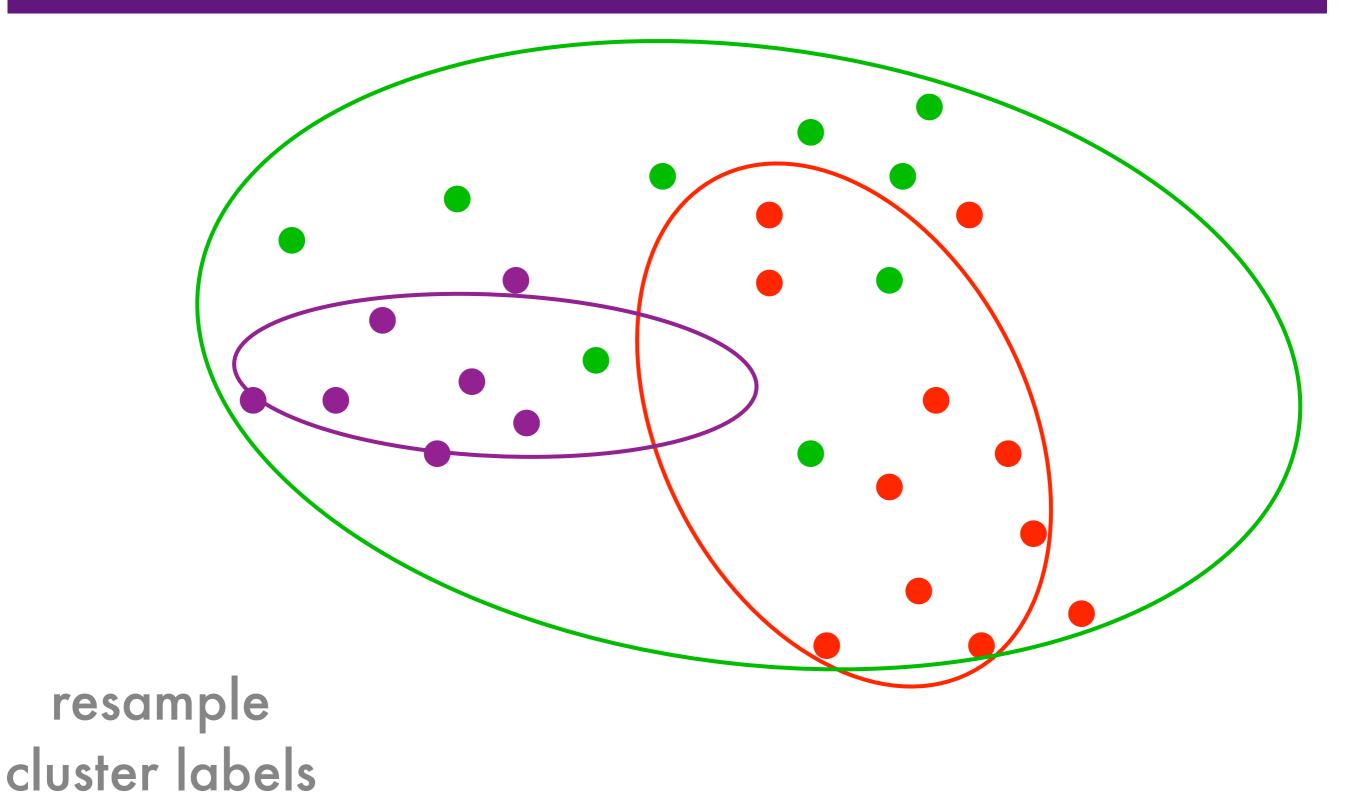
(b,g) - draw p(.,g) (g,g) - draw p(g,.) (g,g) - draw p(.,g) (b,g) - draw p(b,.) (b,b) ...

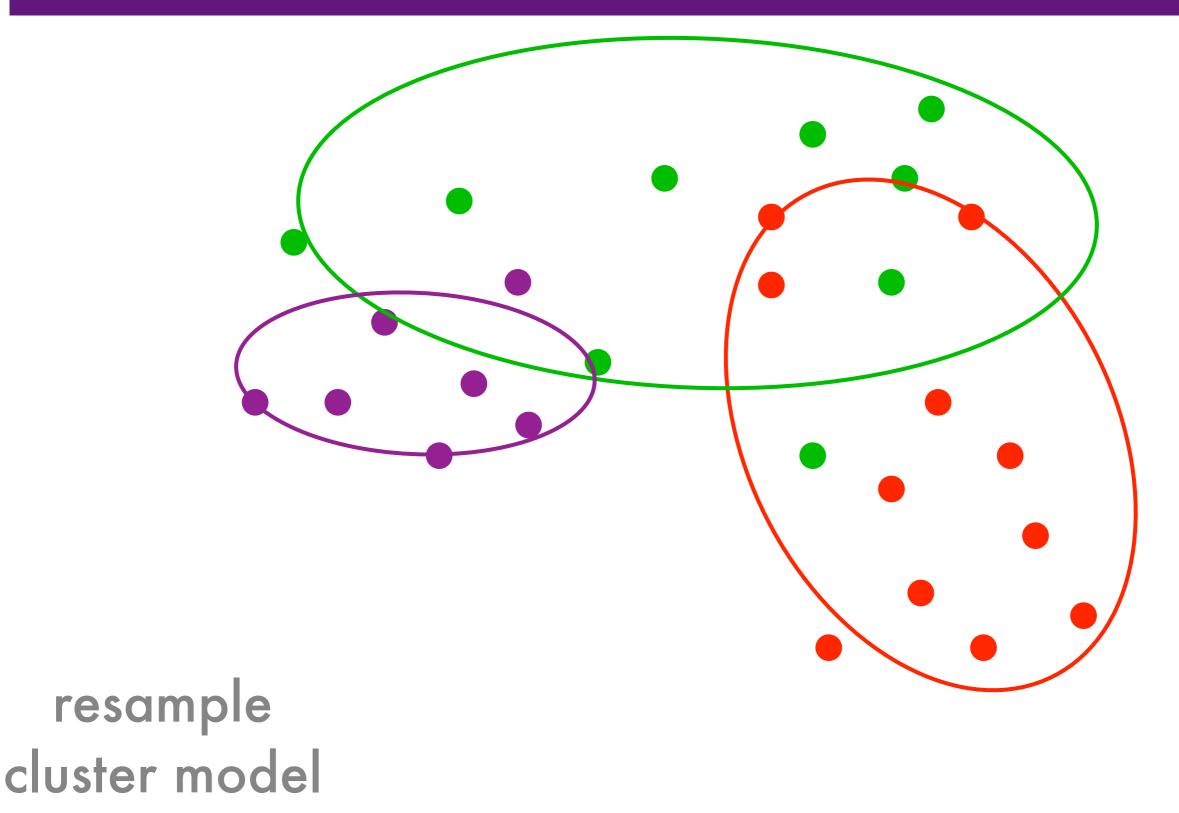




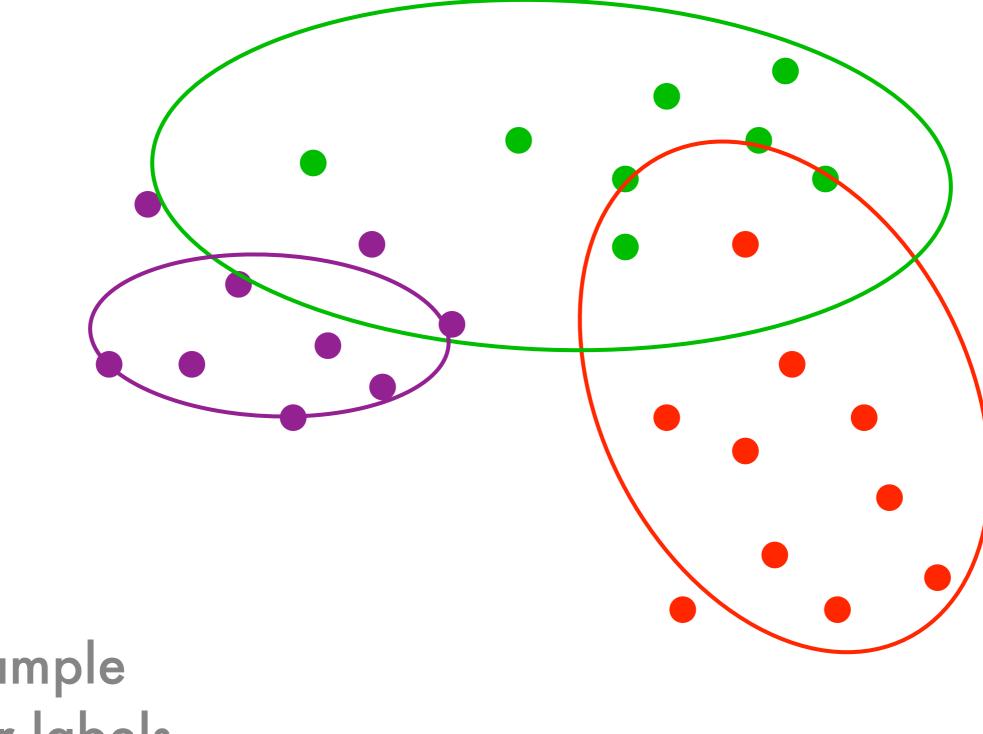






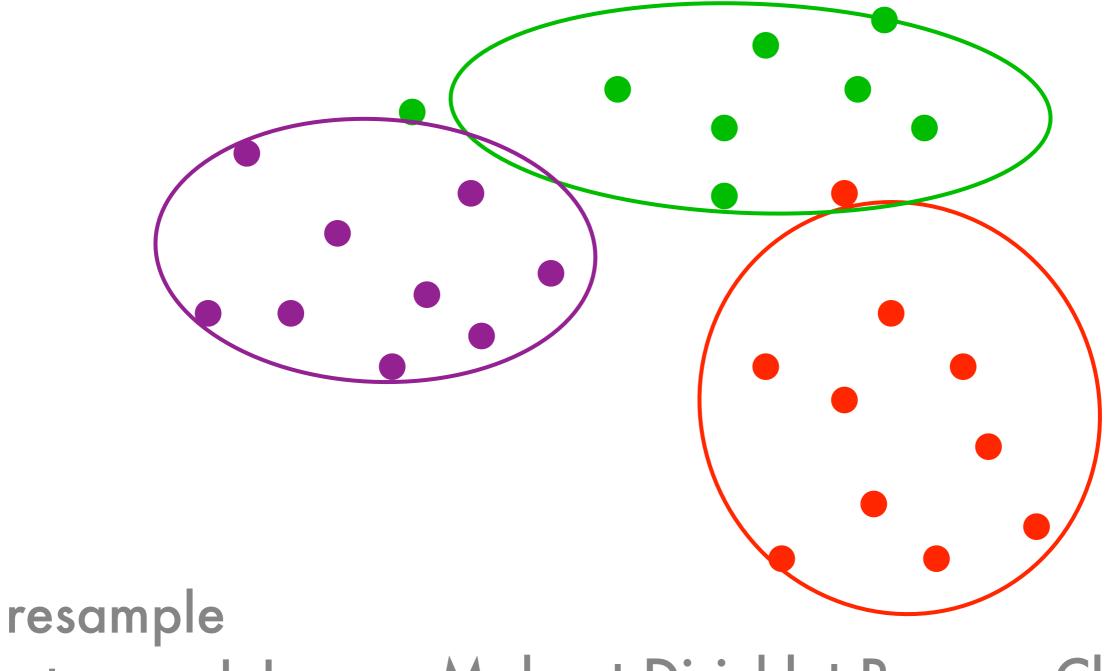


Gibbs sampling for clustering



resample cluster labels

Gibbs sampling for clustering

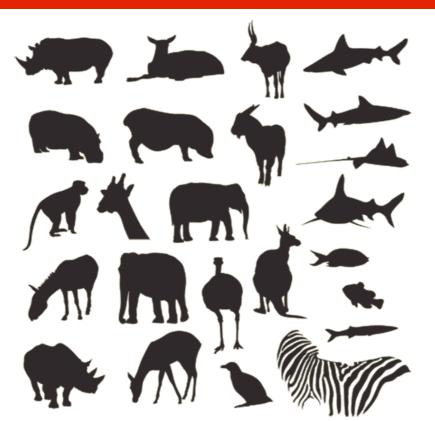


cluster model e.g. Mahout Dirichlet Process Clustering

Inference Algorithm ≠ Model

Inference Algorithm ≠ Model Corollary: EM ≠ Clustering

Graphical Models Zoology



Models

Statistics

Inference Methods

Efficient Computation

Models

11, 12 Priors

Conjugate Prior

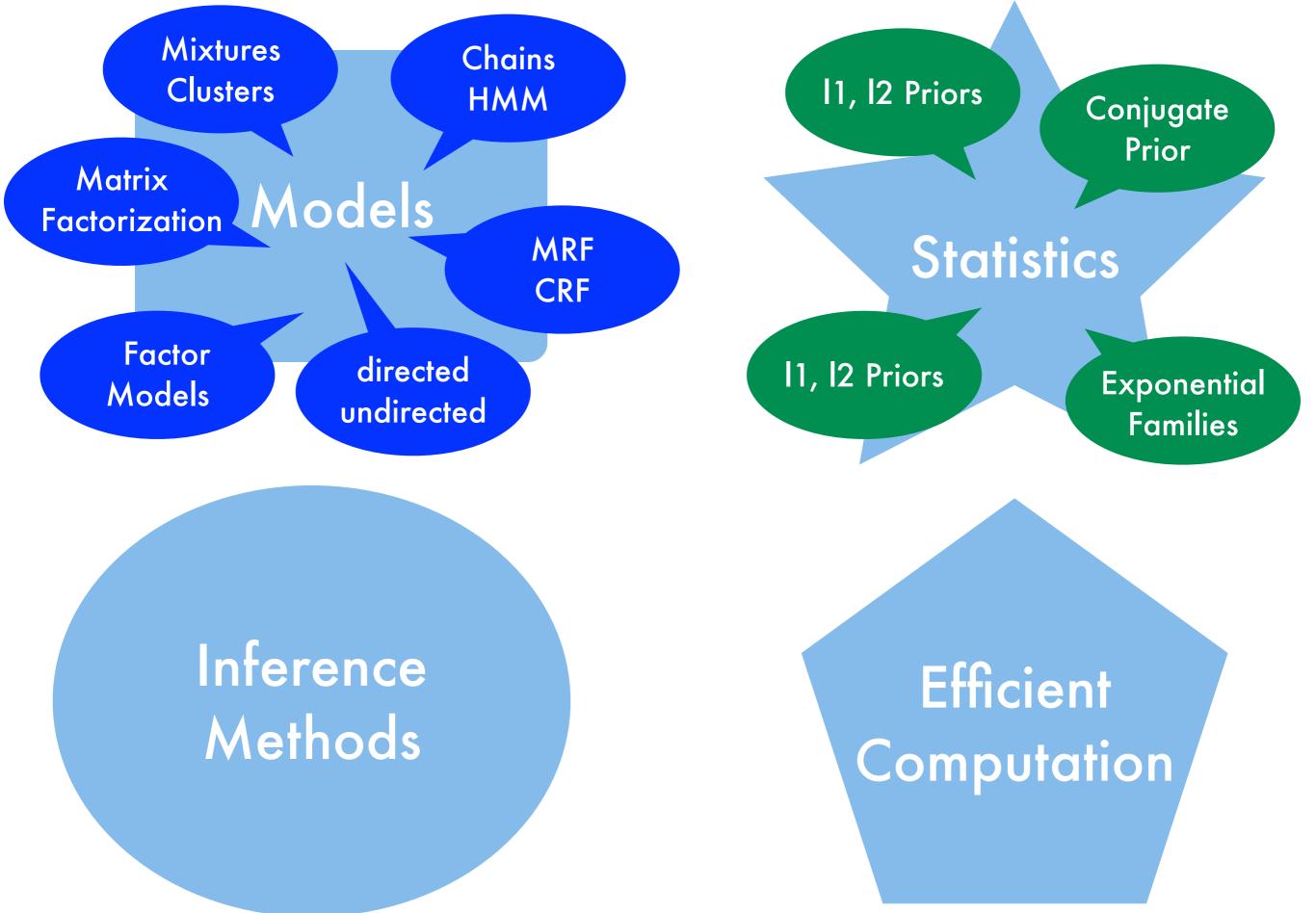
Statistics

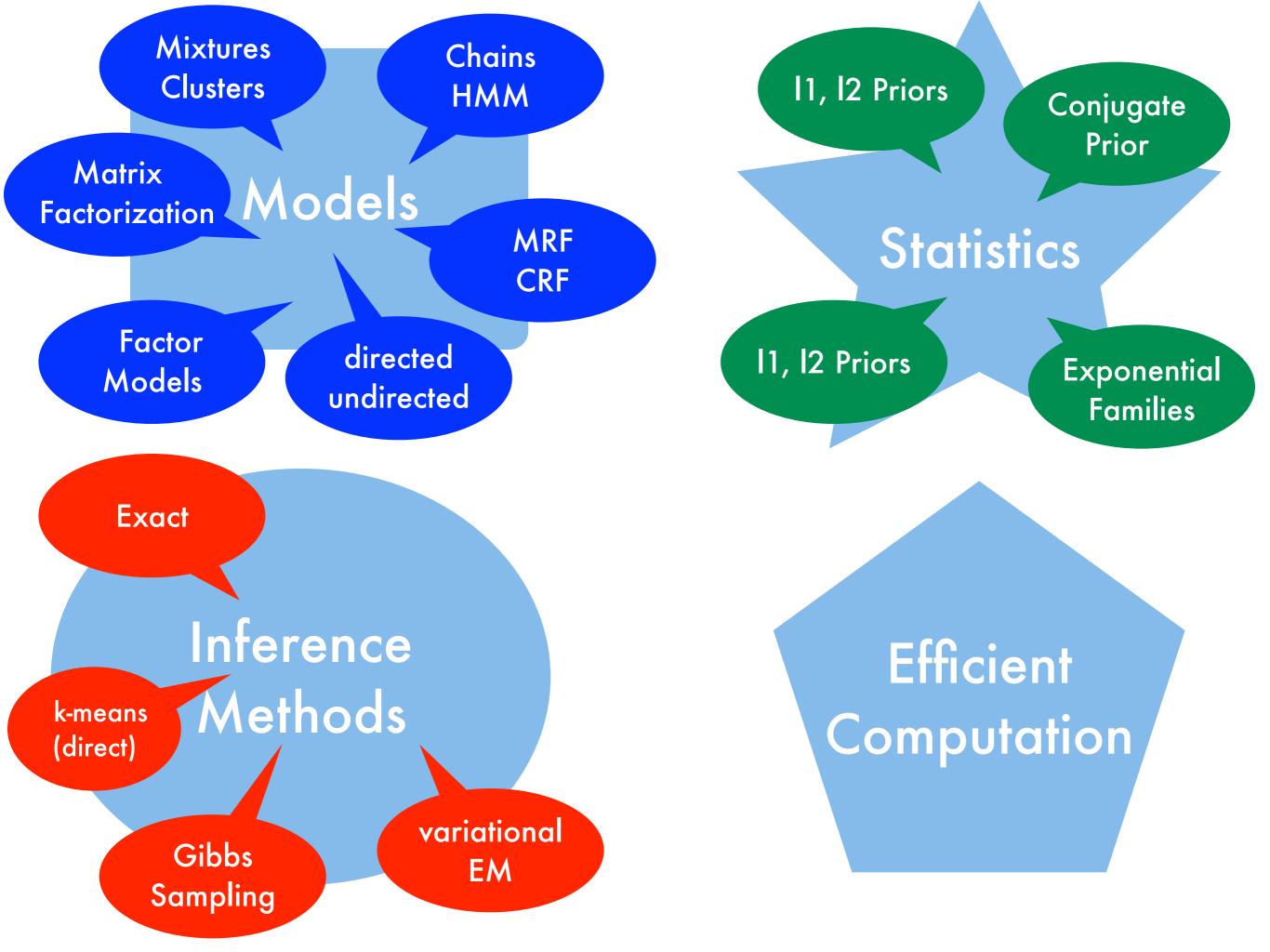
11, 12 Priors

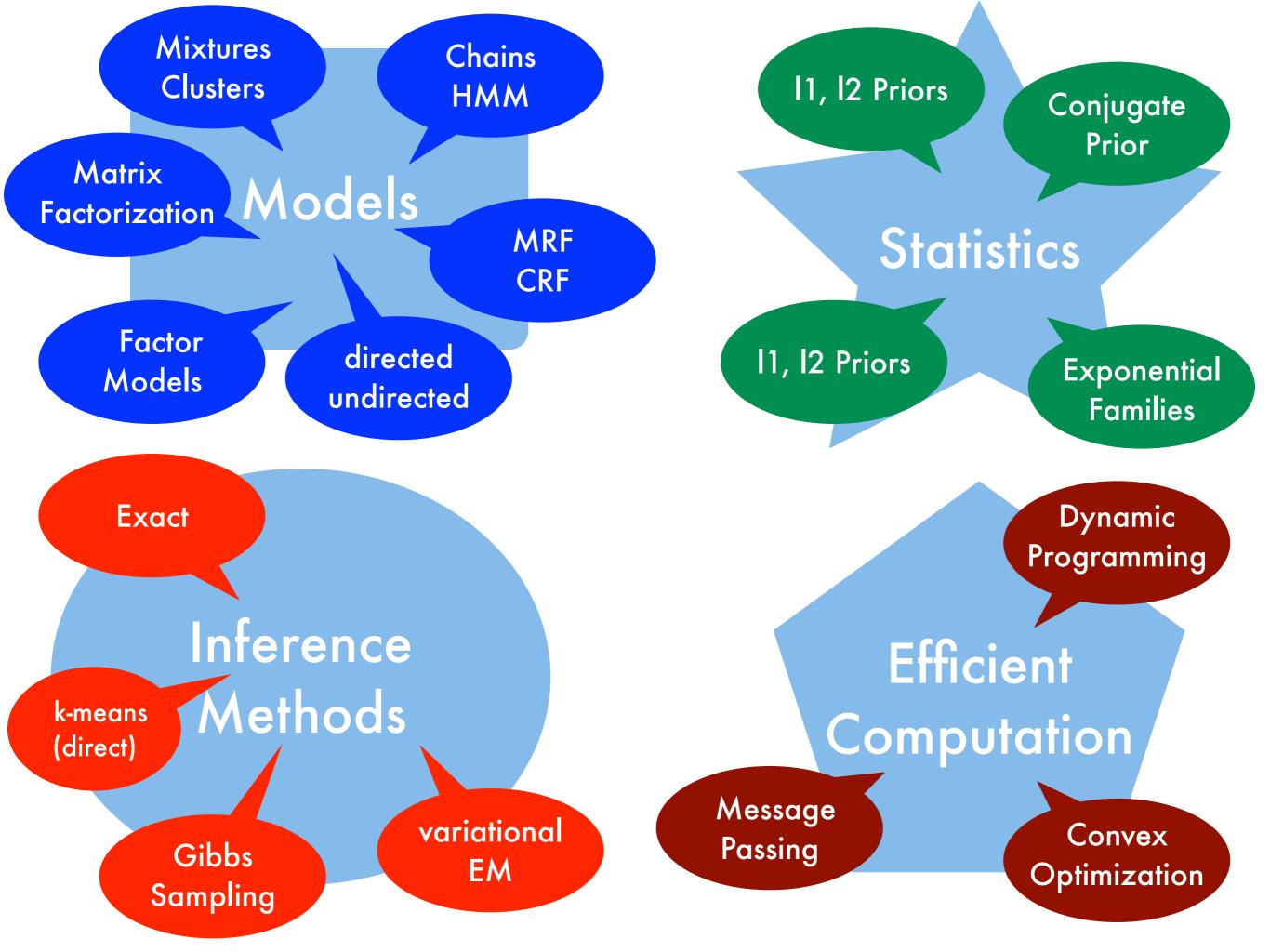
Exponential Families

Inference Methods

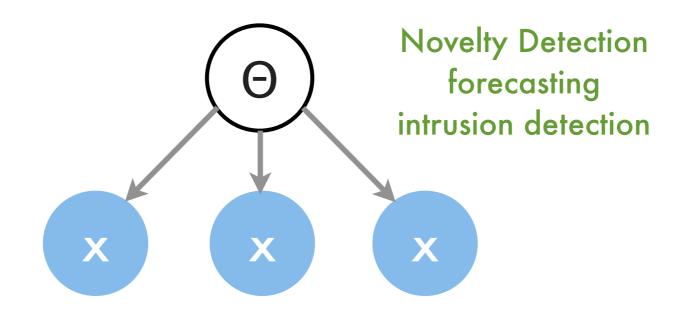
Efficient Computation

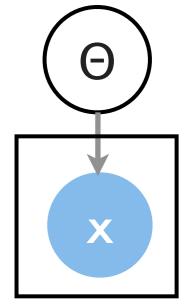






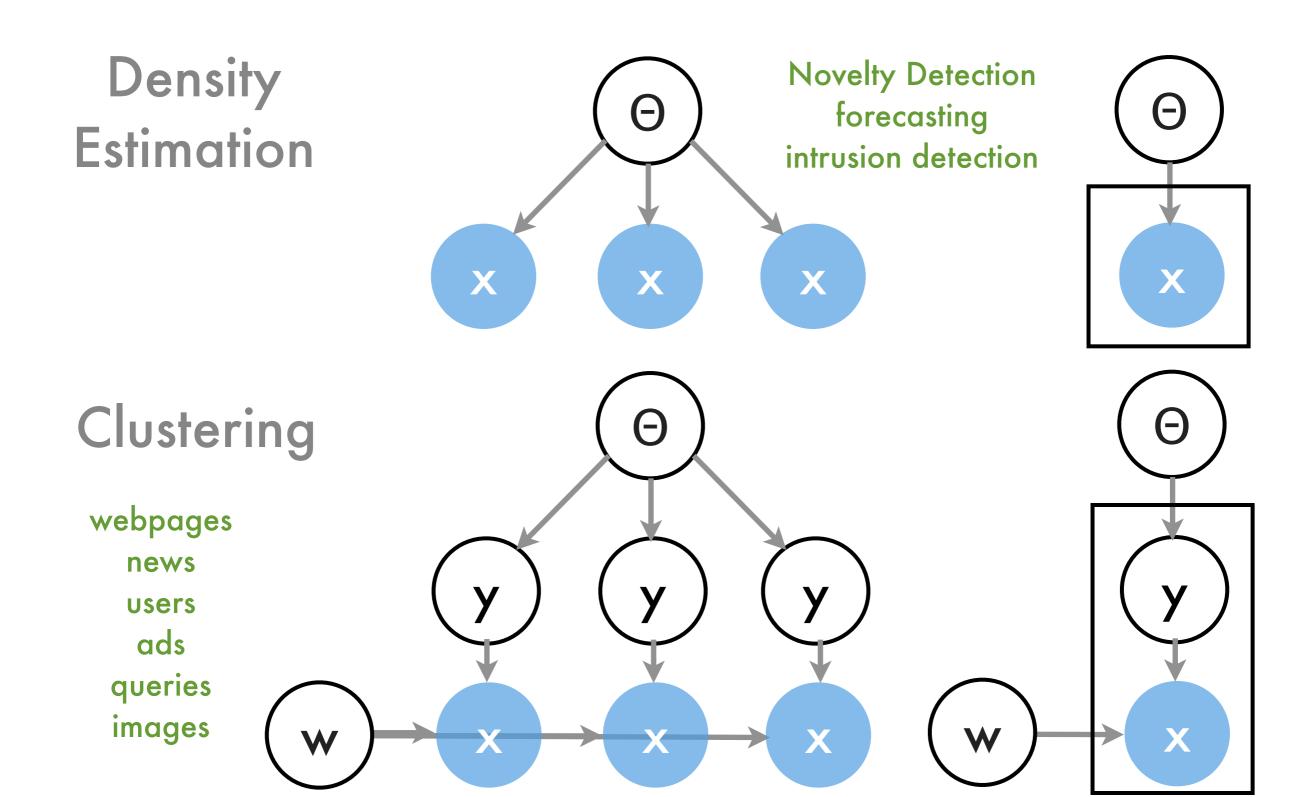
'Unsupervised' Models





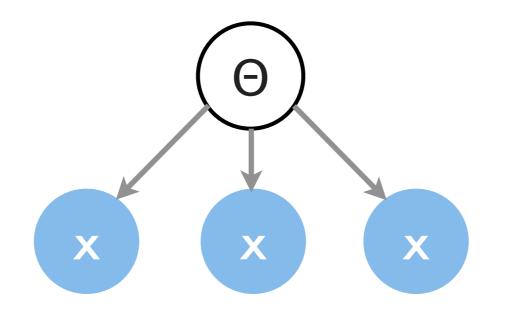
webpages
news
Users
ads
queries
images

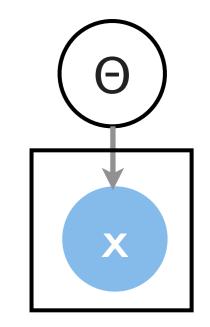
'Unsupervised' Models



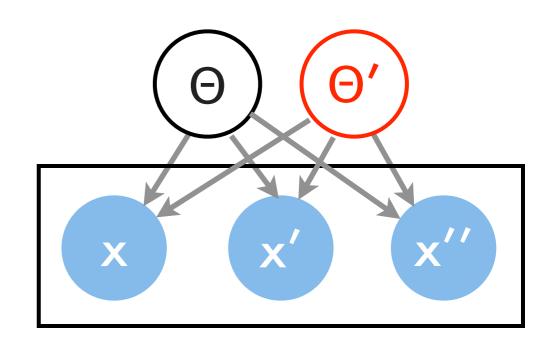
'Unsupervised' Models

Density Estimation





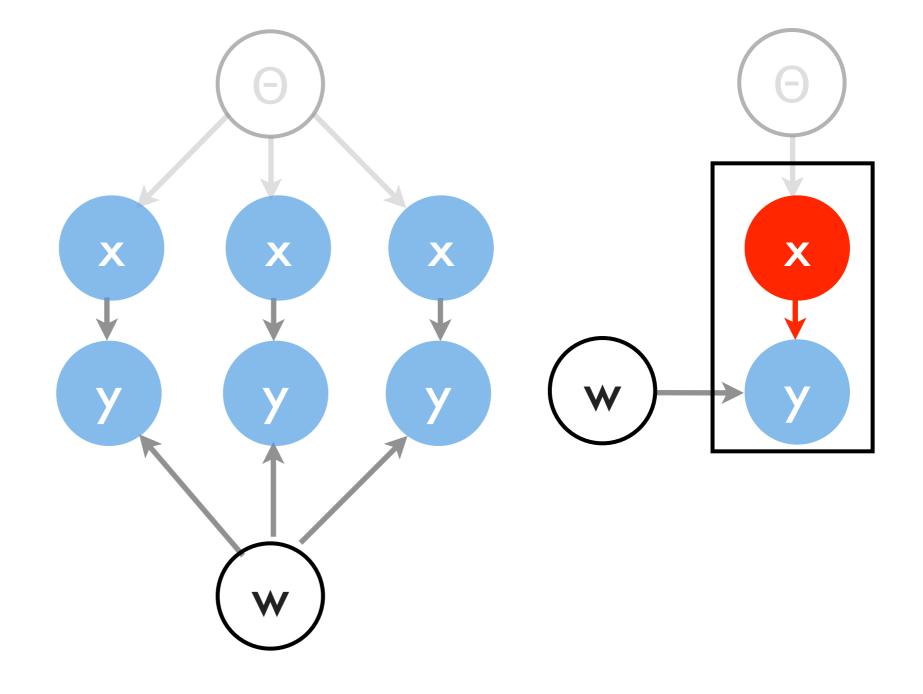
Factor Analysis



'Supervised' Models

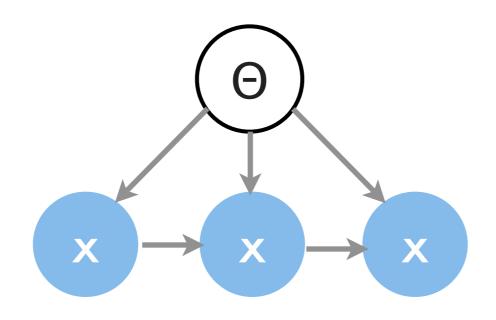
Classification Regression

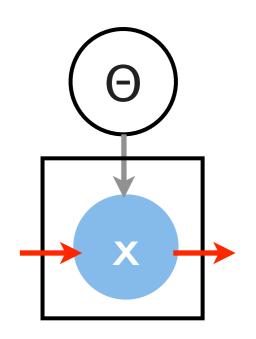
> spam filtering tiering crawling categorization bid estimation tagging



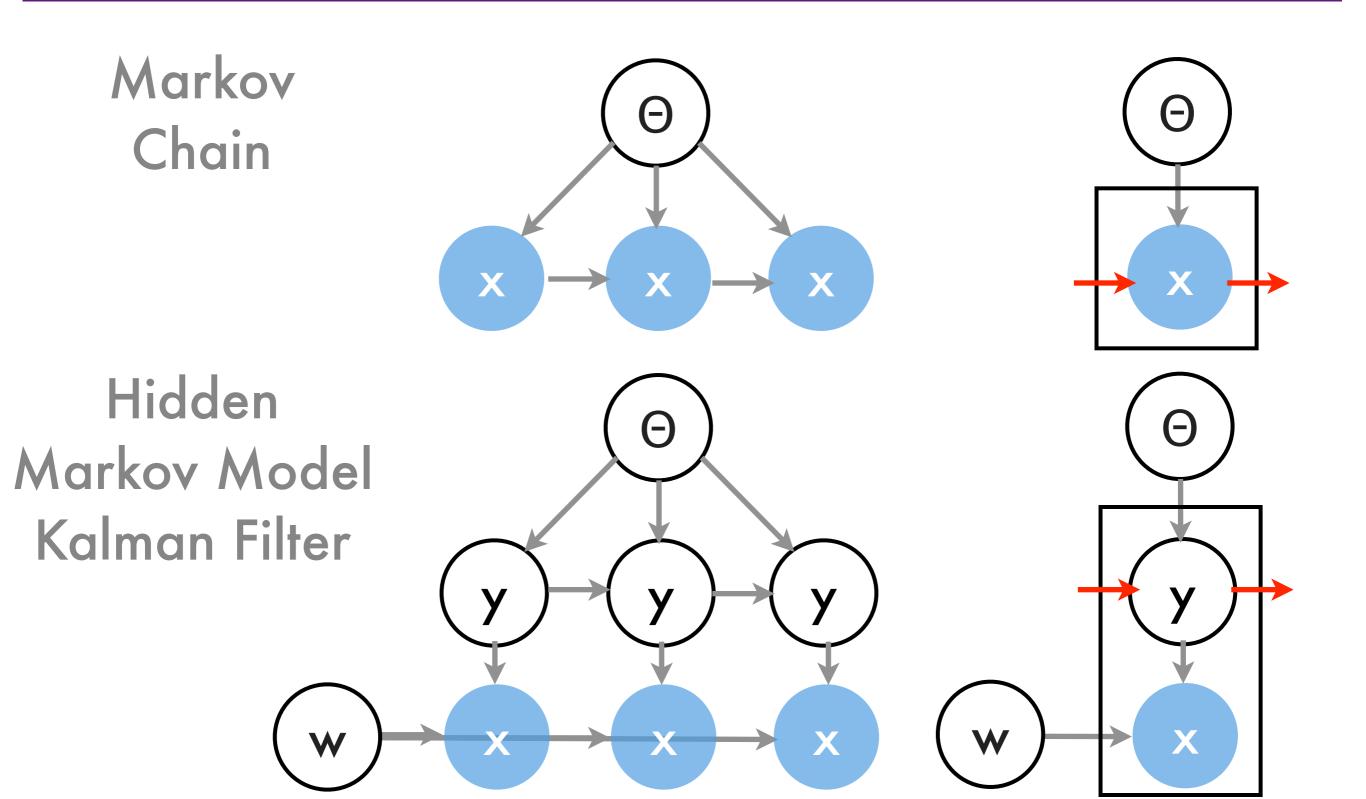
Chains

Markov Chain

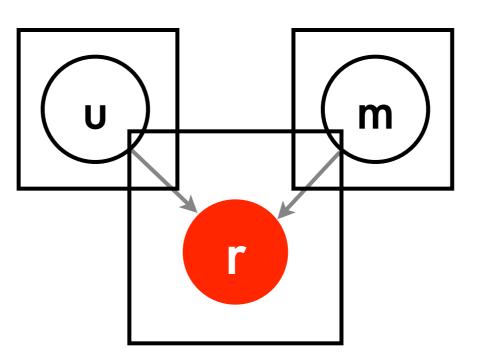


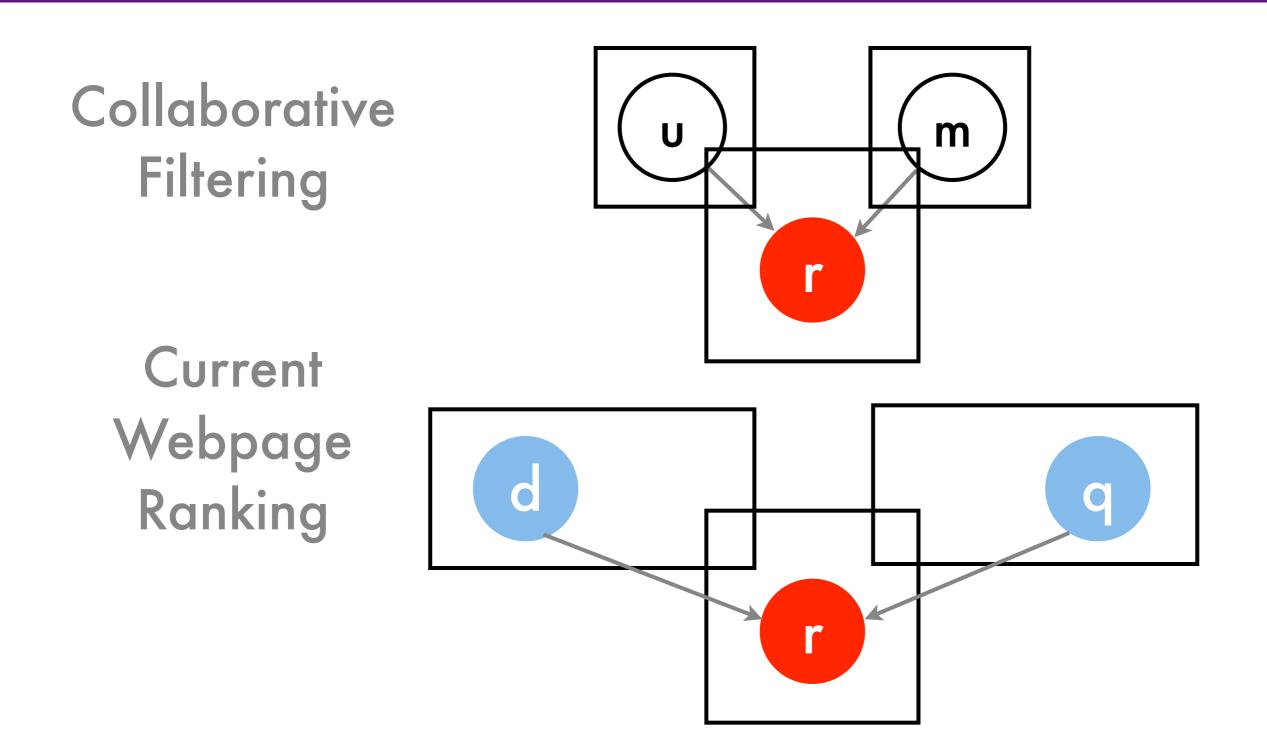


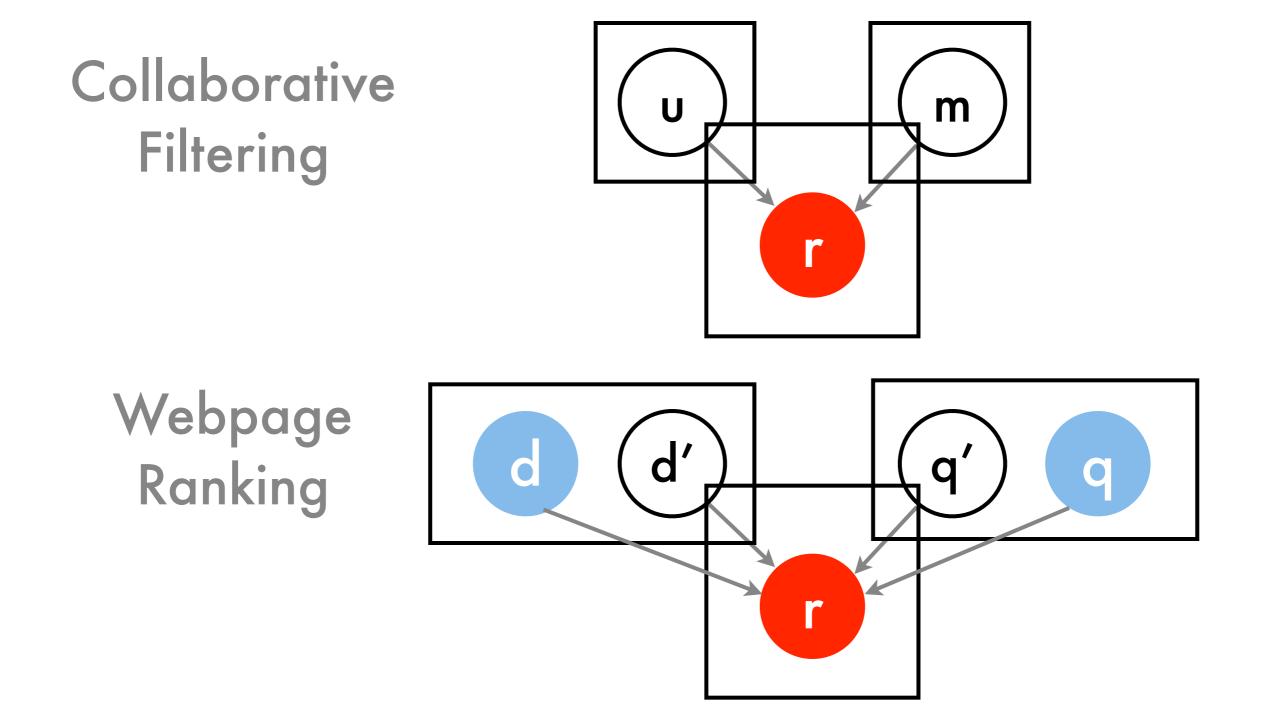
Chains



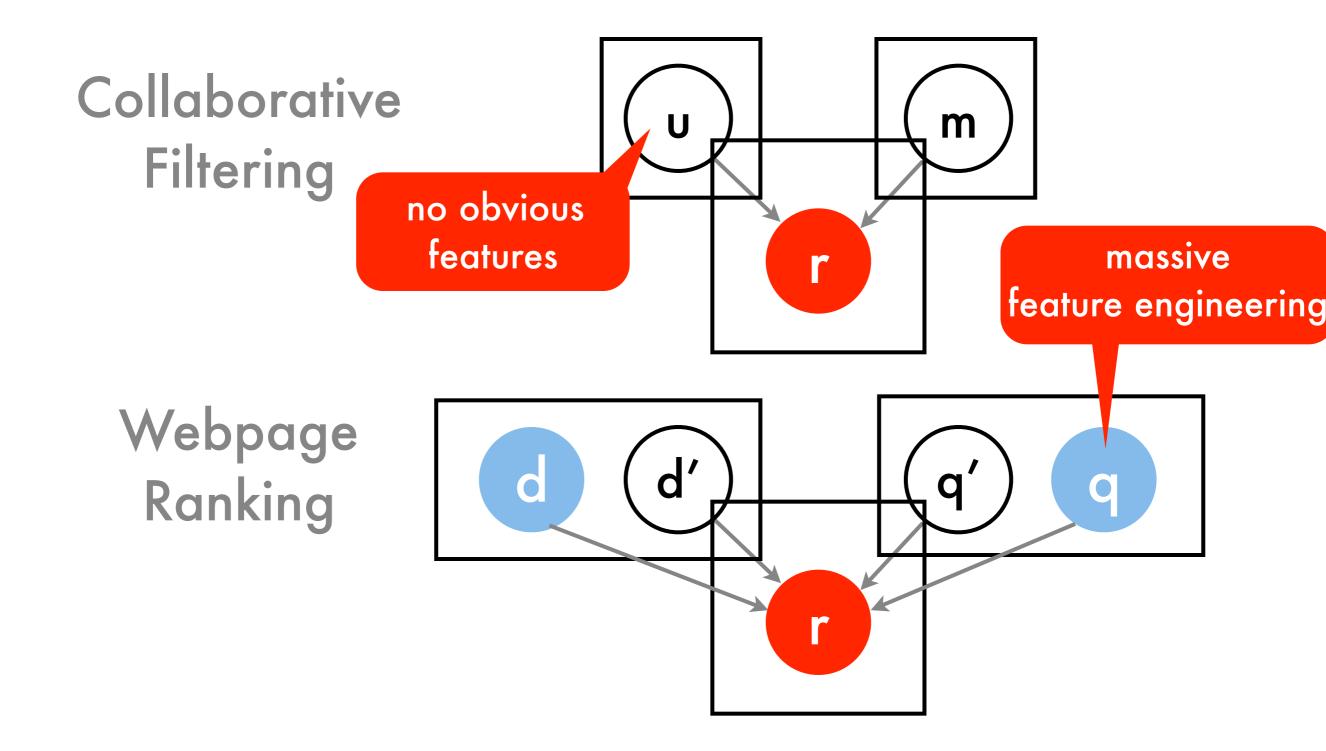
Collaborative Filtering

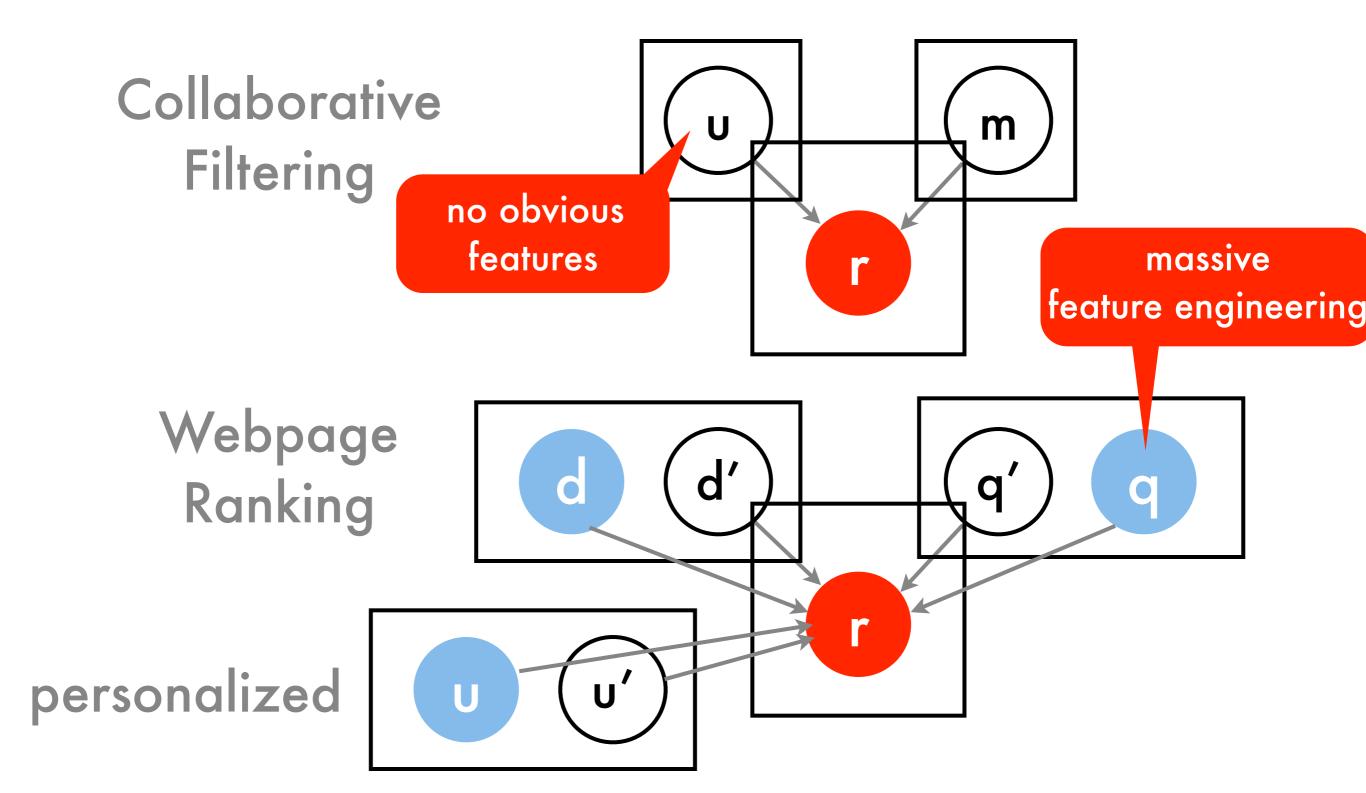


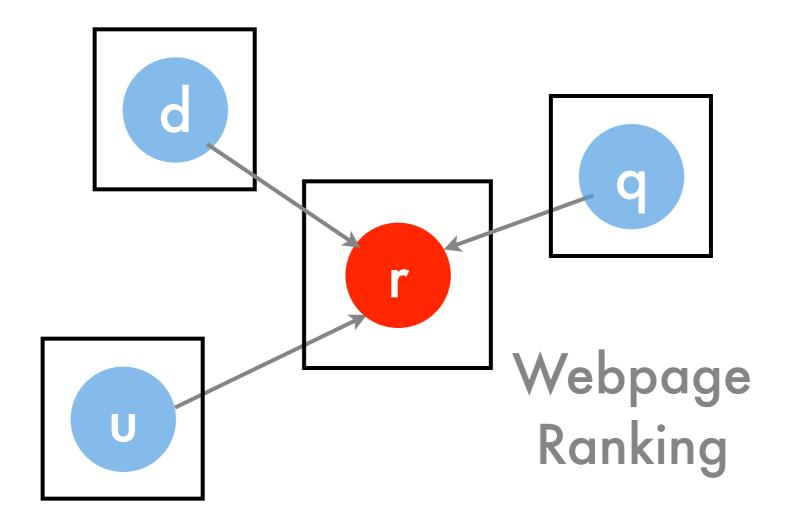


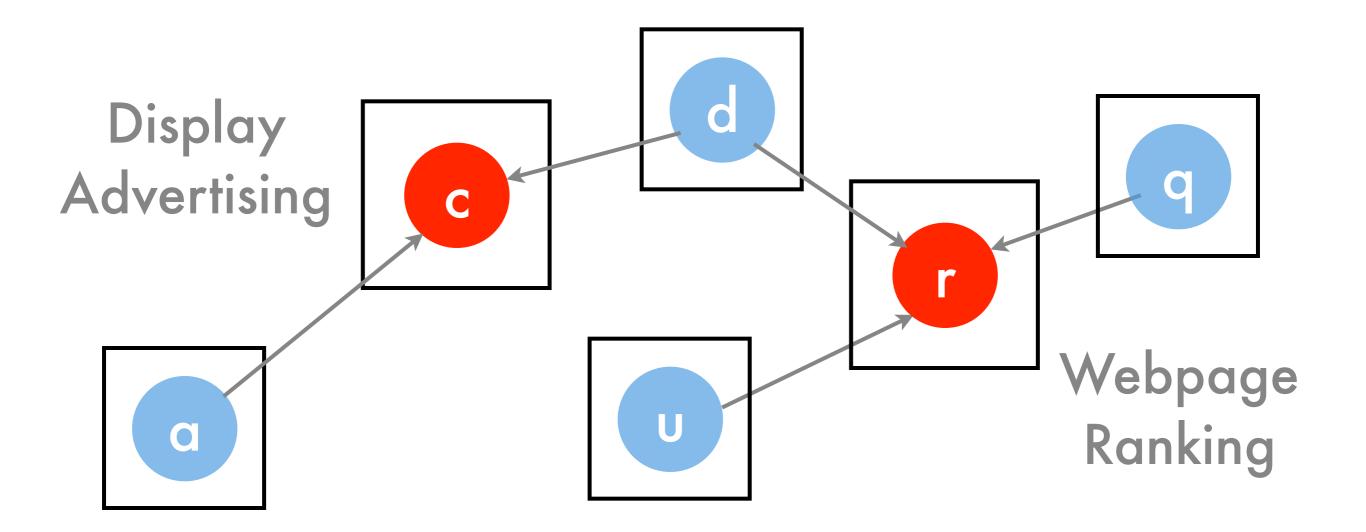


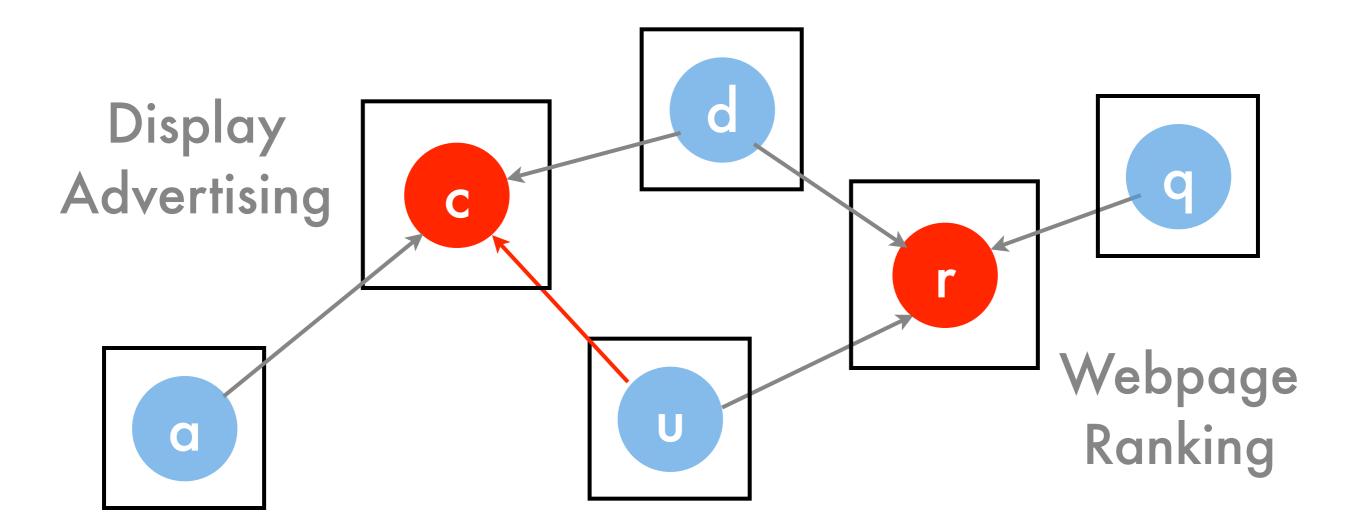


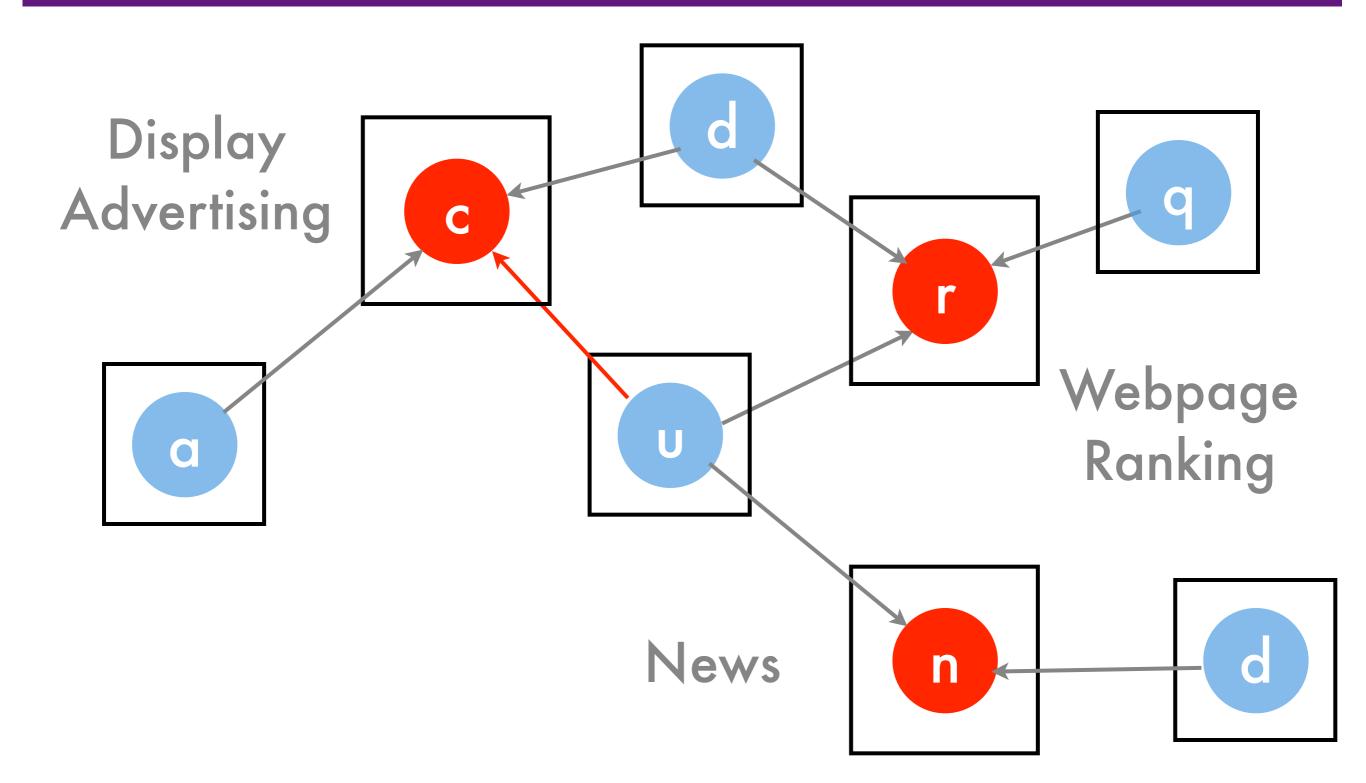


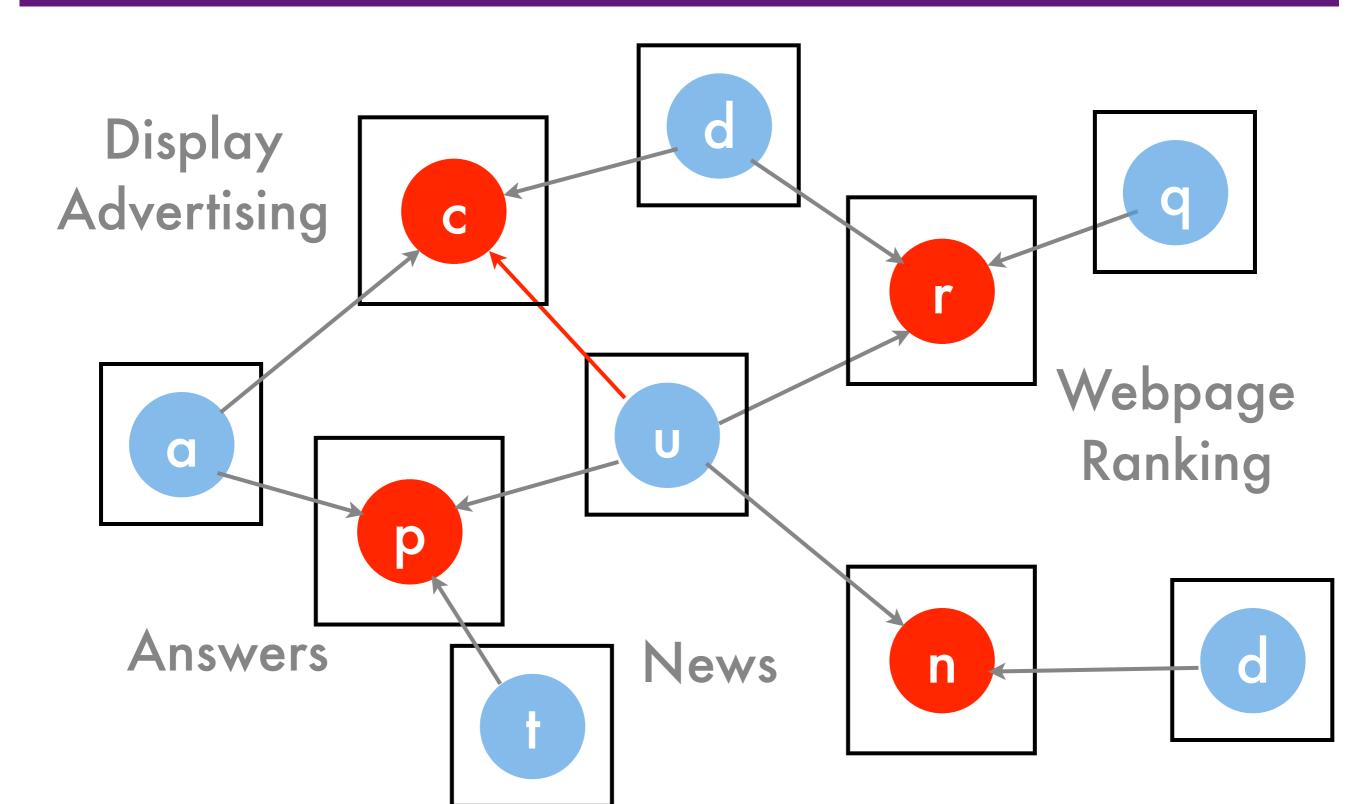




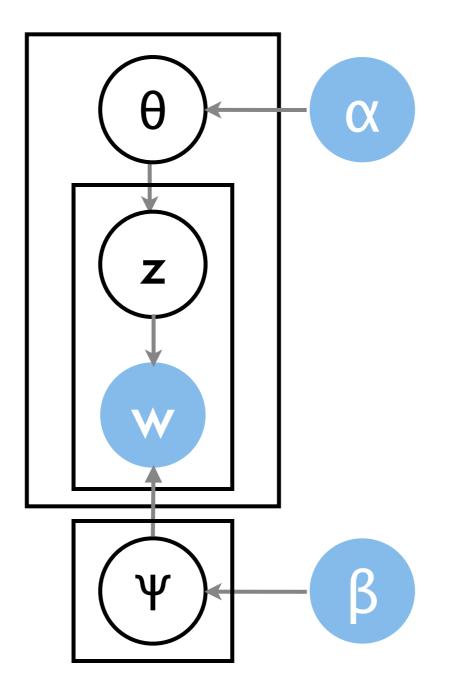






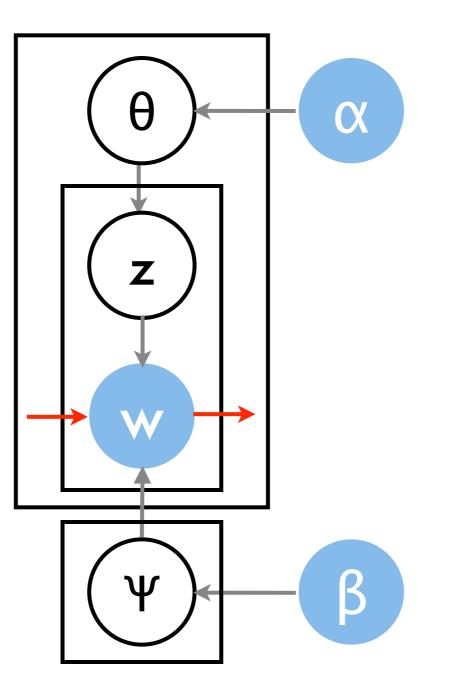


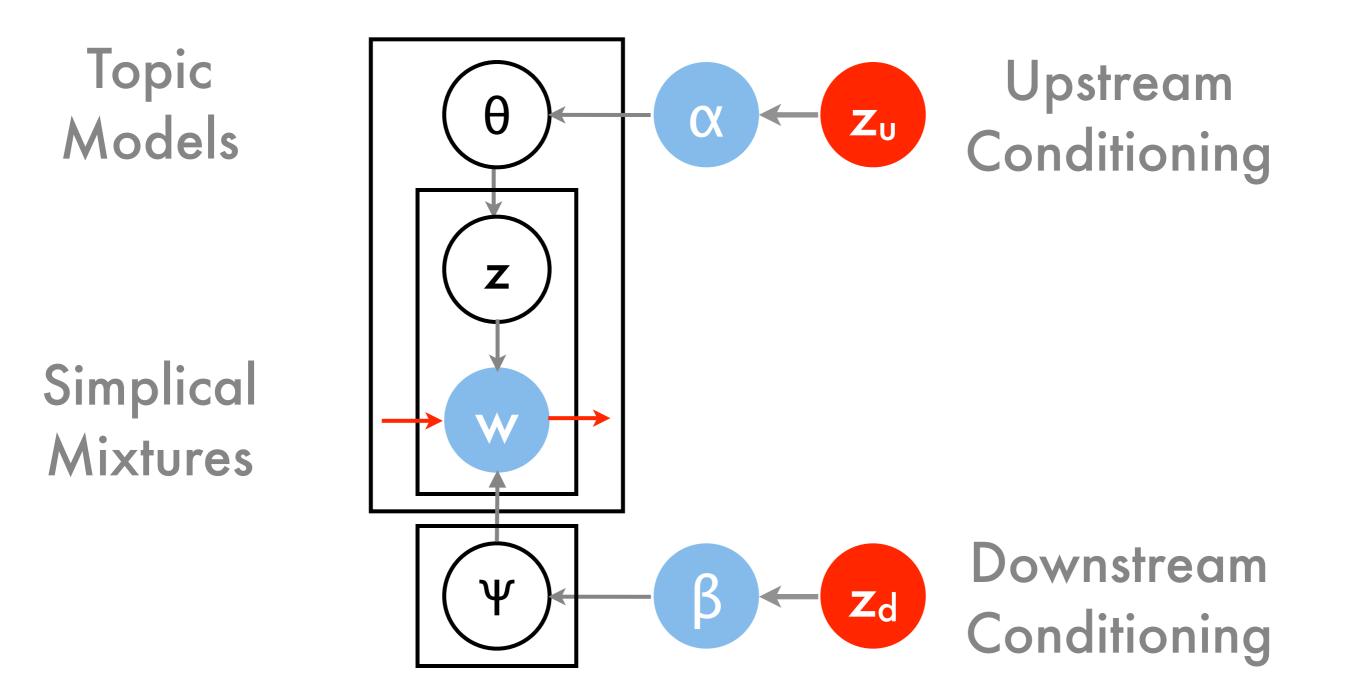
Topic Models



Topic Models

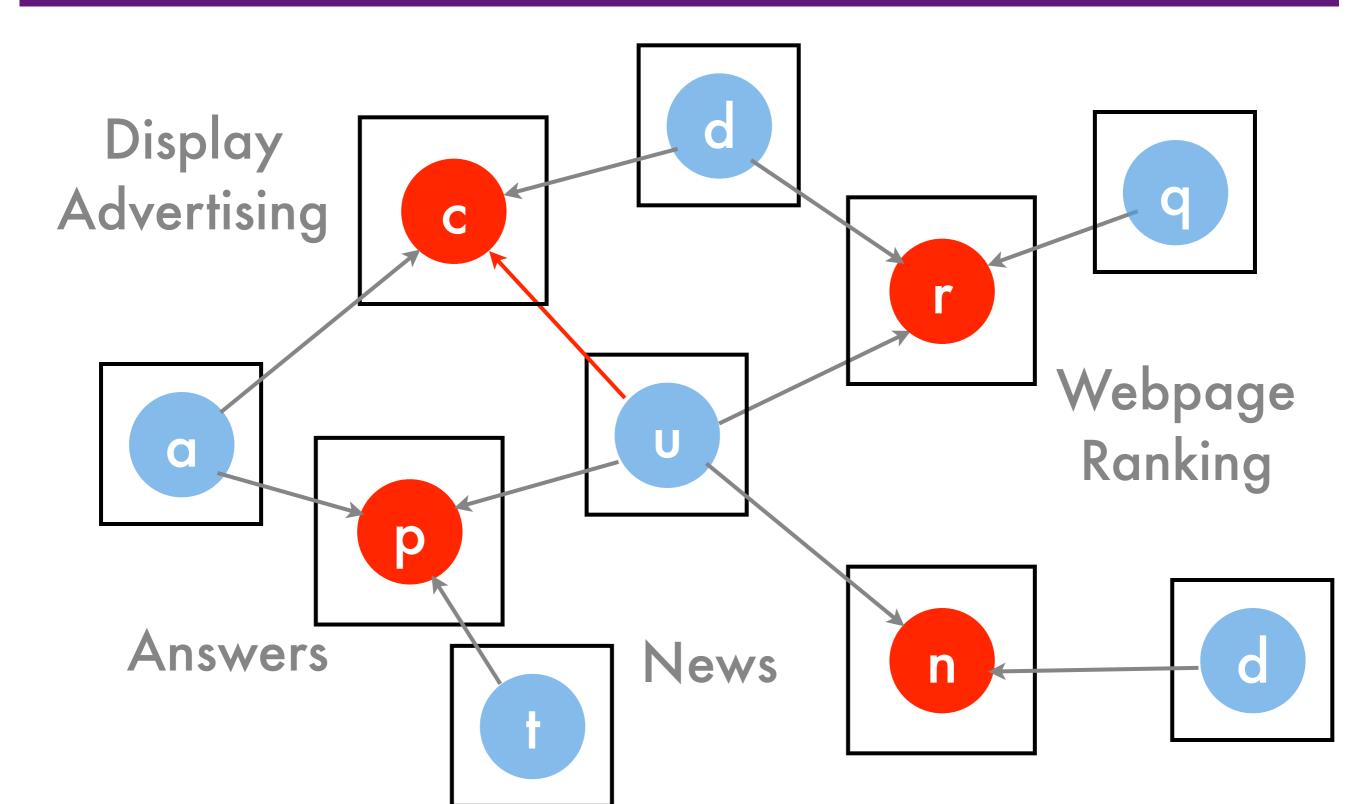
Simplical Mixtures

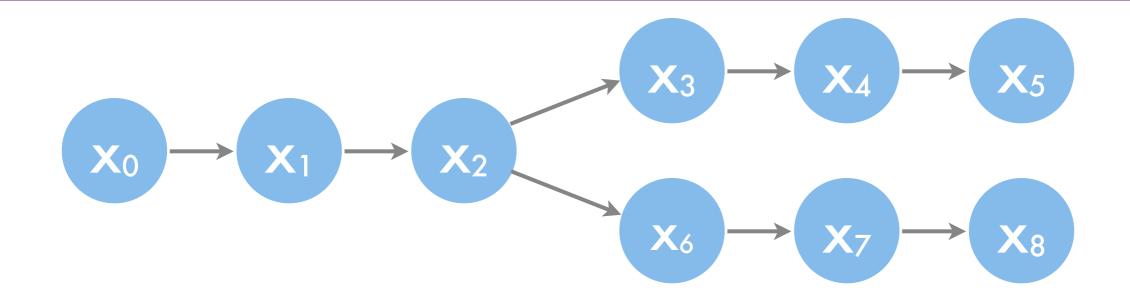




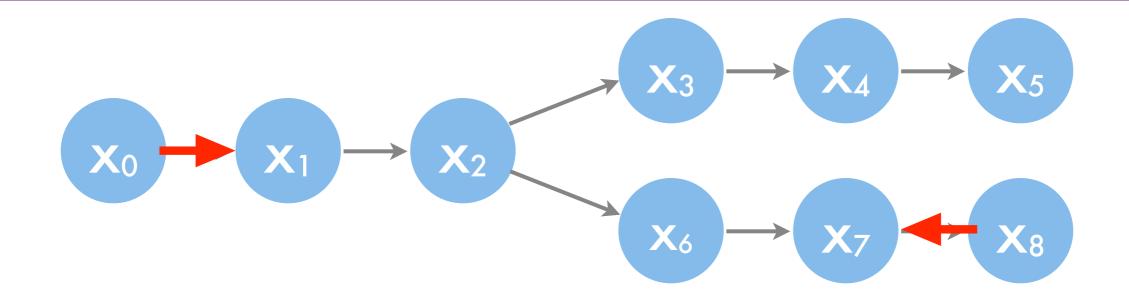
Undirected Graphical Models

Data Integration

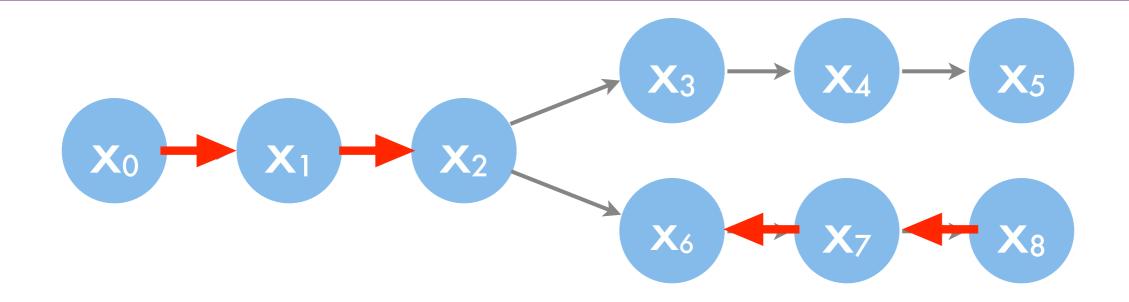




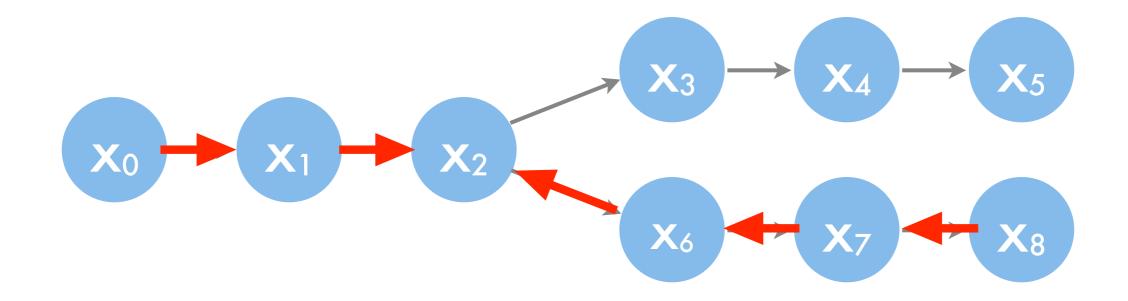
- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use
 - For each outgoing message, send it once you have all other incoming messages
 - PRINCIPLED HACK If no message received yet, set it to 1 altogether



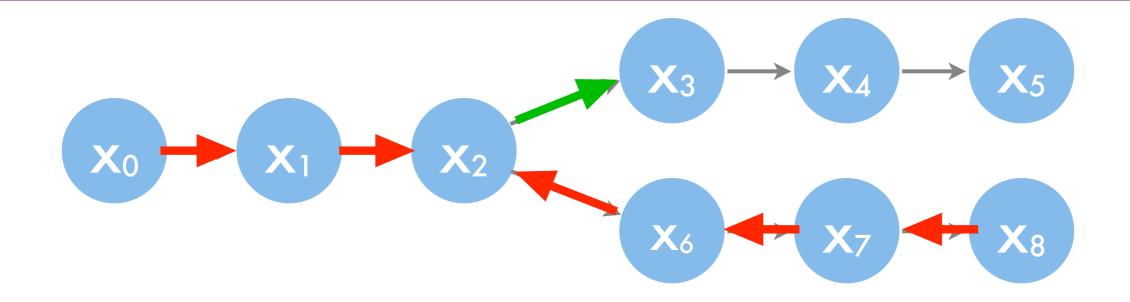
- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use
 - For each outgoing message, send it once you have all other incoming messages
 - PRINCIPLED HACK If no message received yet, set it to 1 altogether



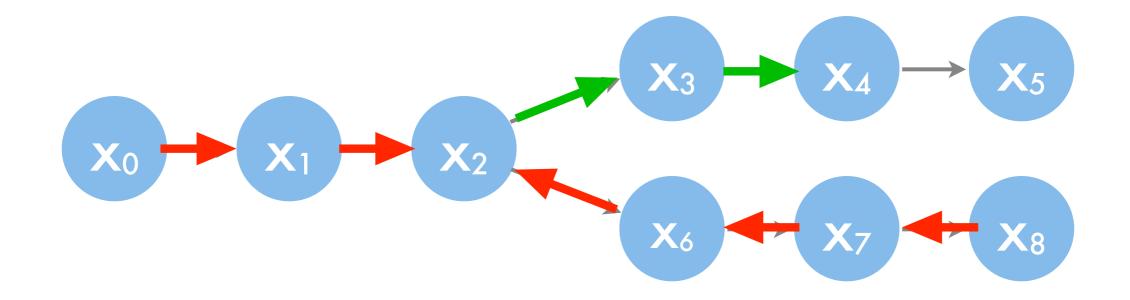
- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use
 - For each outgoing message, send it once you have all other incoming messages
 - PRINCIPLED HACK If no message received yet, set it to 1 altogether



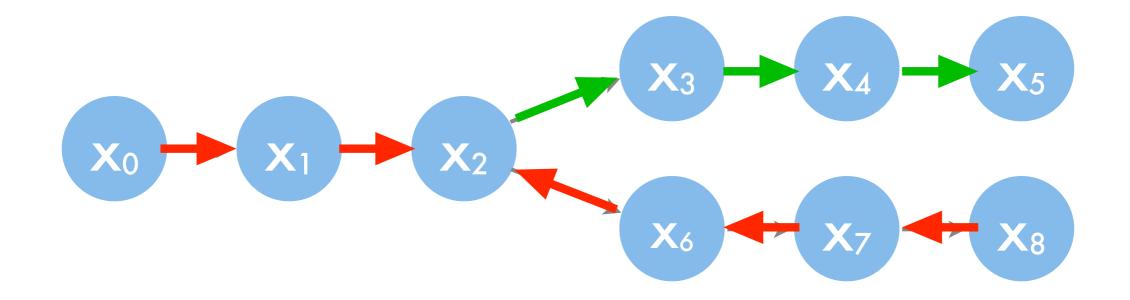
- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use
 - For each outgoing message, send it once you have all other incoming messages
 - PRINCIPLED HACK If no message received yet, set it to 1 altogether



- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use
 - For each outgoing message, send it once you have all other incoming messages
 - PRINCIPLED HACK If no message received yet, set it to 1 altogether

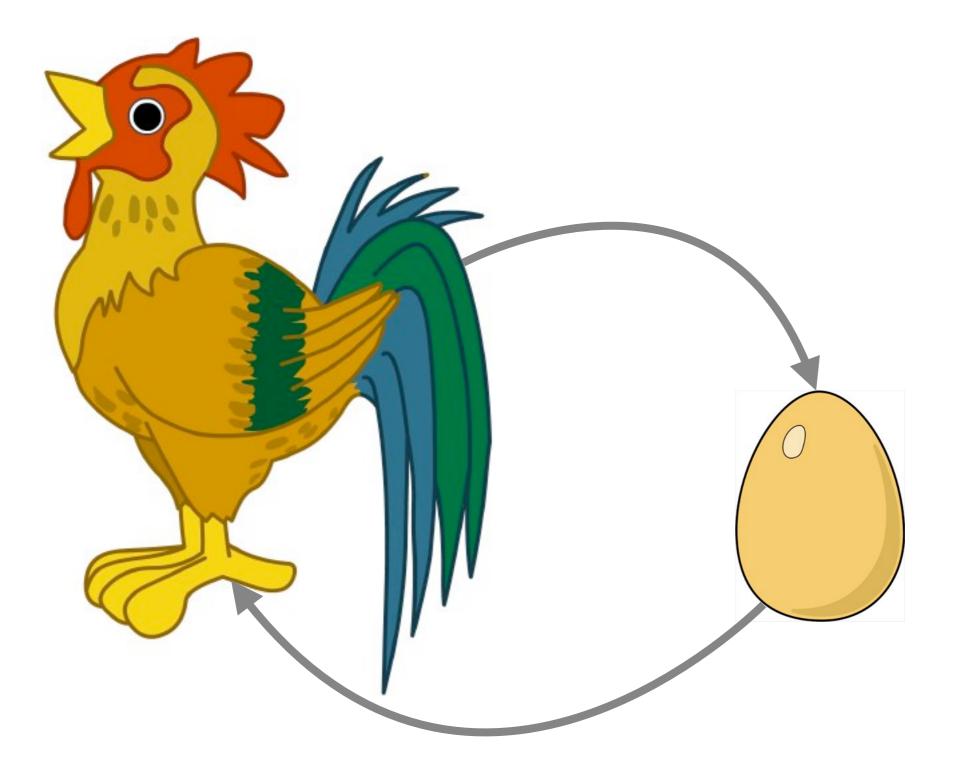


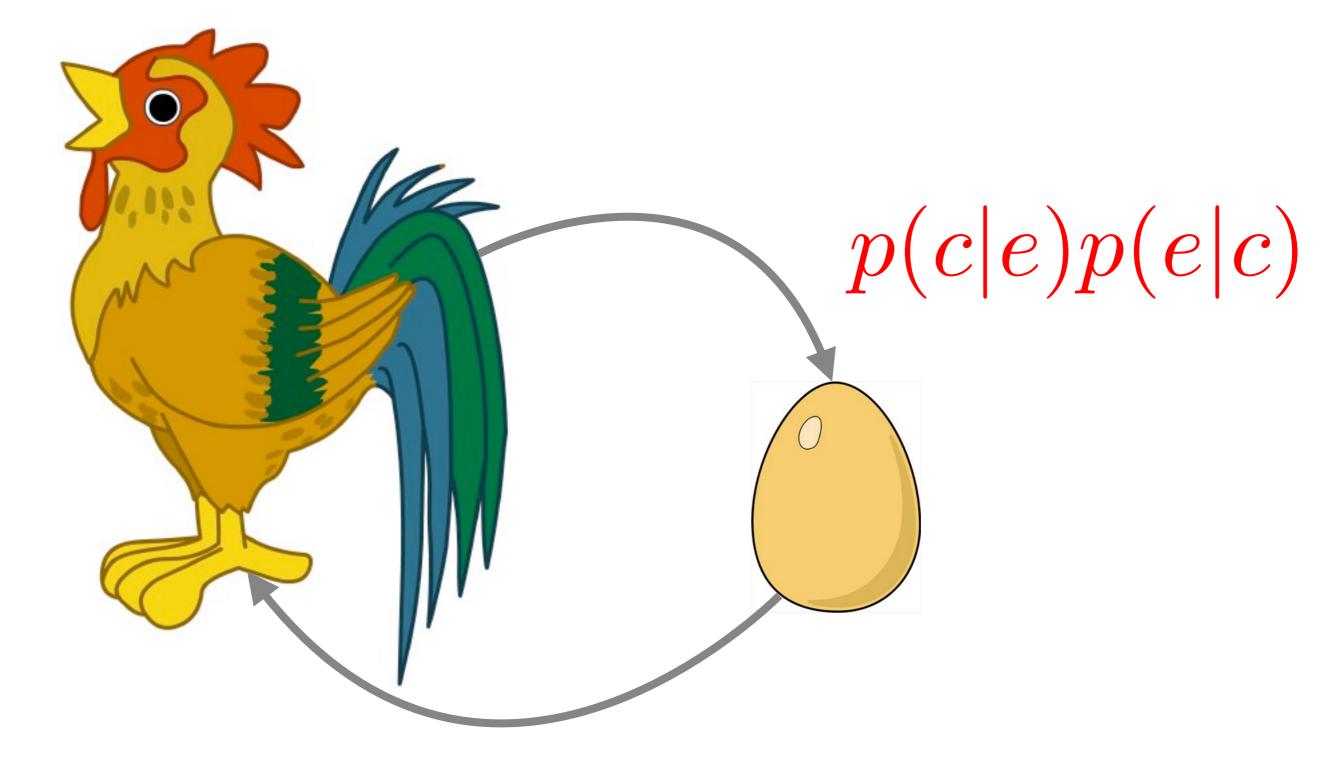
- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use
 - For each outgoing message, send it once you have all other incoming messages
 - PRINCIPLED HACK If no message received yet, set it to 1 altogether

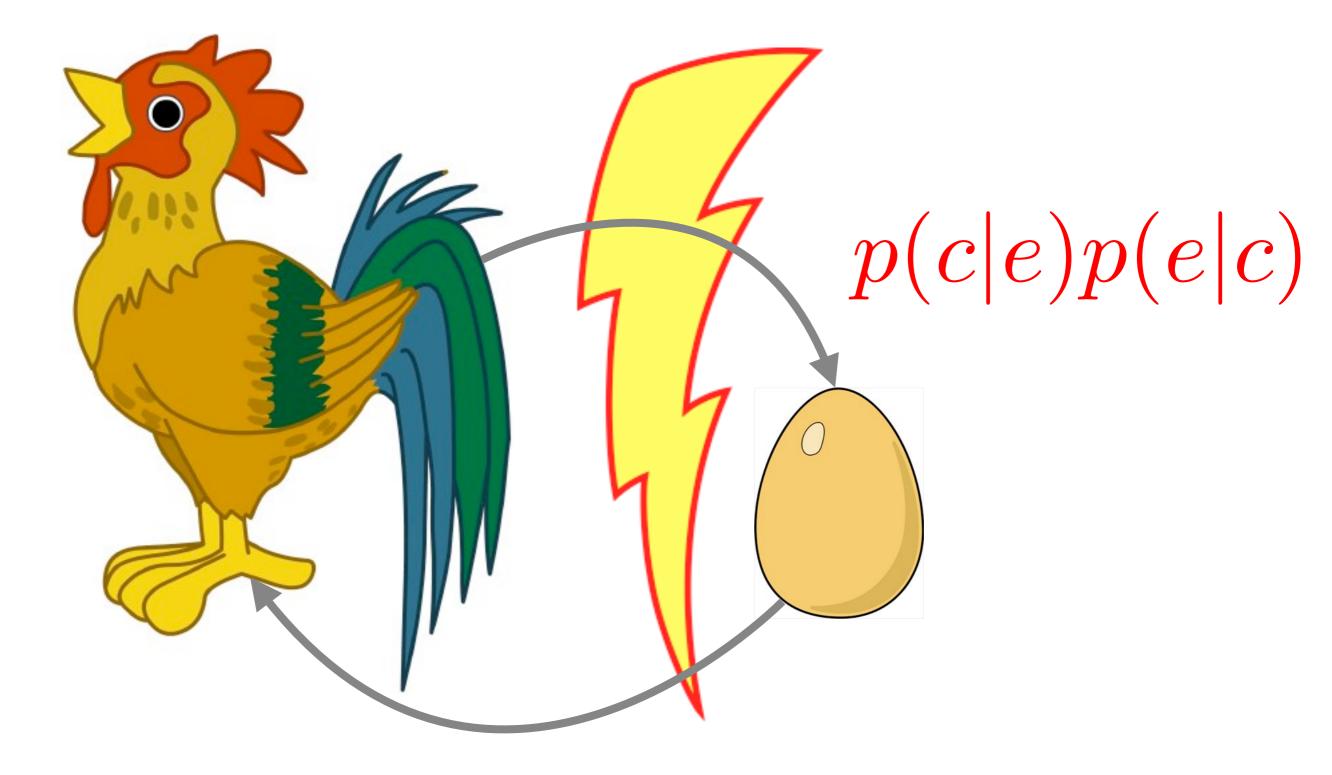


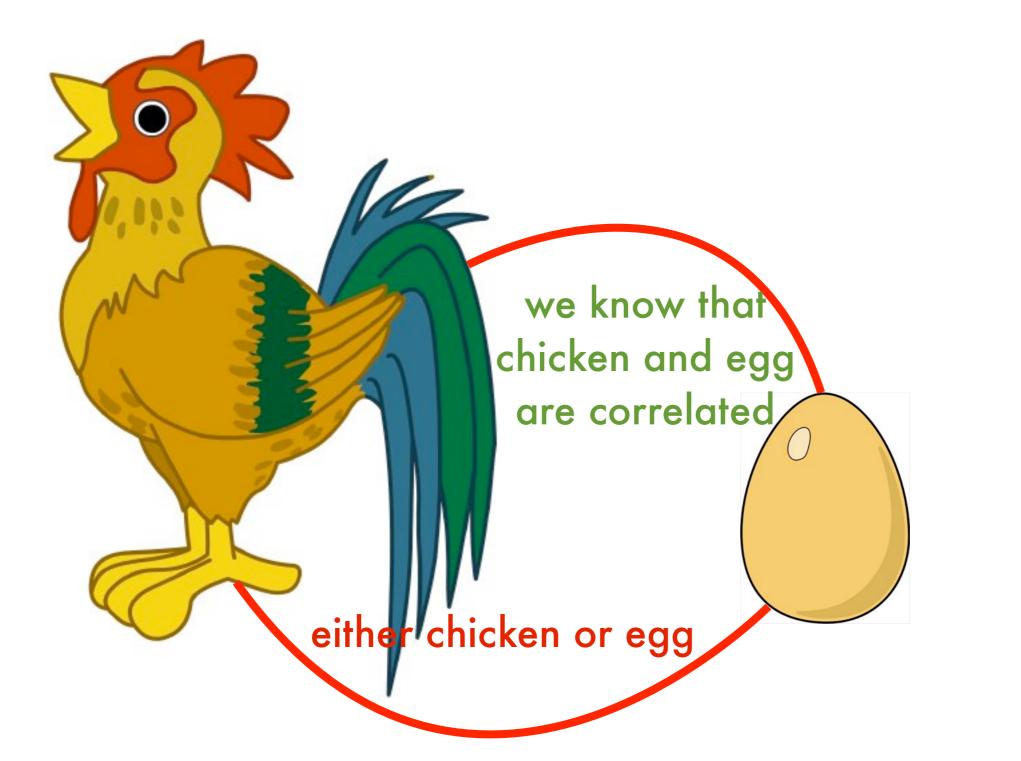
- Forward/Backward messages as normal for chain
- When we have more edges for a vertex use
 - For each outgoing message, send it once you have all other incoming messages
 - PRINCIPLED HACK If no message received yet, set it to 1 altogether

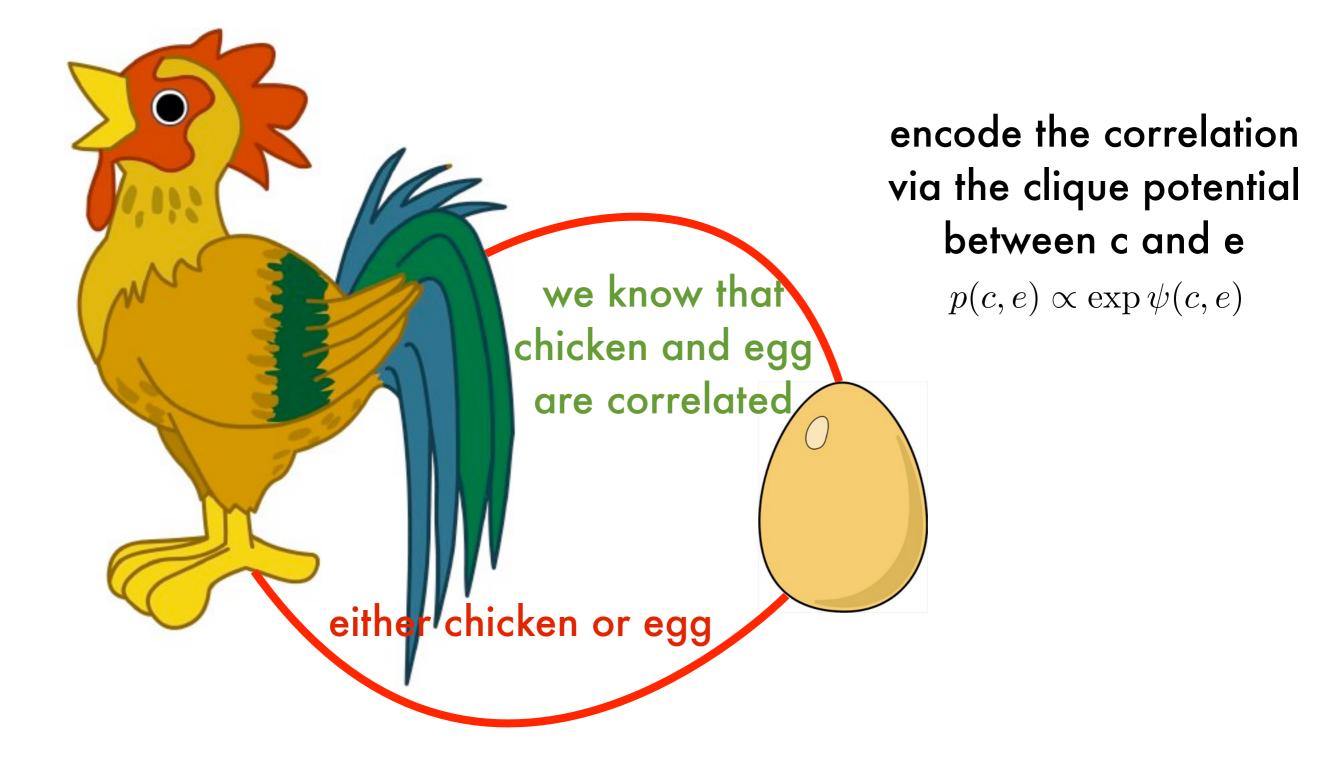
Blunting the arrows ...

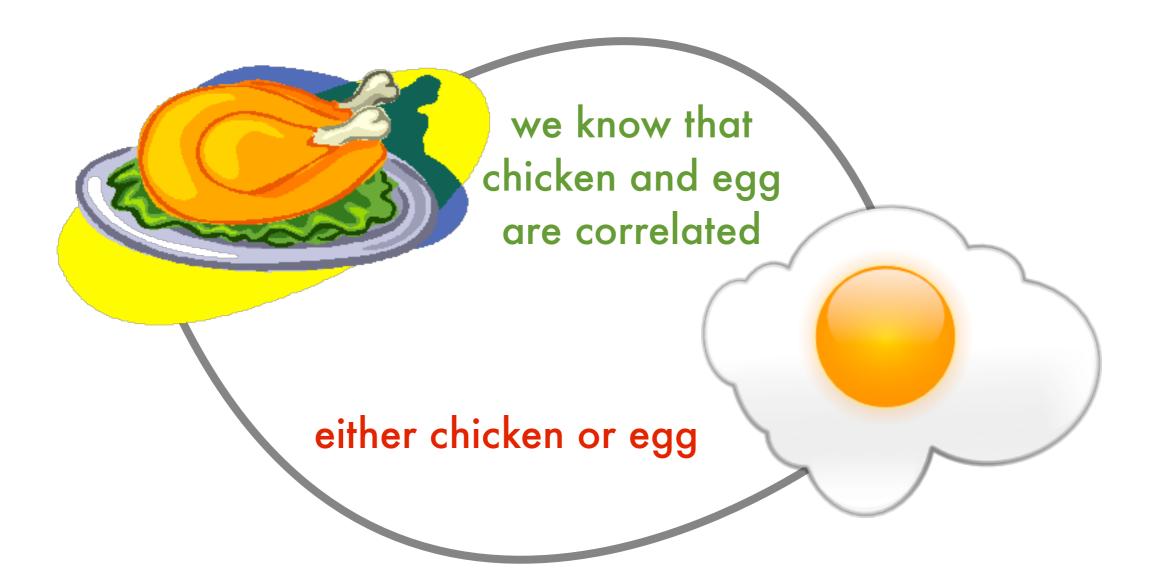


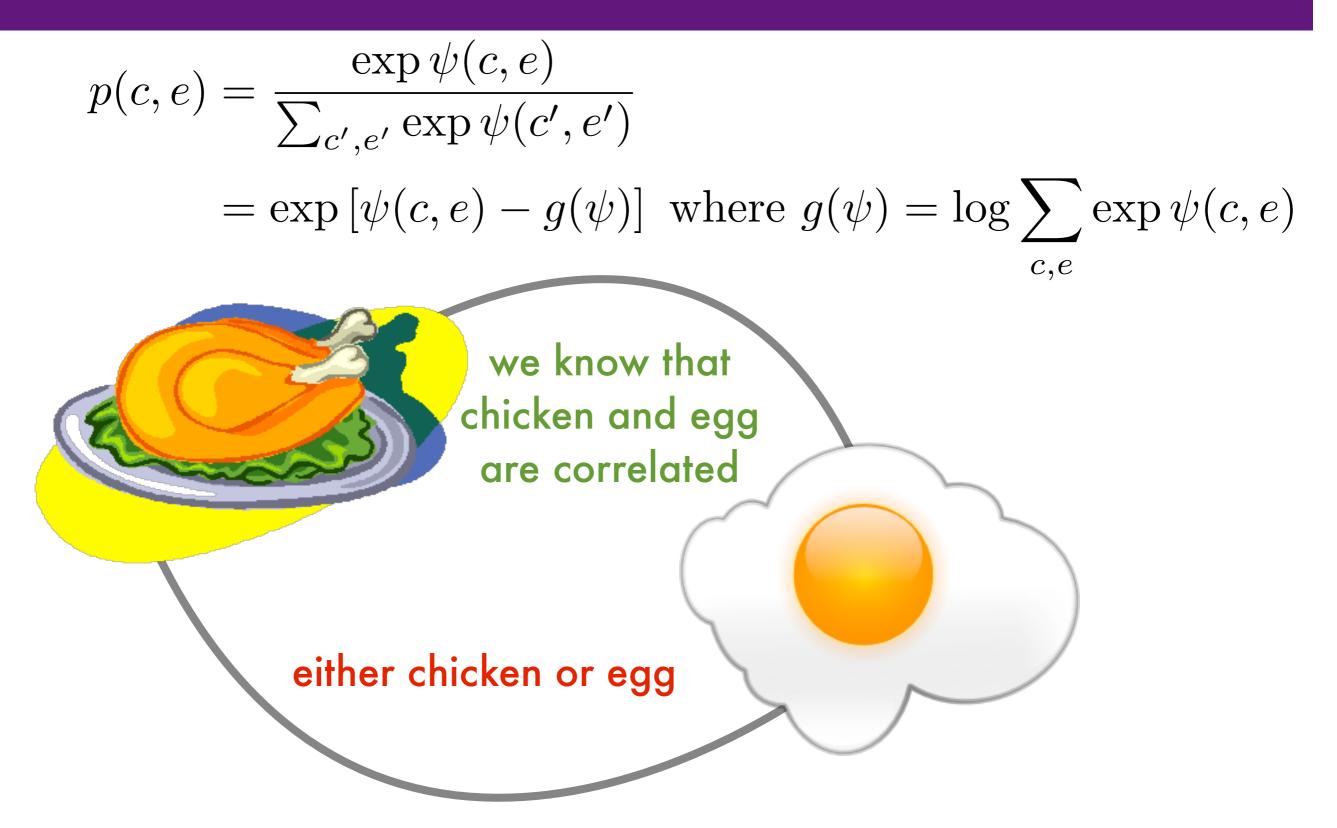




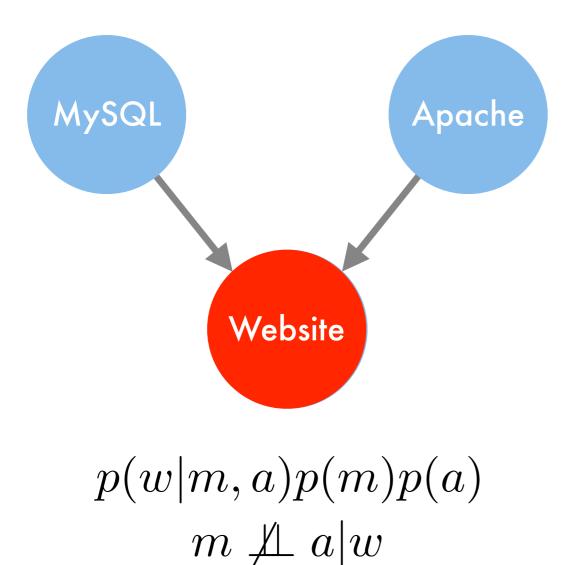




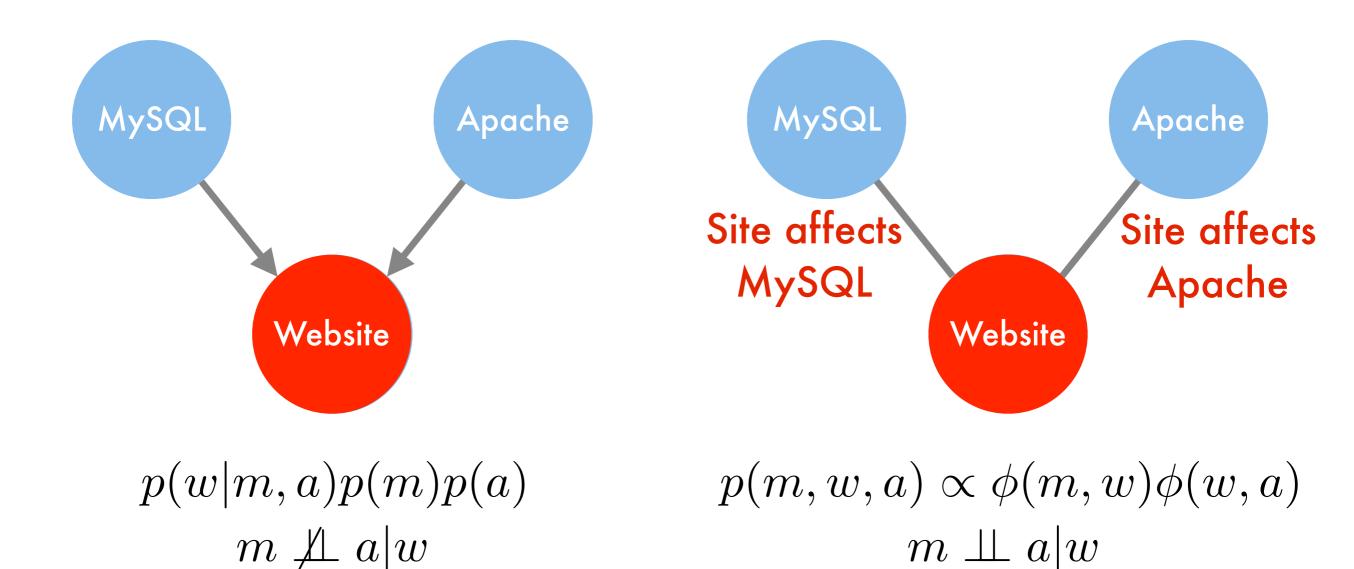




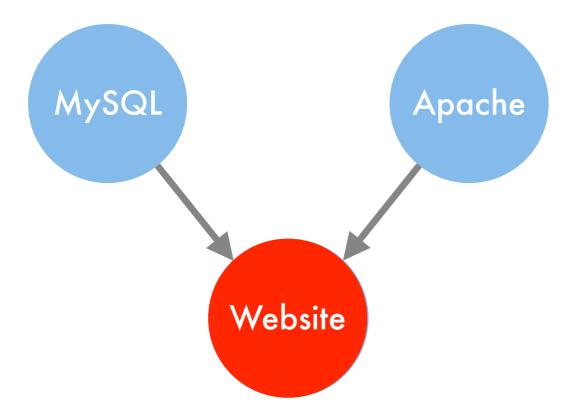
... some Yahoo service

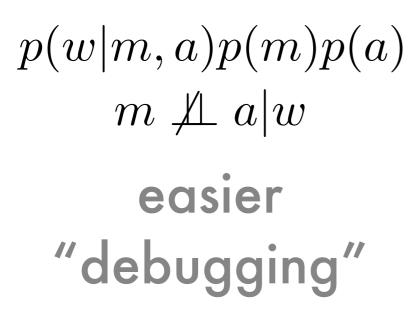


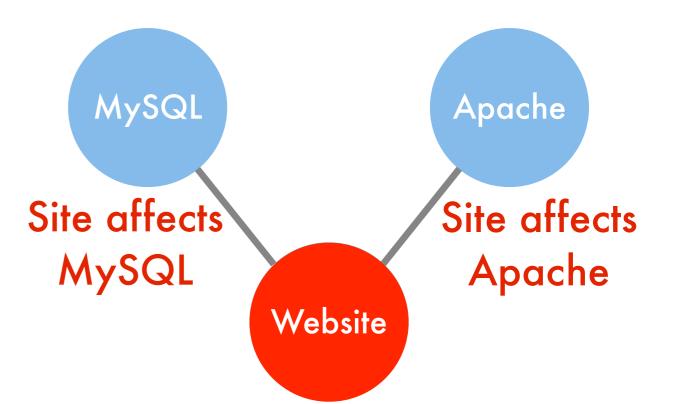
... some Yahoo service



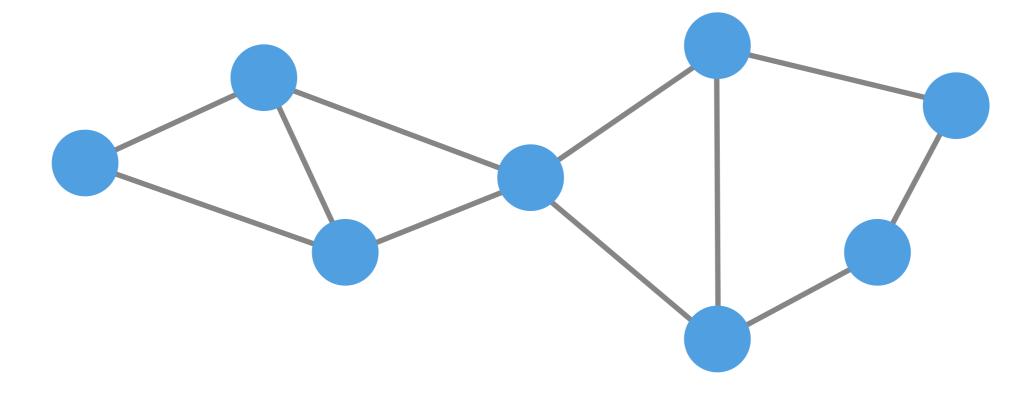
... some Yahoo service

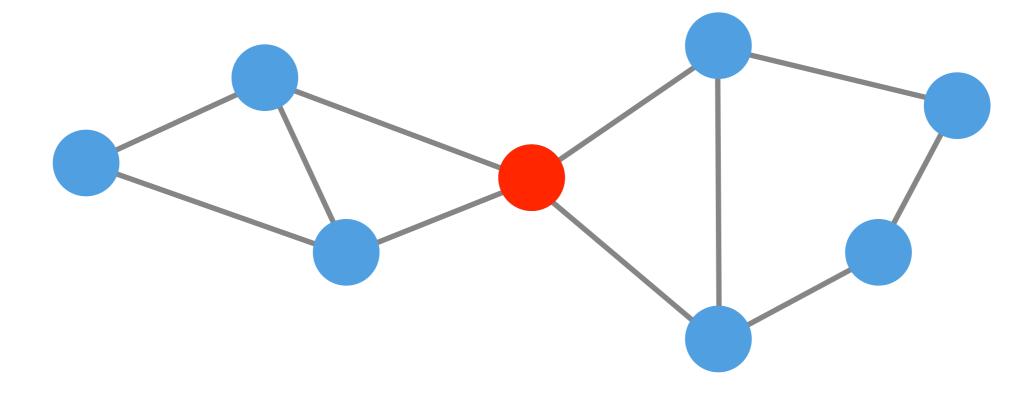


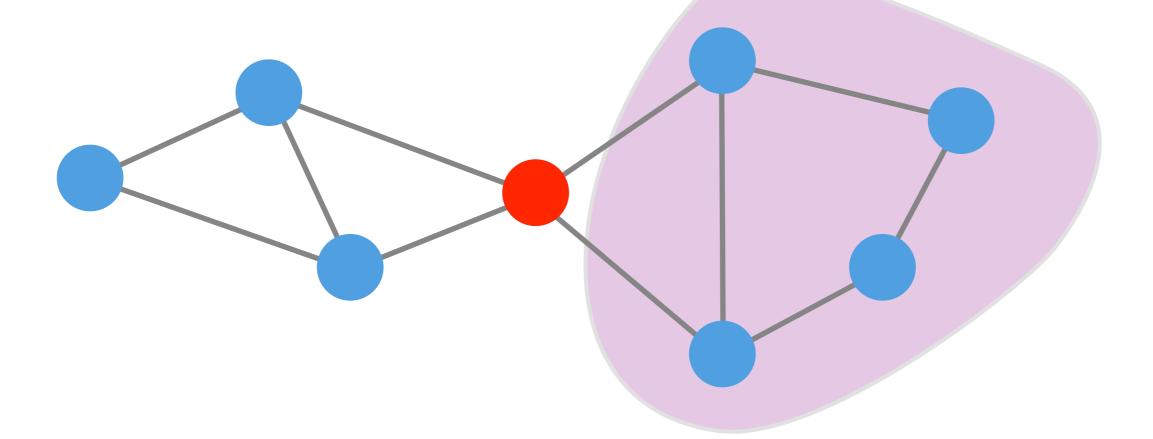


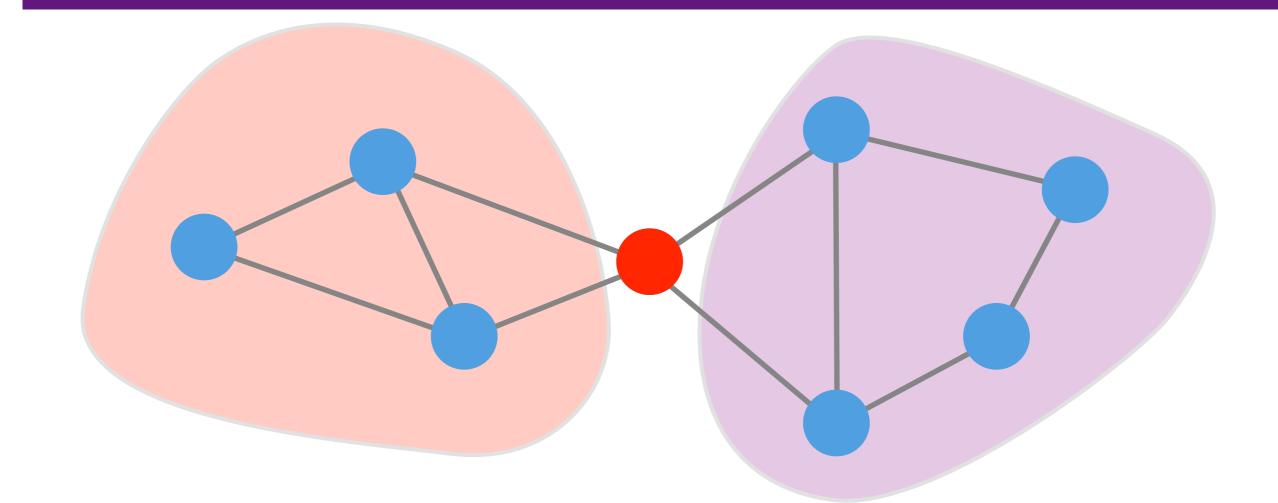


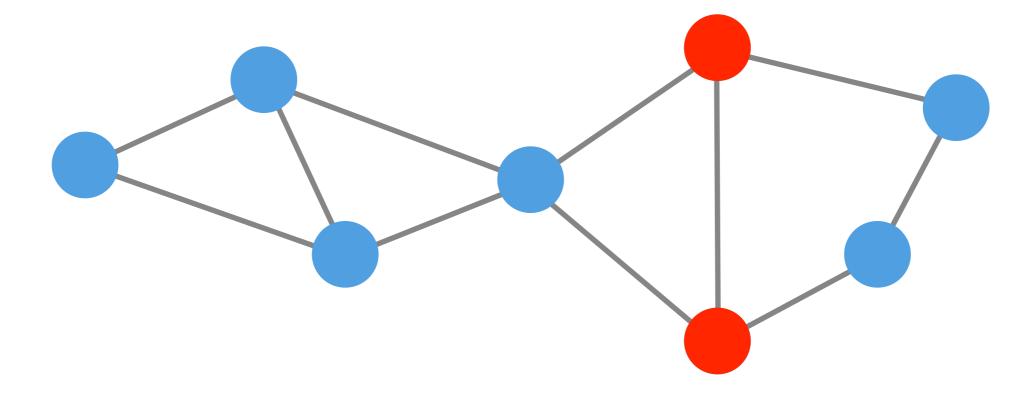
 $p(m, w, a) \propto \phi(m, w) \phi(w, a)$ $m \perp \!\!\!\!\perp a | w$ easier "modeling"

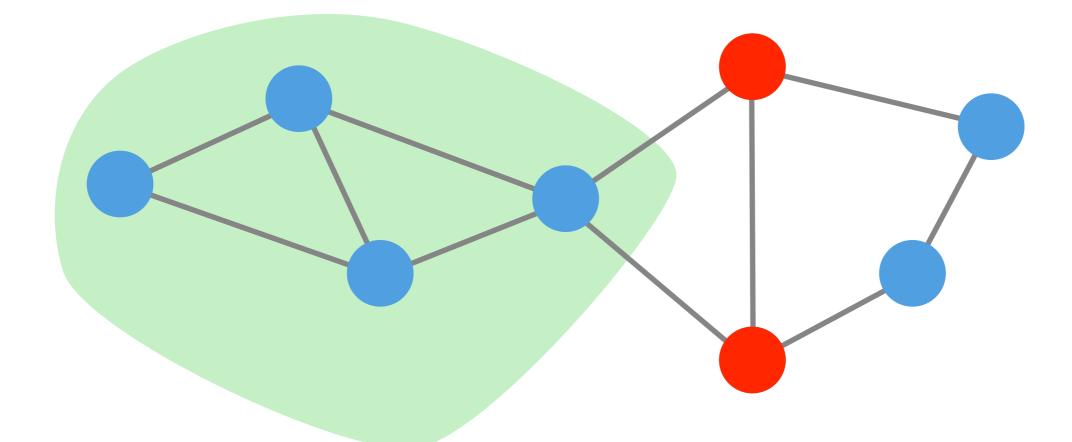


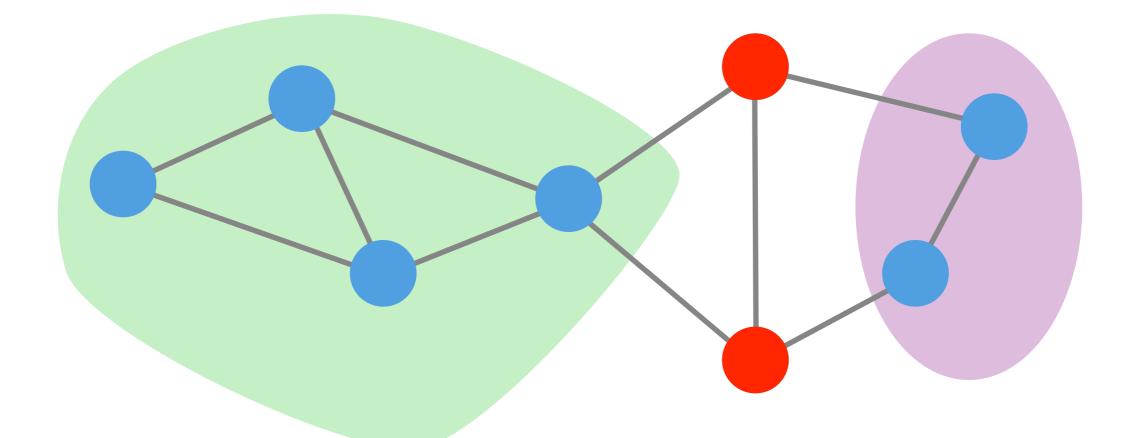


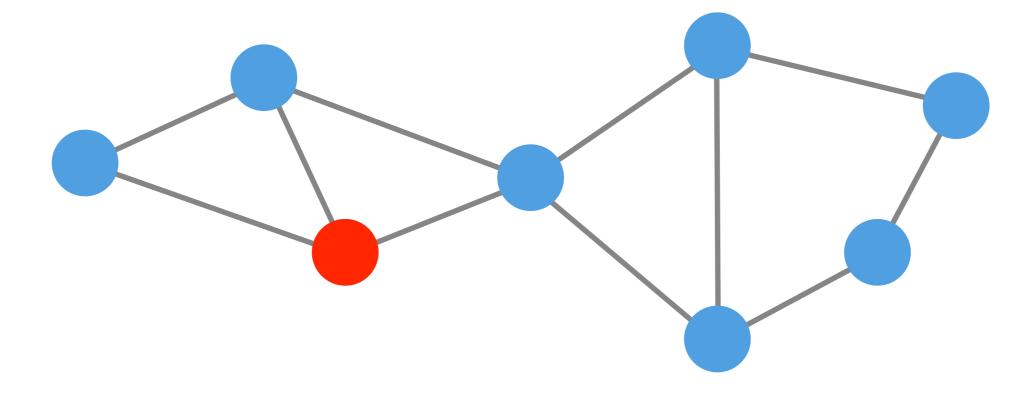


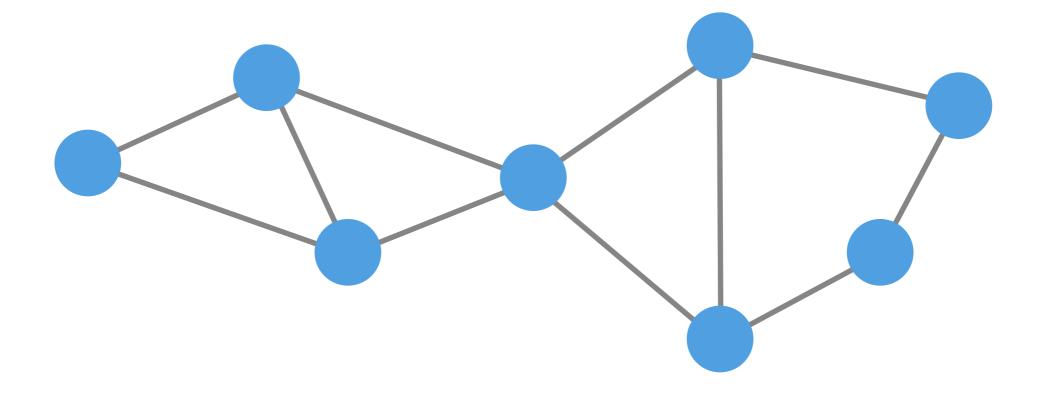




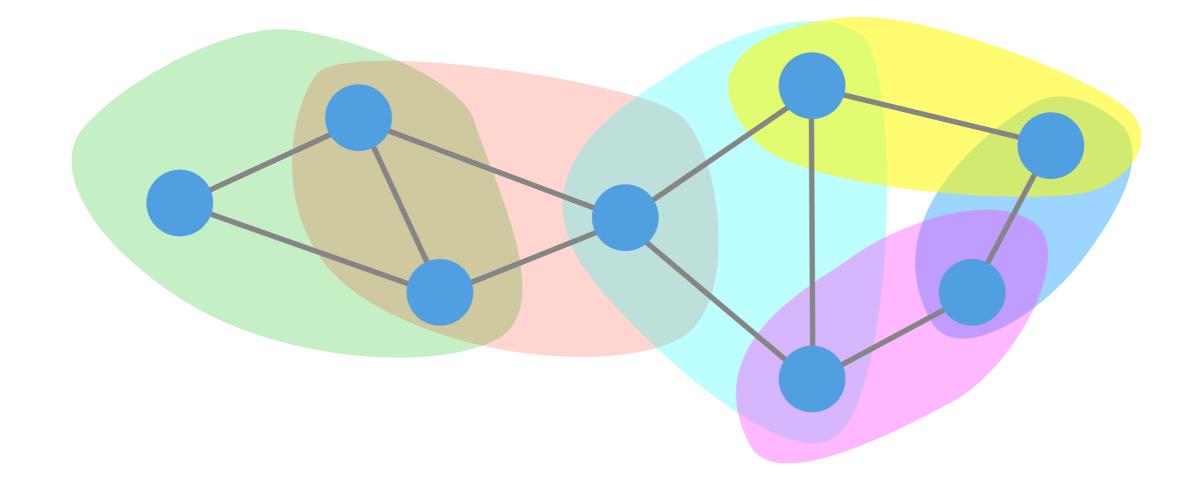






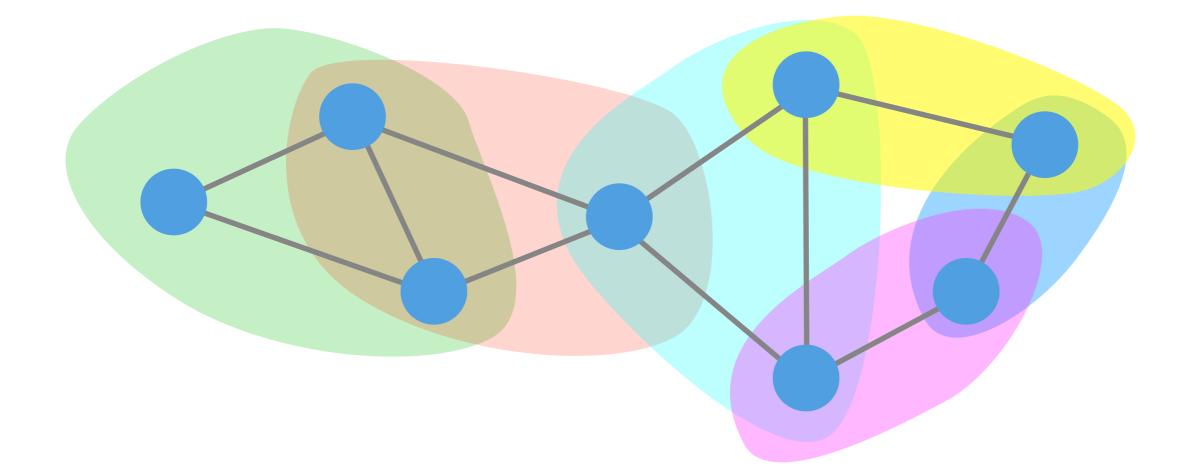


maximal fully connected subgraph



maximal fully connected subgraph

Hammersley Clifford Theorem



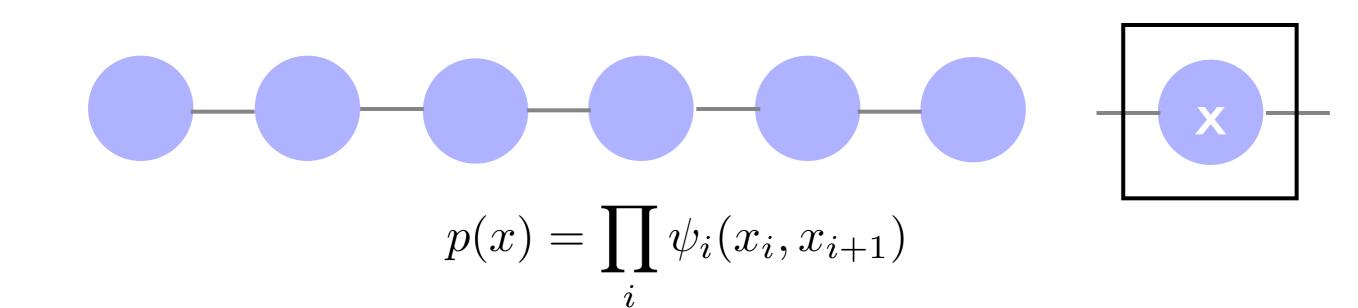
If density has full support then it decomposes into products of clique potentials

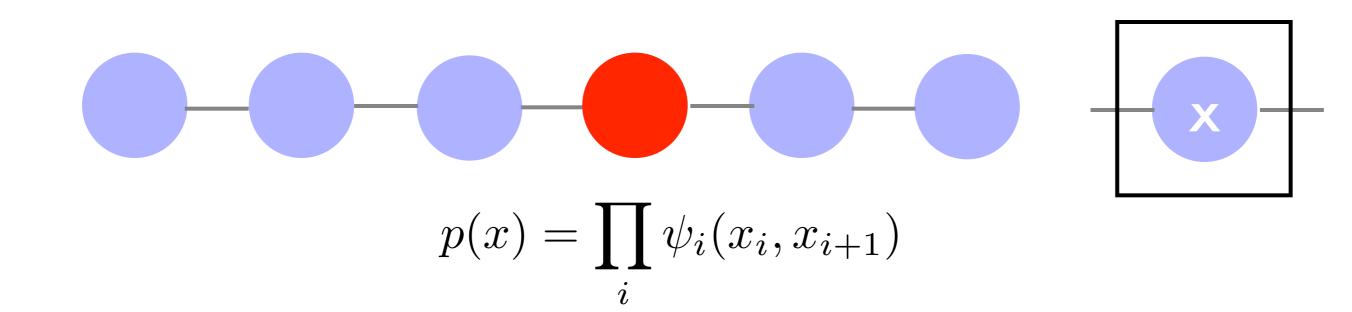
$$p(x) = \prod \psi_c(x_c)$$

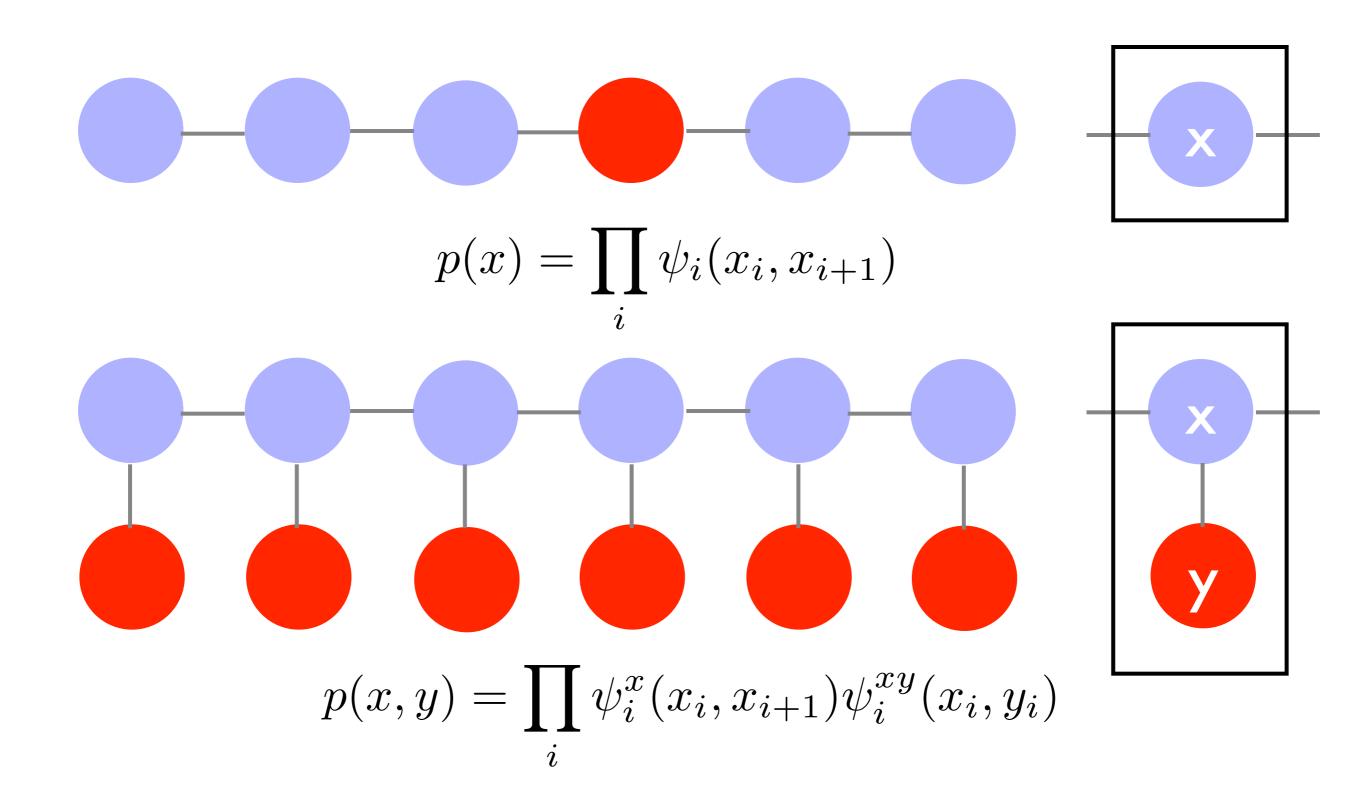
Directed vs. Undirected

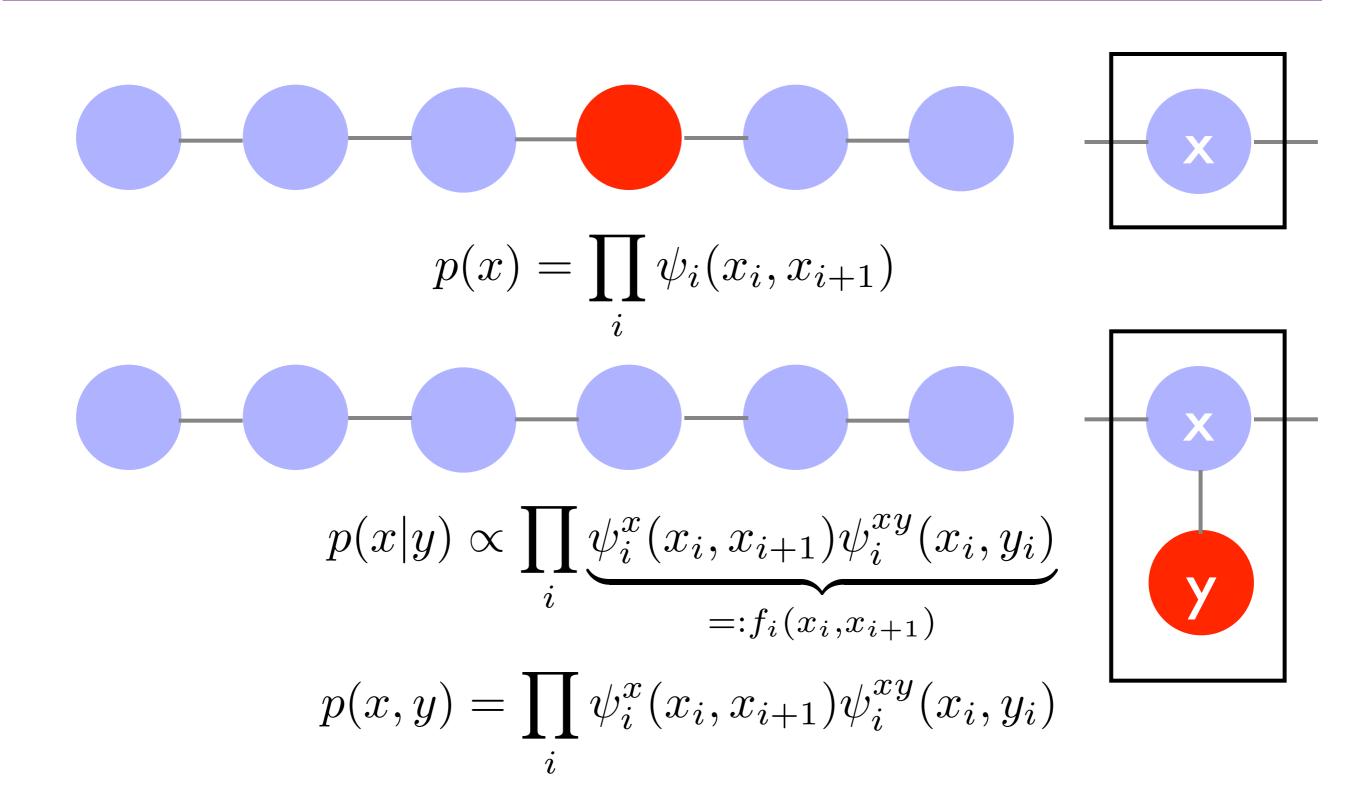
- Causal description
- Normalization automatic
- Intuitive
- Requires knowledge of dependencies
- Conditional independence tricky (Bayes Ball algorithm)

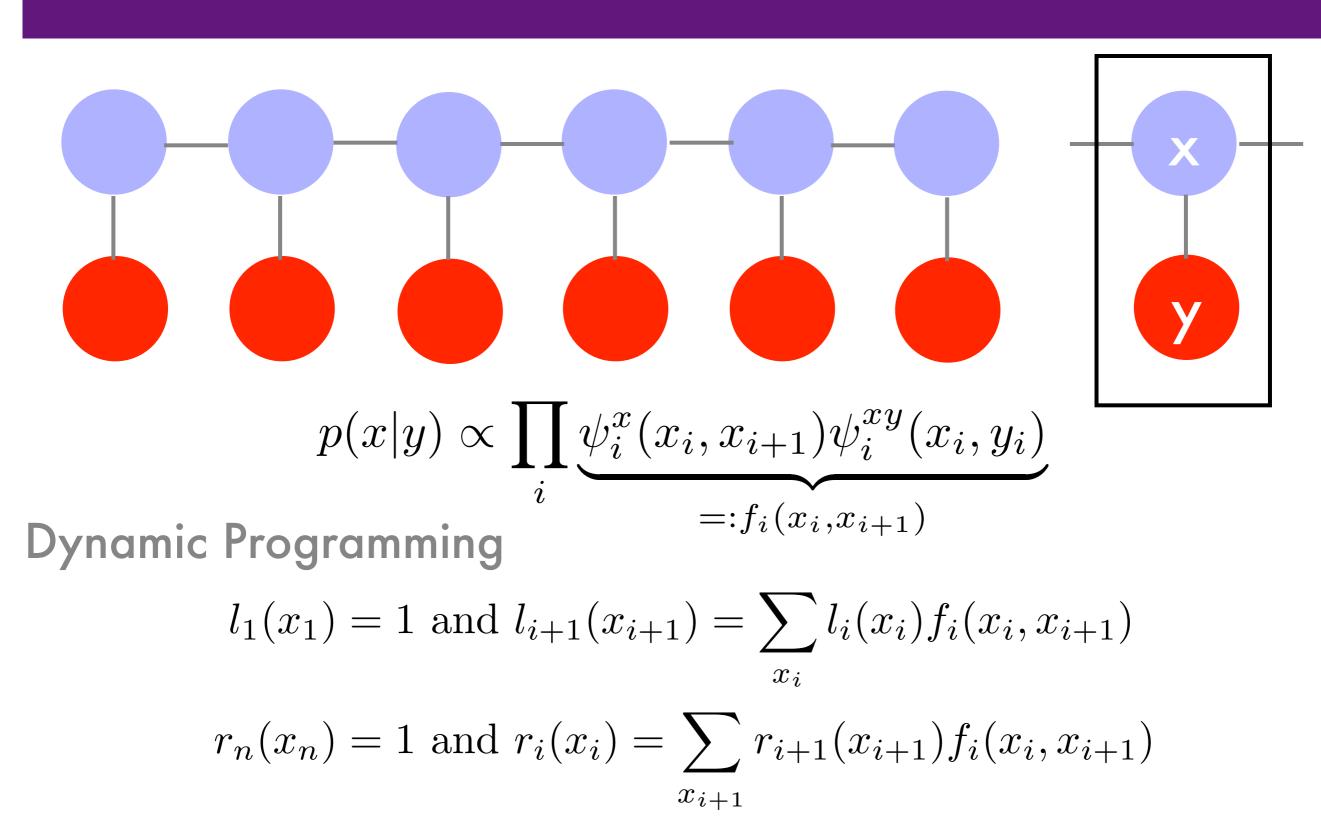
- Noncausal description (correlation only)
- Intuitive
- Easy modeling
- Normalization difficult
- Conditional independence easy to read off (graph connectivity)



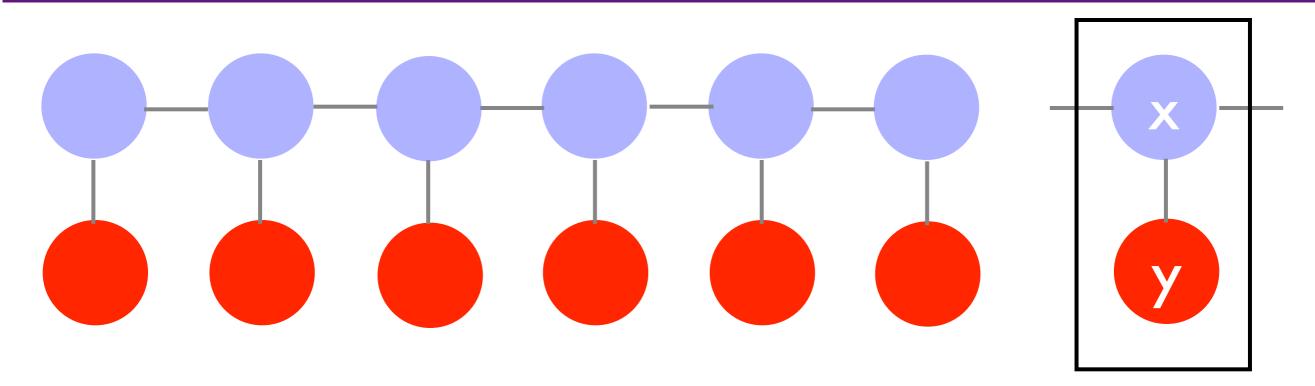


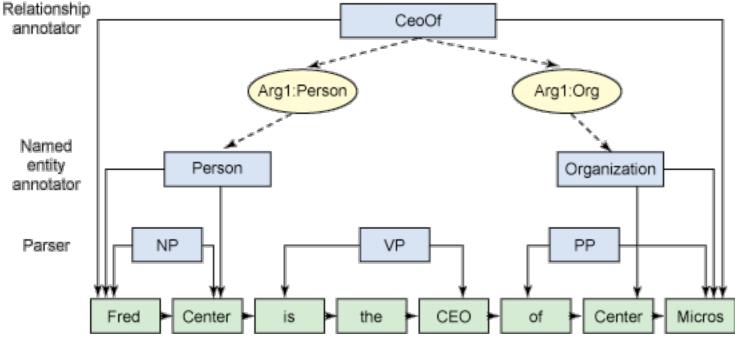






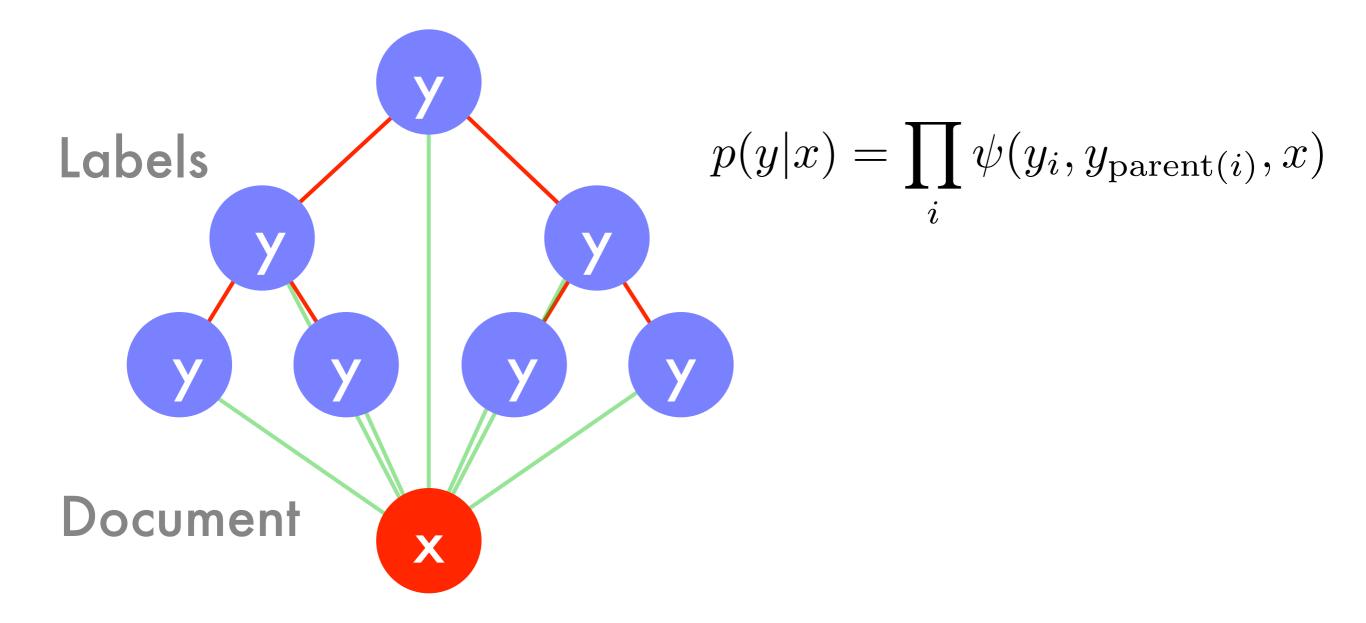
Named Entity Tagging





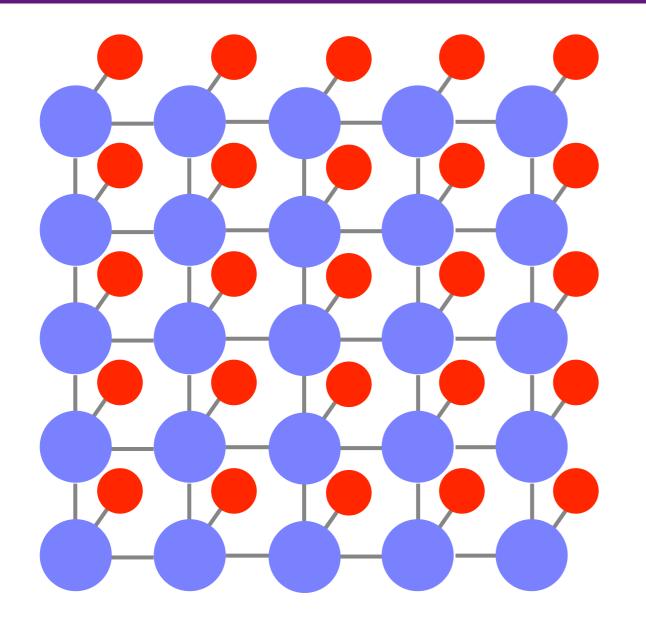
$$p(x|y) \propto \prod_{i} \underbrace{\psi_i^x(x_i, x_{i+1})\psi_i^{xy}(x_i, y_i)}_{=:f_i(x_i, x_{i+1})}$$

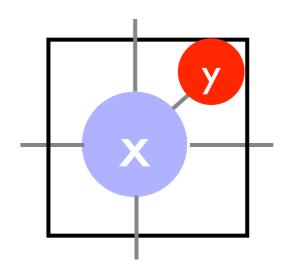
Trees + Ontologies



Ontology classification (e.g. YDir, DMOZ)

Spin Glasses + Images

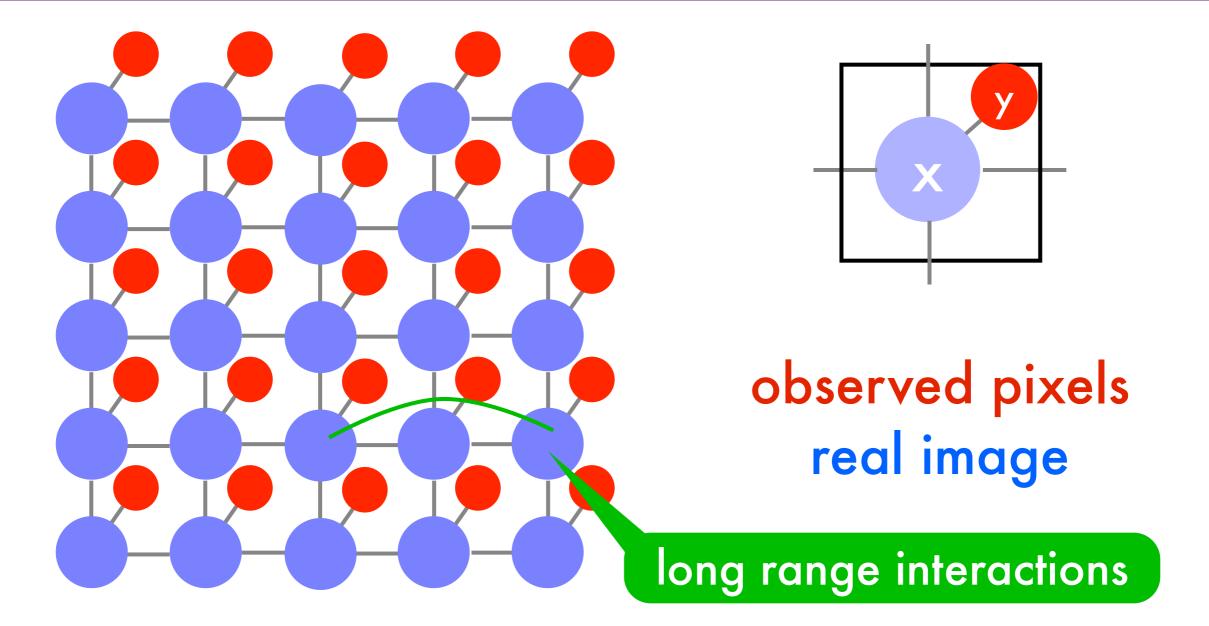




observed pixels real image

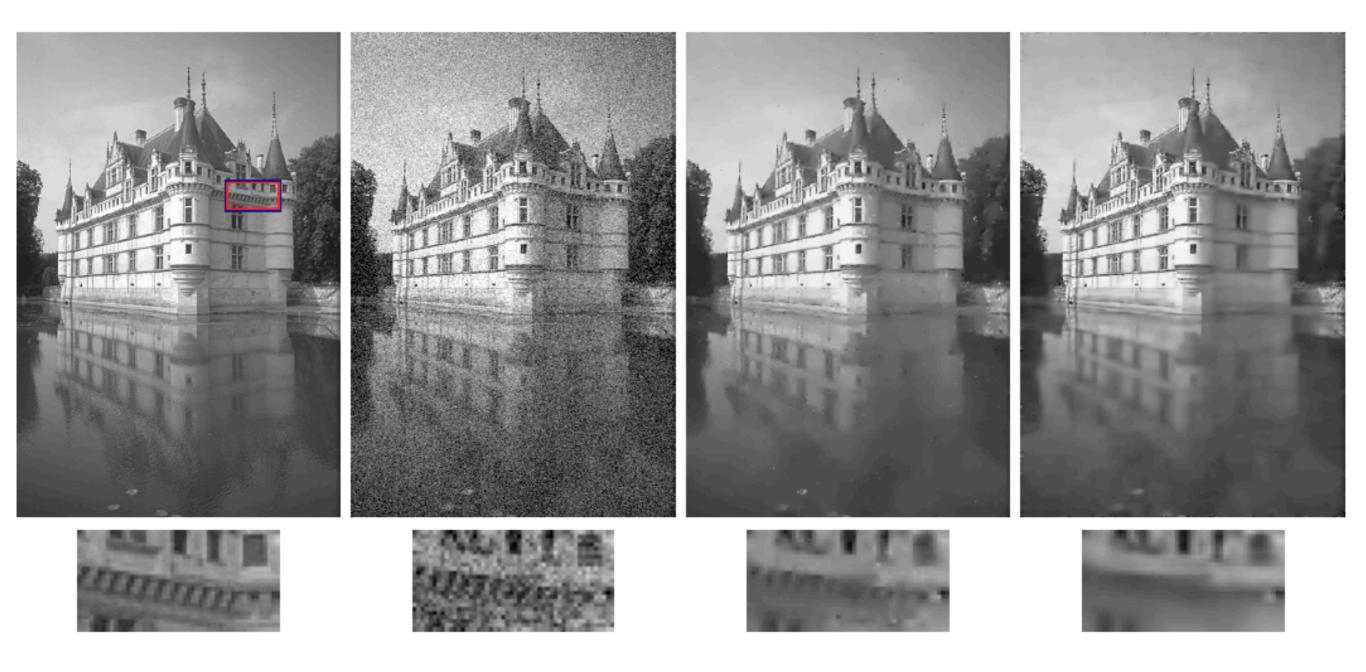
 $p(x|y) = \prod_{ij} \psi^{\text{right}}(x_{ij}, x_{i+1,j})\psi^{\text{up}}(x_{ij}, x_{i,j+1})\psi^{xy}(x_{ij}, y_{ij})$

Spin Glasses + Images



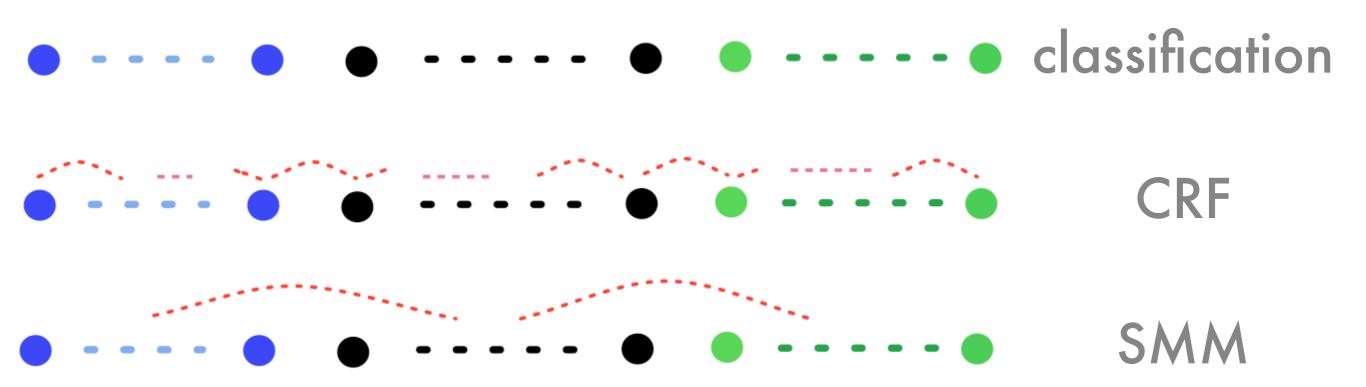
 $p(x|y) = \prod_{ij} \psi^{\text{right}}(x_{ij}, x_{i+1,j})\psi^{\text{up}}(x_{ij}, x_{i,j+1})\psi^{xy}(x_{ij}, y_{ij})$

Image Denoising



Li&Huttenlocher, ECCV'08

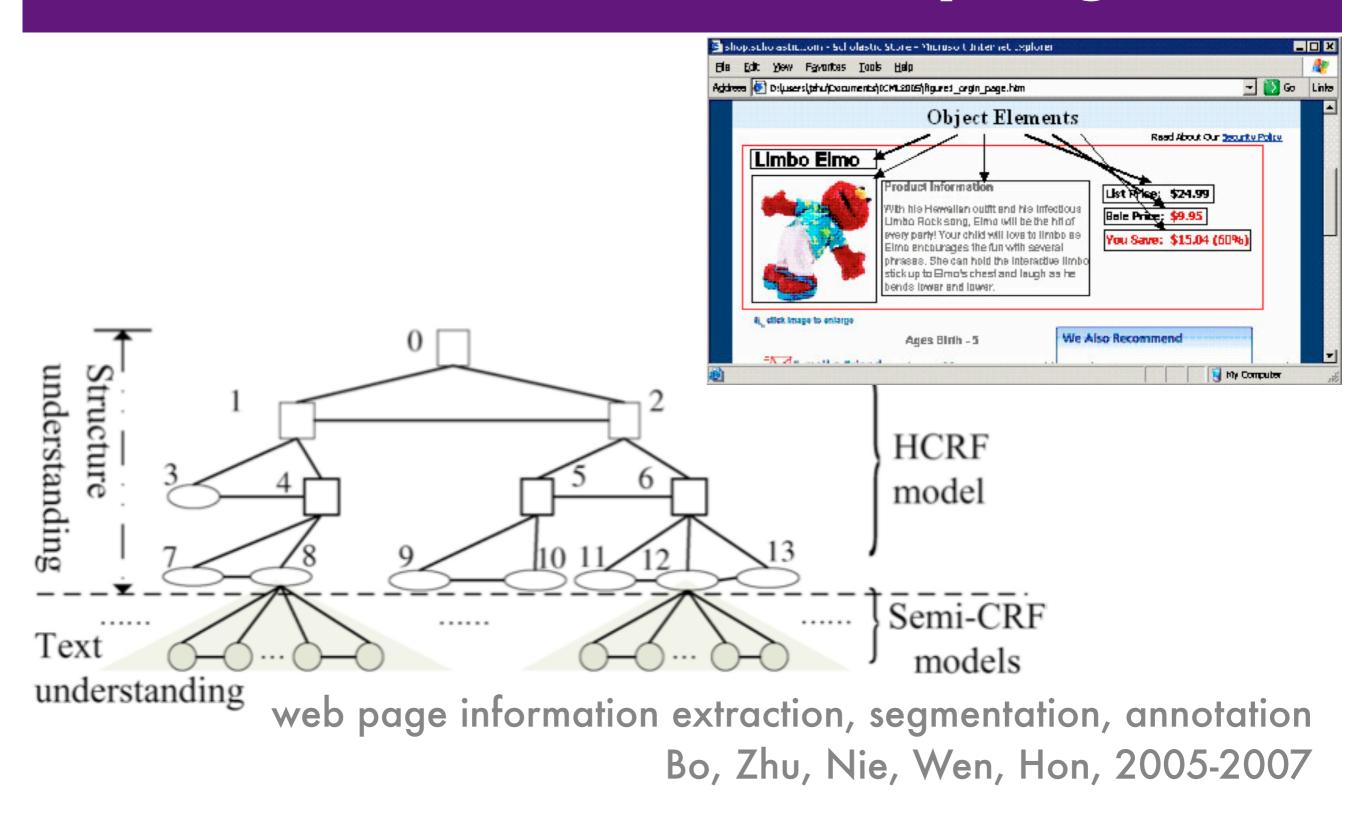
Semi-Markov Models



- Flexible length of an episode
- Segmentation between episodes

phrase segmentation, activity recognition, motion data analysis Shi, Smola, Altun, Vishwanathan, Li, 2007-2009

2D CRF for Webpages



Exponential Families and Graphical Models

Exponential Family Reunion

• Density function

$$p(x;\theta) = \exp\left(\langle \phi(x), \theta \rangle - g(\theta)\right)$$

where $g(\theta) = \log \sum_{x'} \exp\left(\langle \phi(x'), \theta \rangle\right)$

 Log partition function generates cumulants
 ∂_θg(θ) = E [φ(x)]
 ∂²_θg(θ) = Var [φ(x)]
 g is convex (second derivative is p.s.d.)

Log Partition Function

$$p(x|\theta) = e^{\langle \phi(x), \theta \rangle - g(\theta)}$$

 $\partial_{\theta} g$

$$g(\theta) = \log \sum_{x} e^{\langle \phi(x), \theta \rangle}$$

Unconditional model

$$\partial_{\theta} g(\theta) = \frac{\sum_{x} \phi(x) e^{\langle \phi(x), \theta \rangle}}{\sum_{x} e^{\langle \phi(x), \theta \rangle}} = \sum_{x} \phi(x) e^{\langle \phi(x), \theta \rangle - g(\theta)}$$

$$p(y|\theta, x) = e^{\langle \phi(x,y), \theta \rangle - g(\theta|x)}$$

$$g(\theta|x) = \log \sum_{y} e^{\langle \phi(x,y), \theta \rangle}$$

$$\sum_{y} \phi(x,y) e^{\langle \phi(x,y), \theta \rangle}$$

$$(\theta|x) = \frac{\sum_{y} \phi(x, y) e^{\langle x, y \rangle, \theta \rangle}}{\sum_{y} e^{\langle \phi(x, y), \theta \rangle}} = \sum_{y} \phi(x, y) e^{\langle \phi(x, y), \theta \rangle - g(\theta|x)}$$

Estimation

Conditional log-likelihood

 $\log p(y|x;\theta) = \langle \phi(x,y), \theta \rangle - g(\theta|x)$

Log-posterior (Gaussian Prior)

$$\log p(\theta|X,Y) = \sum_{i} \log(y_i|x_i;\theta) + \log p(\theta) + \text{const.}$$
$$= \left\langle \sum_{i} \phi(x_i,y_i), \theta \right\rangle - \sum_{i} g(\theta|x_i) - \frac{1}{2\sigma^2} \|\theta\|^2 + \text{const.}$$

• First order optimality conditions

maxent model $\sum_{i} \phi(x_i, y_i) = \sum_{i} \mathbf{E}_{y|x_i} [\phi(x_i, y)] + \frac{1}{\sigma^2} \theta$

expensive

Logistic Regression

Label space

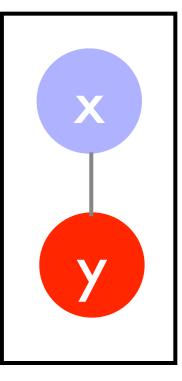
 $\phi(x,y) = y\phi(x)$ where $y \in \{\pm 1\}$

- Log-partition function $g(\theta|x) = \log \left[e^{1 \cdot \langle \phi(x), \theta \rangle} + e^{-1 \cdot \langle \phi(x), \theta \rangle} \right] = \log 2 \cosh \langle \phi(x), \theta \rangle$
- Convex minimization problem

$$\underset{\theta}{\text{minimize}} \frac{1}{2\sigma^2} \left\|\theta\right\|^2 + \sum_{i} \log 2 \cosh \left\langle \phi(x_i), \theta \right\rangle - y_i \left\langle \phi(x_i, \theta) \right\rangle$$

Prediction

 $p(y|x,\theta) = \frac{e^{y\langle\phi(x),\theta\rangle}}{e^{\langle\phi(x),\theta\rangle} + e^{-\langle\phi(x),\theta\rangle}} = \frac{1}{1 + e^{-2y\langle\phi(x),\theta\rangle}}$



Exponential Clique Decomposition

$$p(x) = \prod_{c} \psi_c(x_c)$$

Theorem: Clique decomposition holds in sufficient statistics $\phi(x) = (\dots, \phi_c(x_c), \dots)$ and $\langle \phi(x), \theta \rangle = \sum_c \langle \phi_c(x_c), \theta_c \rangle$ Corollary: we only need expectations on cliques $\mathbf{E}_x[\phi(x)] = (\dots, \mathbf{E}_{x_c}[\phi_c(x_c)], \dots)$

Conditional Random Fields

$$\phi(x) = (y_1 \phi_x(x_1), \dots, y_n \phi_x(x_n), \phi_y(y_1, y_2), \dots, \phi_y(y_{n-1}, y_n))$$

$$\langle \phi(x), \theta \rangle = \sum_i \langle \phi_x(x_i, y_i), \theta_x \rangle + \sum_i \langle \phi_y(y_i, y_{i+1}), \theta_y \rangle$$

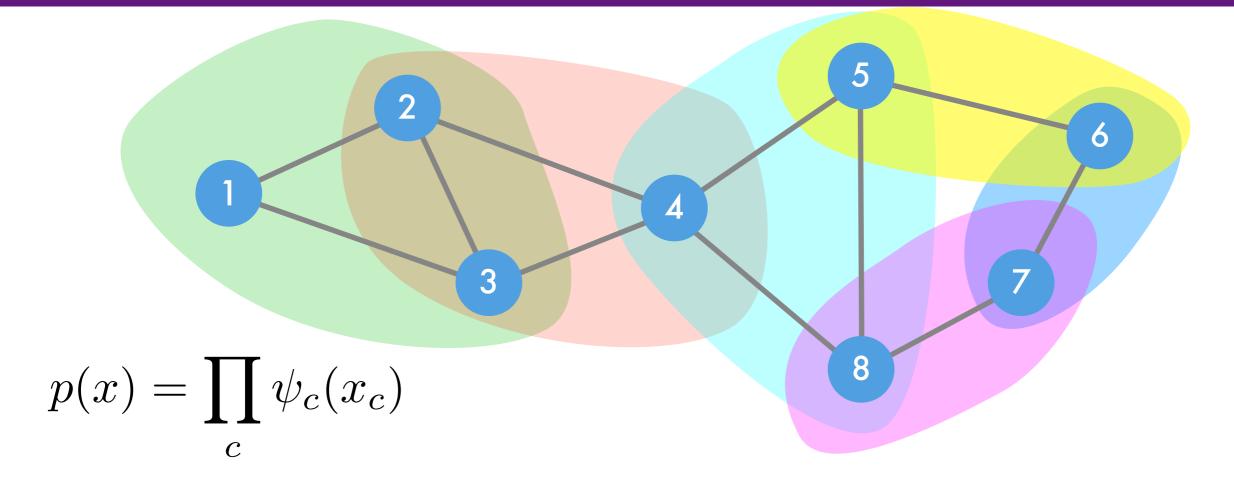
$$g(\theta | x) = \sum_y \prod_i f_i(y_i, y_{i+1}) \text{ where } dynamic$$

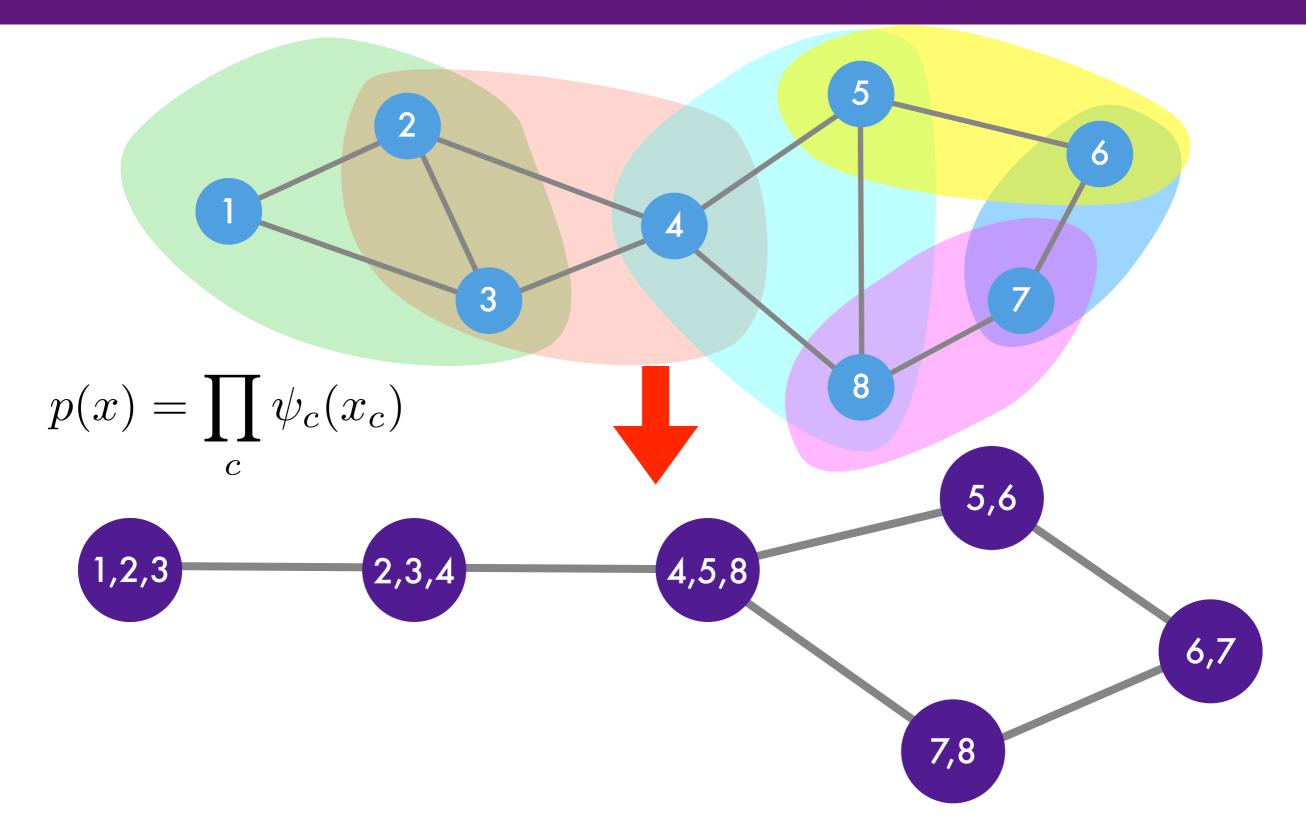
$$f_i(y_i, y_{i+1}) = e^{\langle \phi_x(x_i, y_i), \theta_x \rangle + \langle \phi_y(y_i, y_{i+1}), \theta_y \rangle} \text{ programming}$$

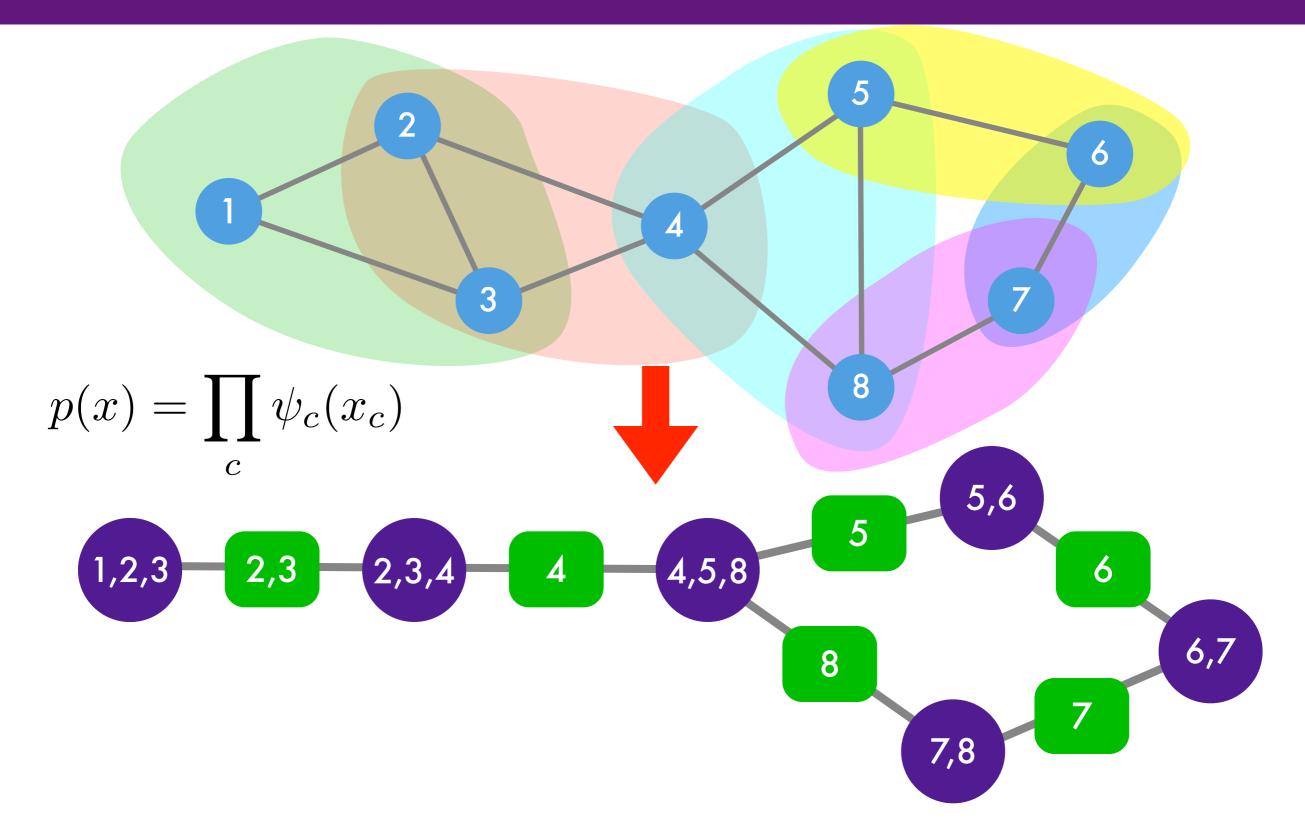
Conditional Random Fields

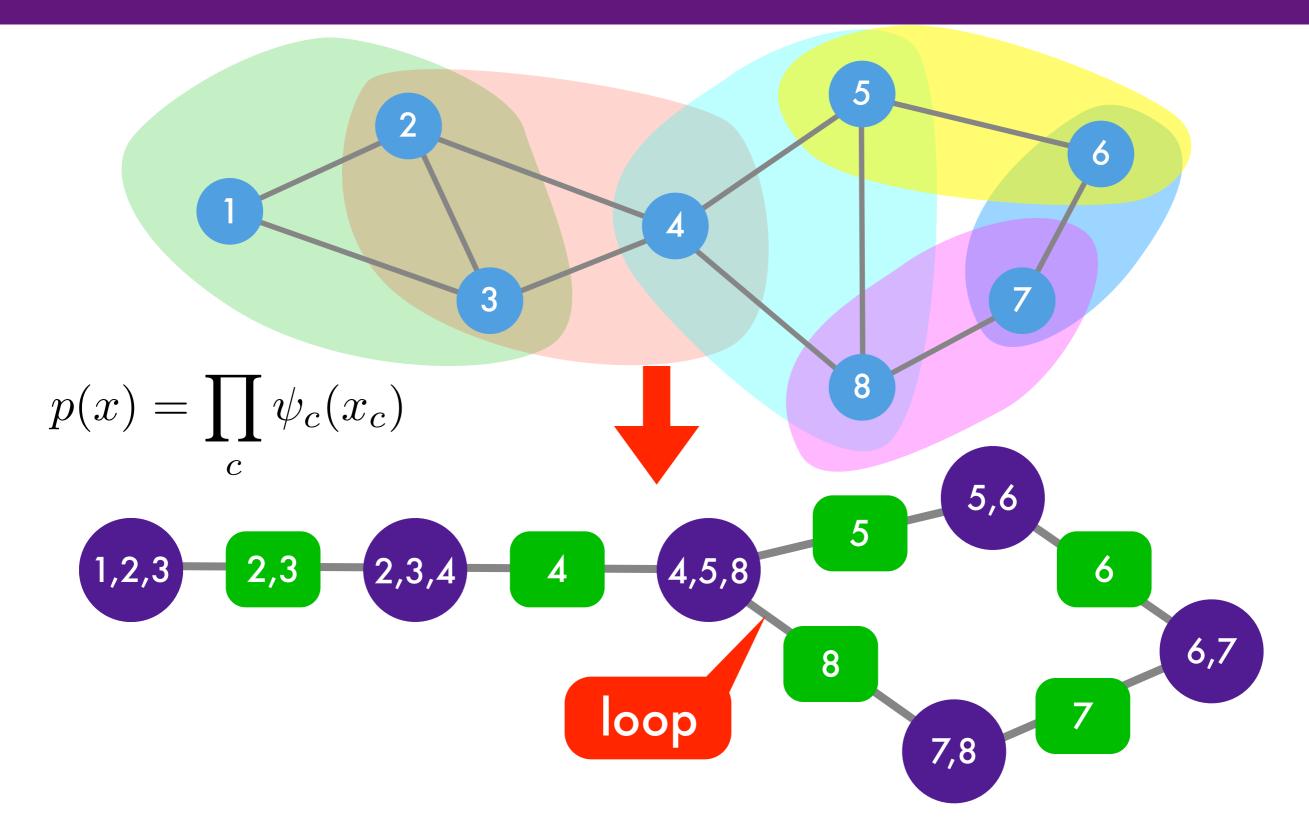
- Compute distribution over marginal and adjacent labels
- Take conditional expectations
- Take update step (batch or online)
- More general techniques for computing normalization via message passing ...

Dynamic Programming + Message Passing

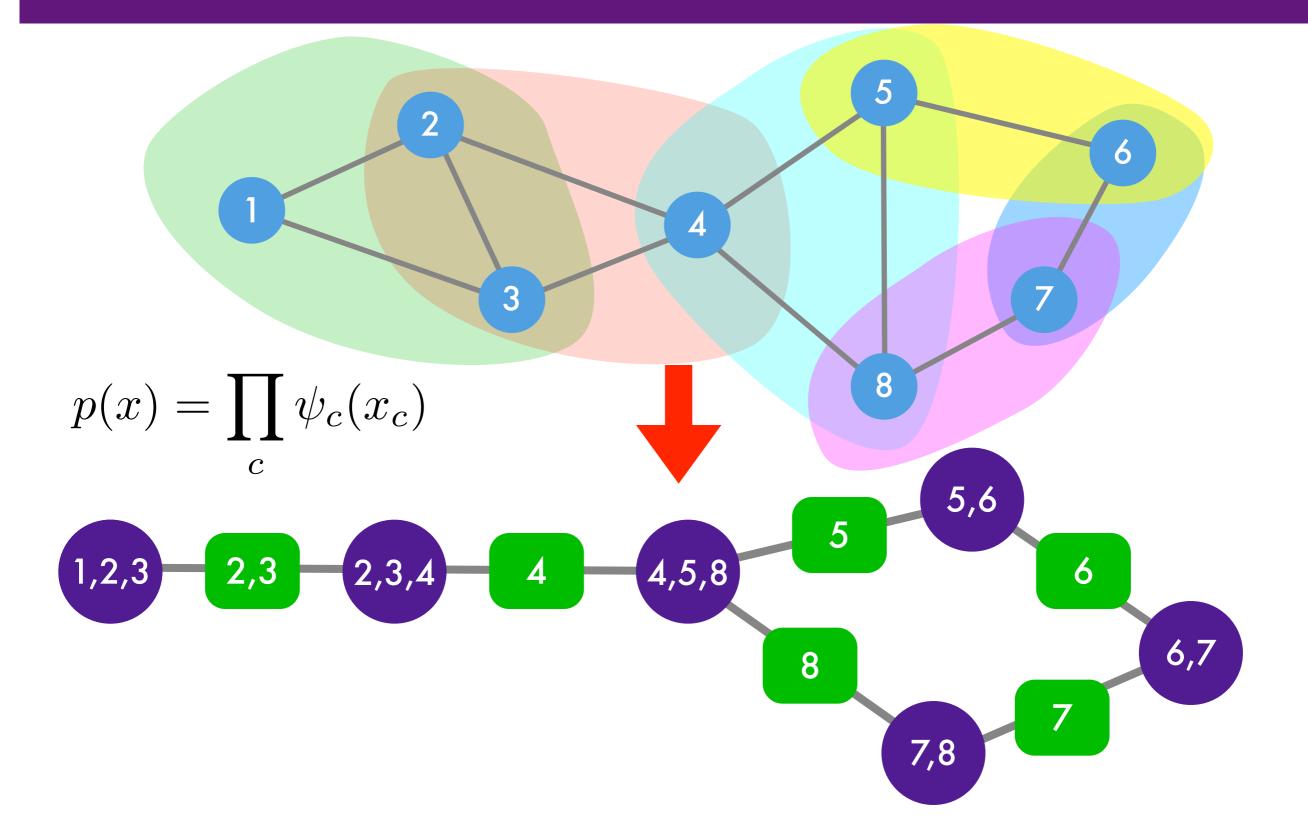




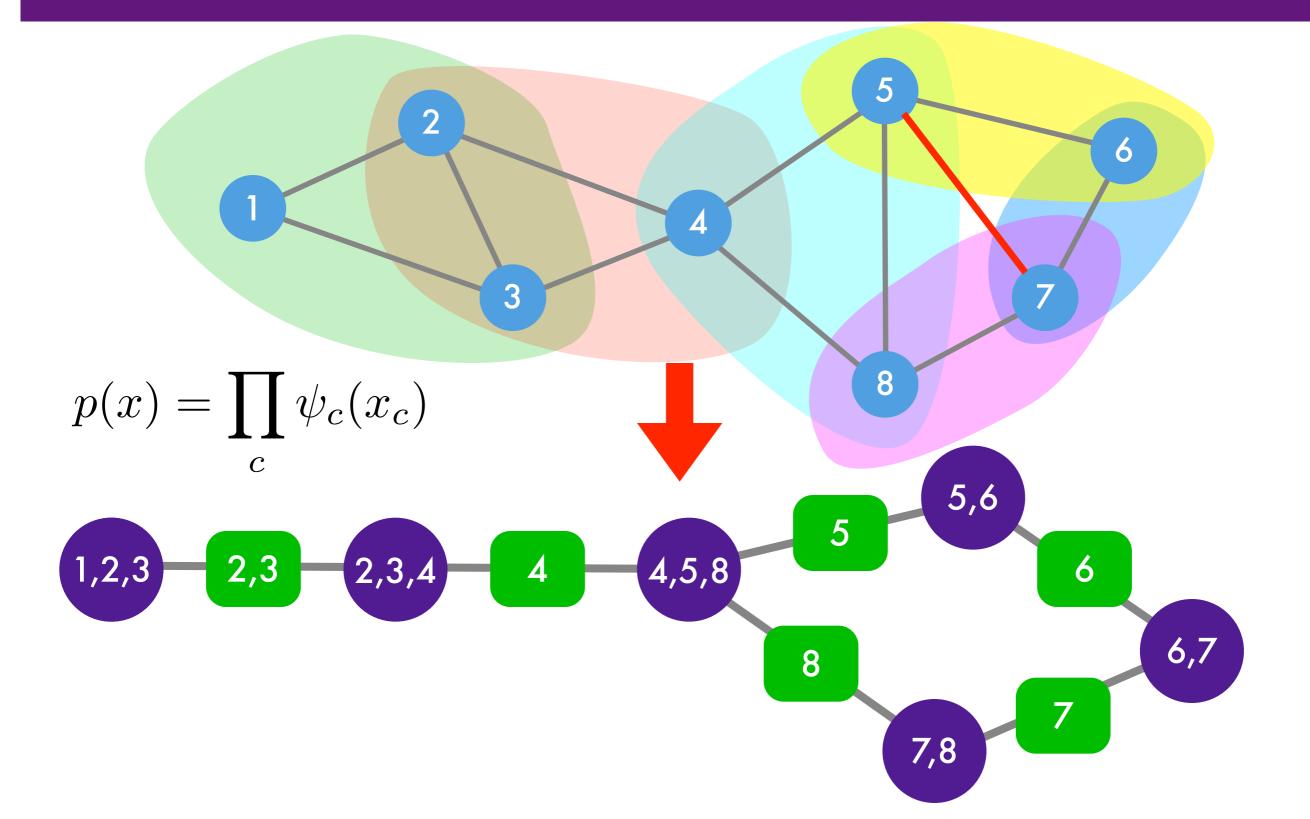




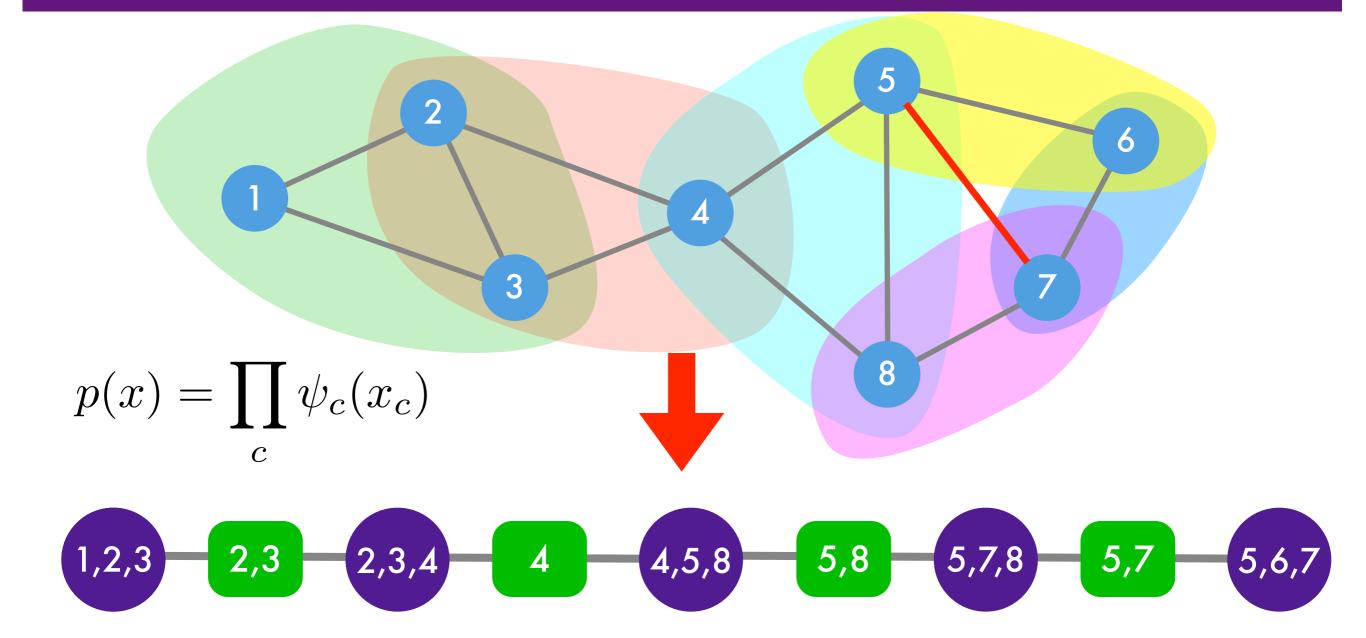
Junction Tree / Triangulation



Junction Tree / Triangulation

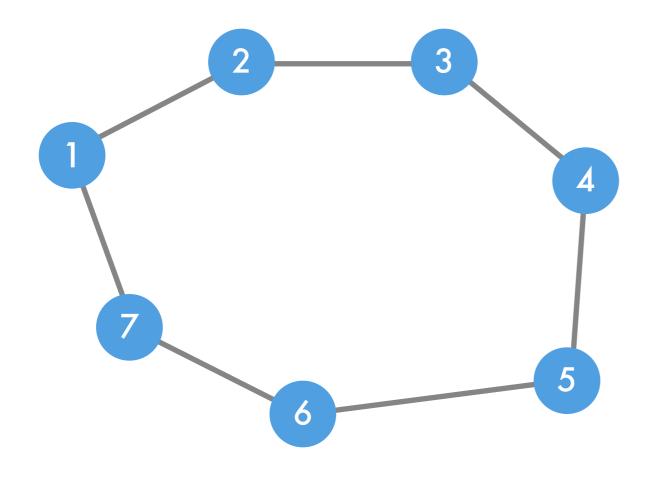


Junction Tree / Triangulation



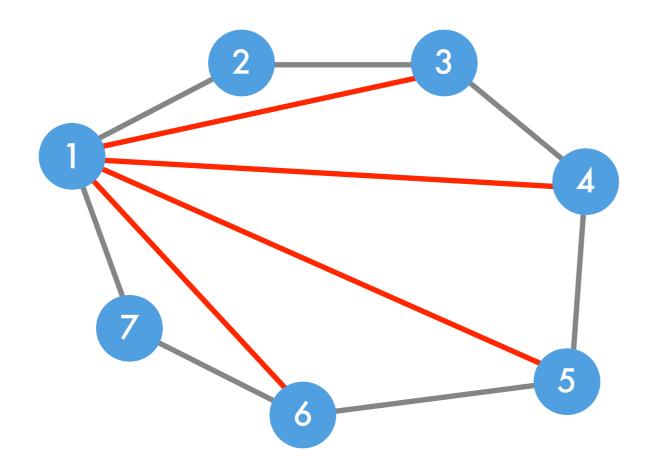
message passing possible

Triangulation Examples



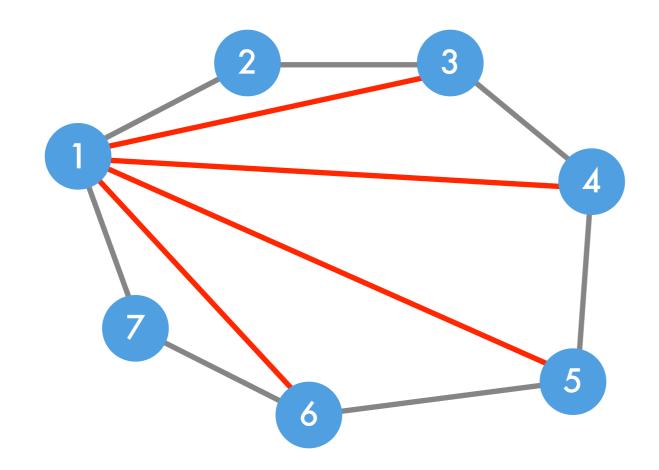
- Clique size increases
- Separator set size increases

Triangulation Examples



- Clique size increases
- Separator set size increases

Triangulation Examples



- Clique size increases
- Separator set size increases

Message Passing

• Joint Probability

 $p(x) \propto \psi(x_1, x_2, x_3)\psi(x_1, x_3, x_4)\psi(x_1, x_4, x_5)\psi(x_1, x_5, x_6)\psi(x_1, x_6, x_7)$

Computing the normalization

$$m_{\to}(x_1, x_3) = \sum_{x_2} \psi(x_1, x_2, x_3)$$
$$m_{\to}(x_1, x_4) = \sum_{x_3} m_{\to}(x_1, x_3) \psi(x_1, x_3, x_4)$$
$$m_{\to}(x_1, x_5) = \sum_{x_3} m_{\to}(x_1, x_4) \psi(x_1, x_4, x_5)$$

Message Passing

$$\mathbf{x}_{\mathbf{s}} \qquad m_{c \to c'}(x_{c \cap c'}) = \sum_{x_{c \setminus c'}} \psi_c(x_c) \prod_{c'' \in N(c) \setminus c'} m_{c'' \to c}(x_{c \cap c''})$$

$$\mathbf{x}_{\mathbf{s}} \qquad \mathbf{x}_{\mathbf{s}} \qquad \mathbf{x}_{\mathbf{s}'} \qquad \mathbf{x}_{\mathbf{c}'}$$

$$p(x_c) \propto \psi_c(x_c) \prod_{c'' \in N(c)} m_{c'' \to c}(x_{c \cap c''})$$

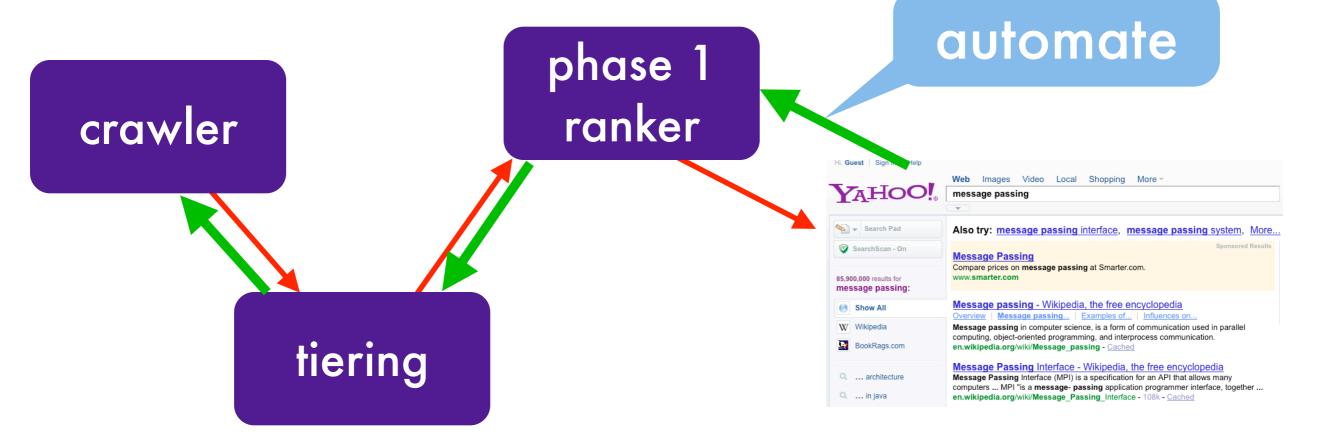
- Initialize messages with 1
- Guaranteed to converge for (junction) trees
- Works well in practice even for loopy graphs
- Only local computations are required

Message Passing in Practice

- Incoming messages contain aggregate uncertainty from neighboring random variables
- Message passing combines and transmits this information in both directions

Message Passing in Practice

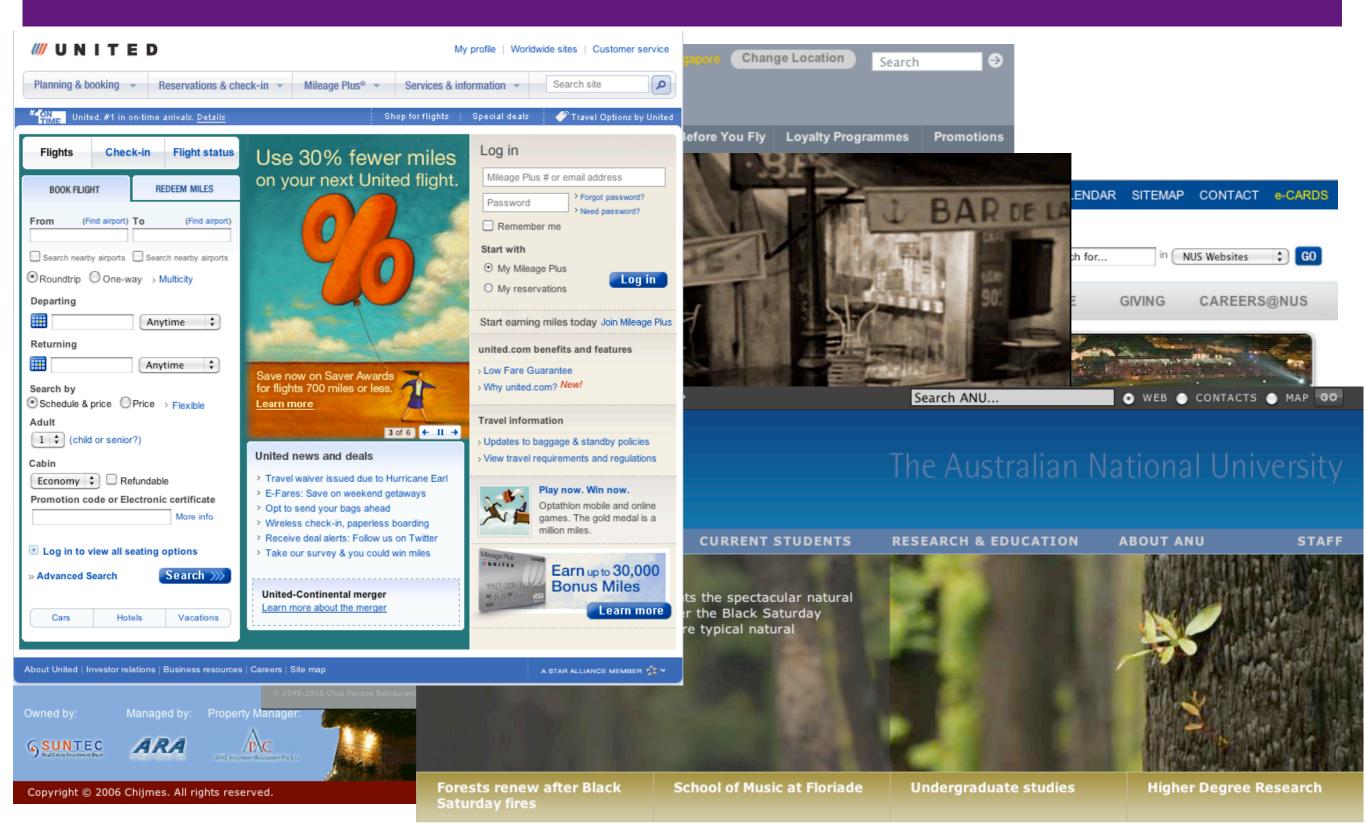
- Incoming messages contain aggregate uncertainty from neighboring random variables
- Message passing combines and transmits this information in both directions

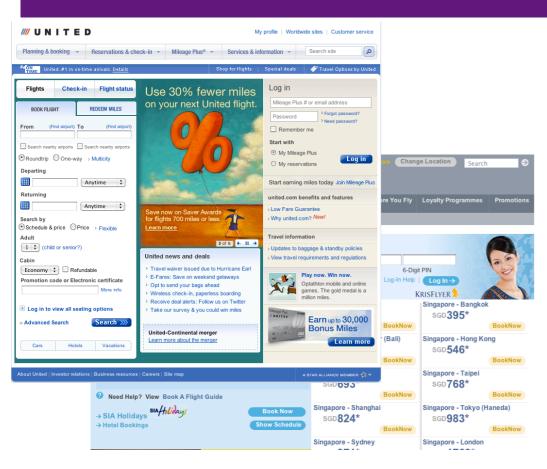


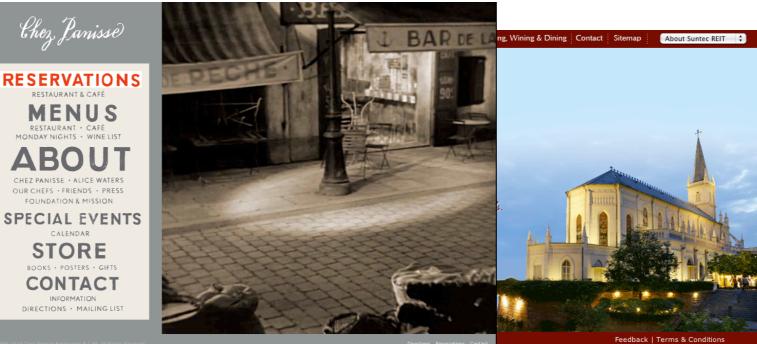
Part 5 - Scalable Topic Models

			Help ∣ Site N	Map ∣ Contact Us ∣I	Singepore Chan	ge Location Search	€				
	SINGAPORE AIRLINES		The Experience	Flights & Fares	Before You Fly	Loyalty Programmes	Promotions				
	Book a Flight Check In		S			myEMAIL IVLE	LIBRARY MA	PS CALENDA	AR SITEMAP	CONTACT e-CARI	DS
	Round Trip One Way	National Unive of Singapore					Sea	rch search for	. in N	NUS Websites 🛟 😡	0
	From: Departure City	ABOUT NUS	GLOBAL A	DMISSION			RPRISE CAMI	PUS LIFE	GIVING	CAREERS@NUS	
restaurant Discover o	As Services Events & Promotions A Solution States Solution ts · bars · shops a century of resplendent tory behind the cloistered		Contact Sitemap	Si	nga	DODE A HERE TO FIND OUT	Asia	at NUS	Joint Eva Exercises		
Chijmes, o destination	hijmes, a premier lifestyle stination in Singapore					STAFF	ALU	мпі		VISITORS	
Owned by:	Managed by: Property Manager:										
Convright @ 20	06 Chijmes, All rights reserved		Feedbac	k Terms & Condition	ie.				· · · · · · · · · · · · · · · · · · ·		

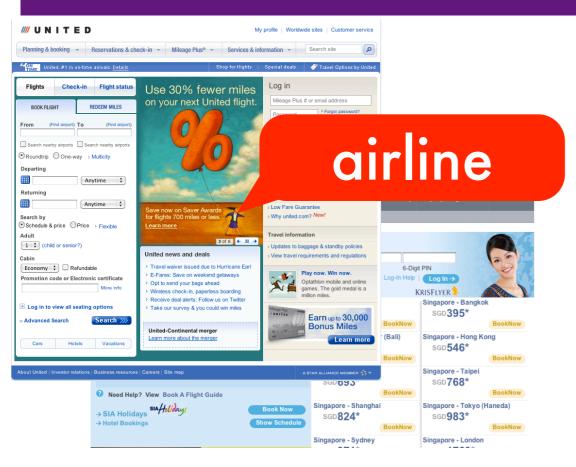
YAHOO!

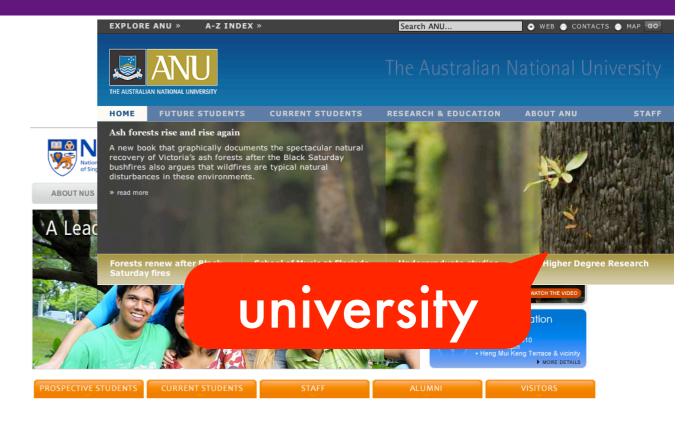




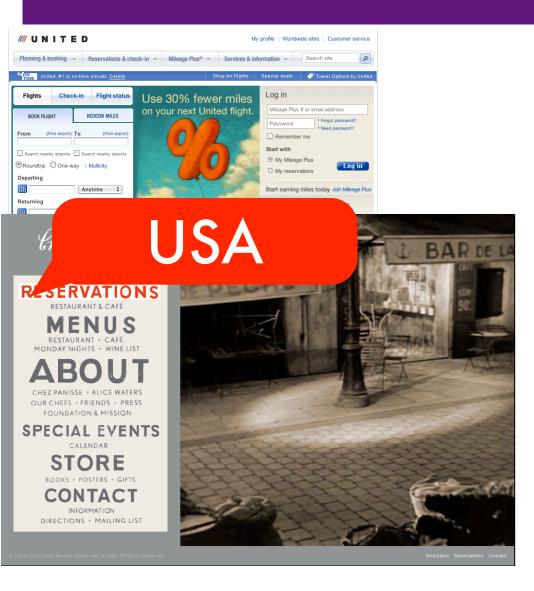


YAHOO!

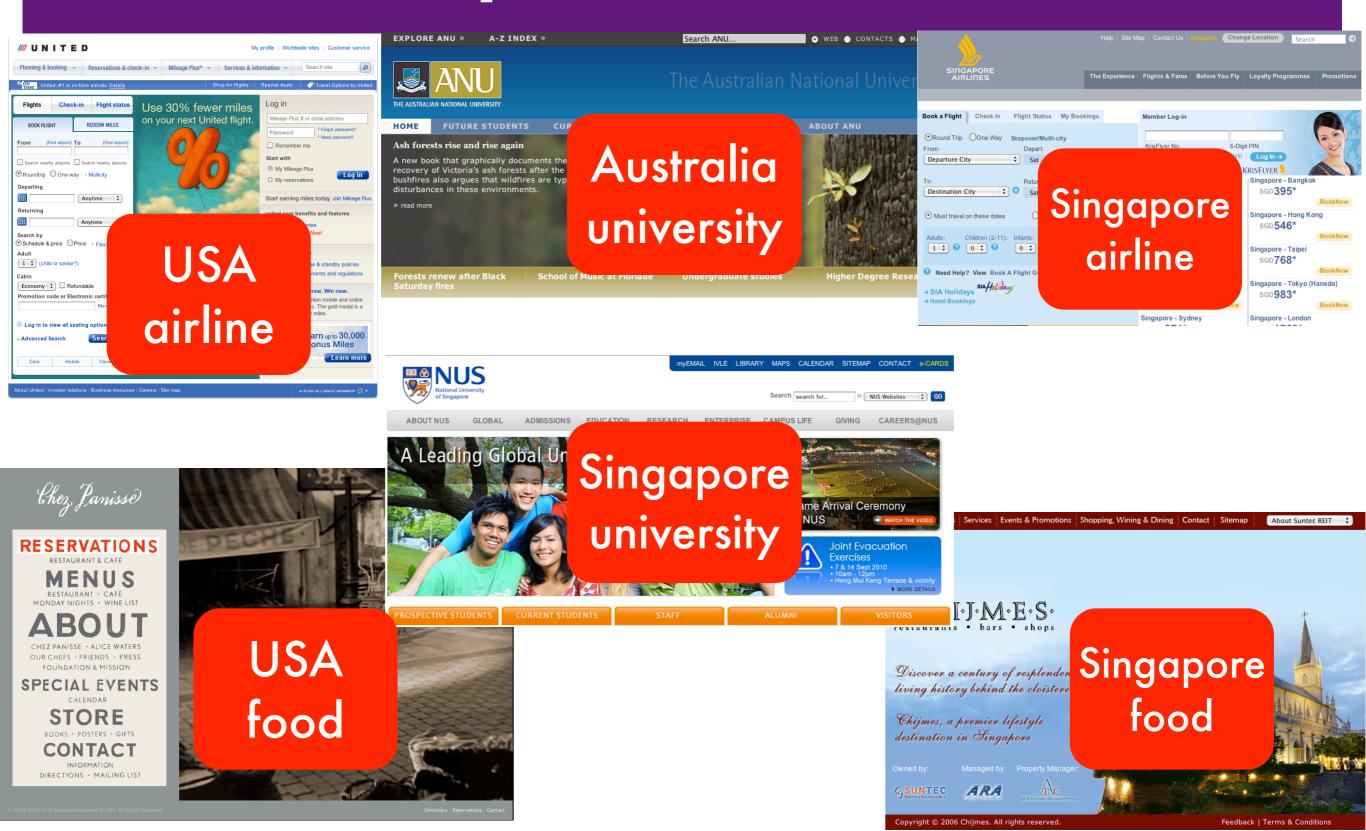




YAHOO!

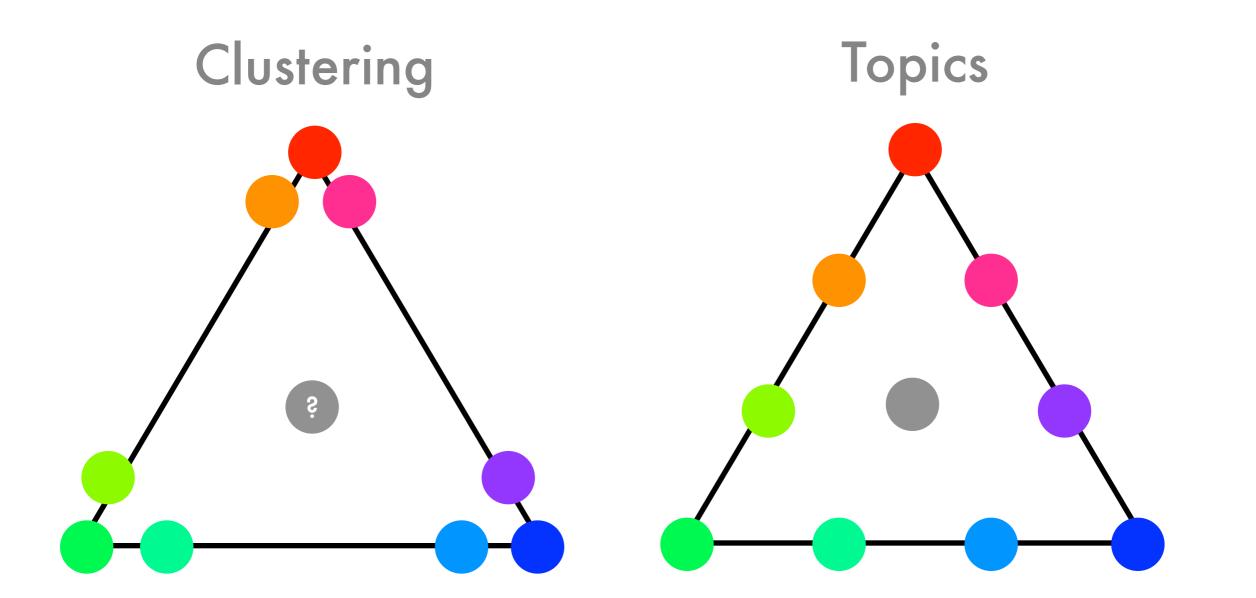


Topic Models

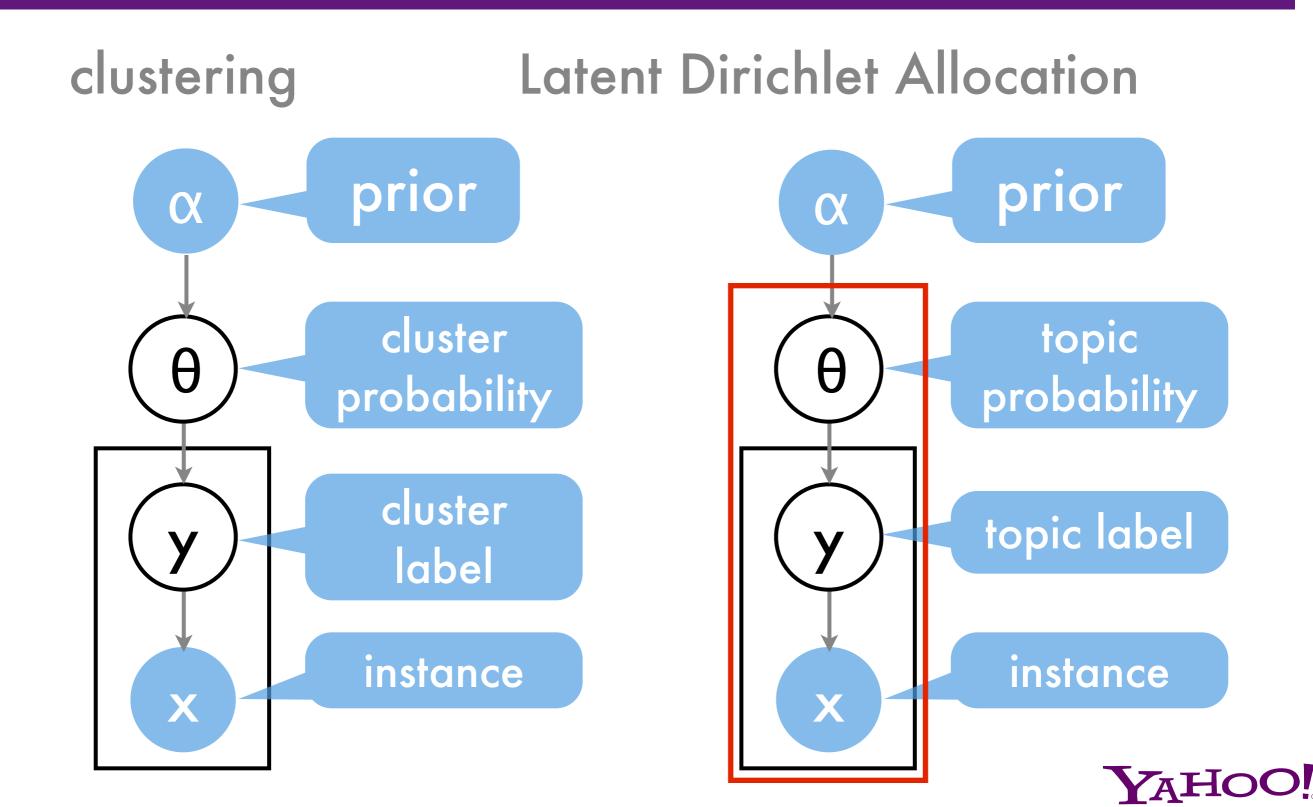


Clustering

group objects by prototypes



group objects by prototypes decompose objects into prototypes <u>YAHOO!</u>



Cluster/ topic distributions **x** membership = Documents

> clustering: (0, 1) matrix topic model: stochastic matrix LSI: arbitrary matrices

Topics in text

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

Latent Dirichlet Allocation; Blei, Ng, Jordan, JMLR 2003

Collapsed Gibbs Sampler

Joint Probability Distribution

$$p(\theta, z, \psi, x | \alpha, \beta)$$

$$= \prod_{k=1}^{K} p(\psi_k | \beta) \prod_{i=1}^{m} p(\theta_i | \alpha)$$

$$\prod_{i,j}^{m,m_i} p(z_{ij} | \theta_i) p(x_{ij} | z_{ij}, \psi)$$

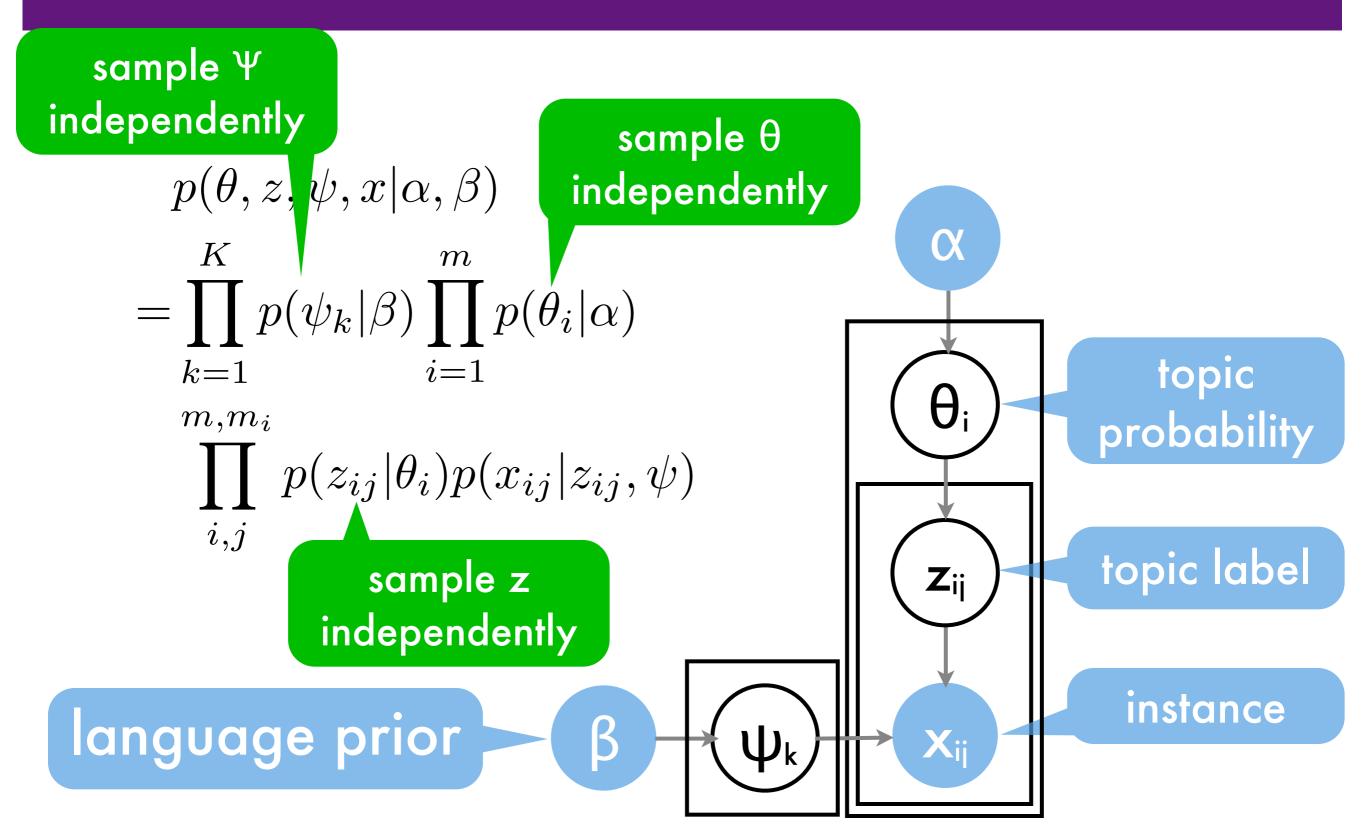
$$(\theta_i) \quad \text{topic probability}$$

$$(z_{ij}) \quad \text{topic label}$$

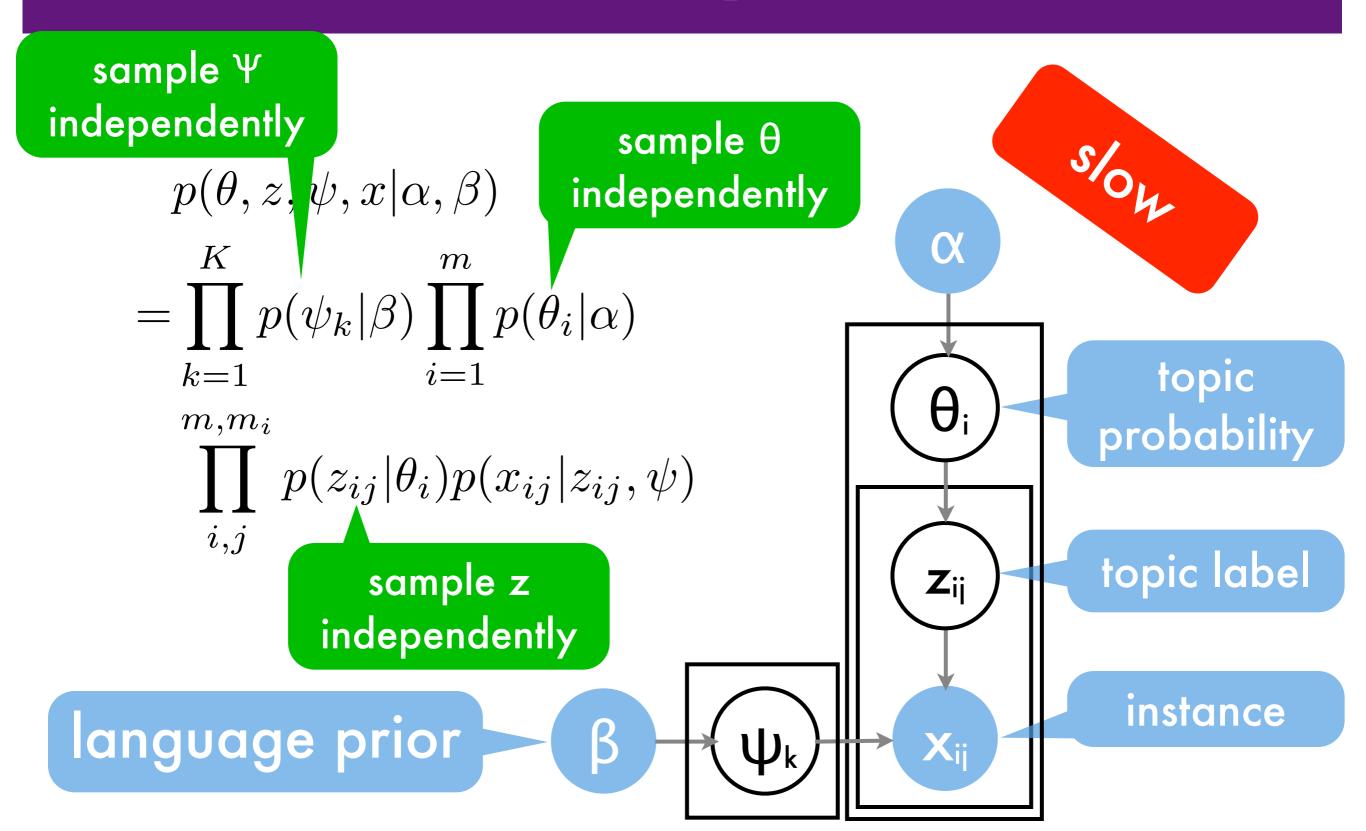
$$(z_{ij}) \quad \text{topic label}$$

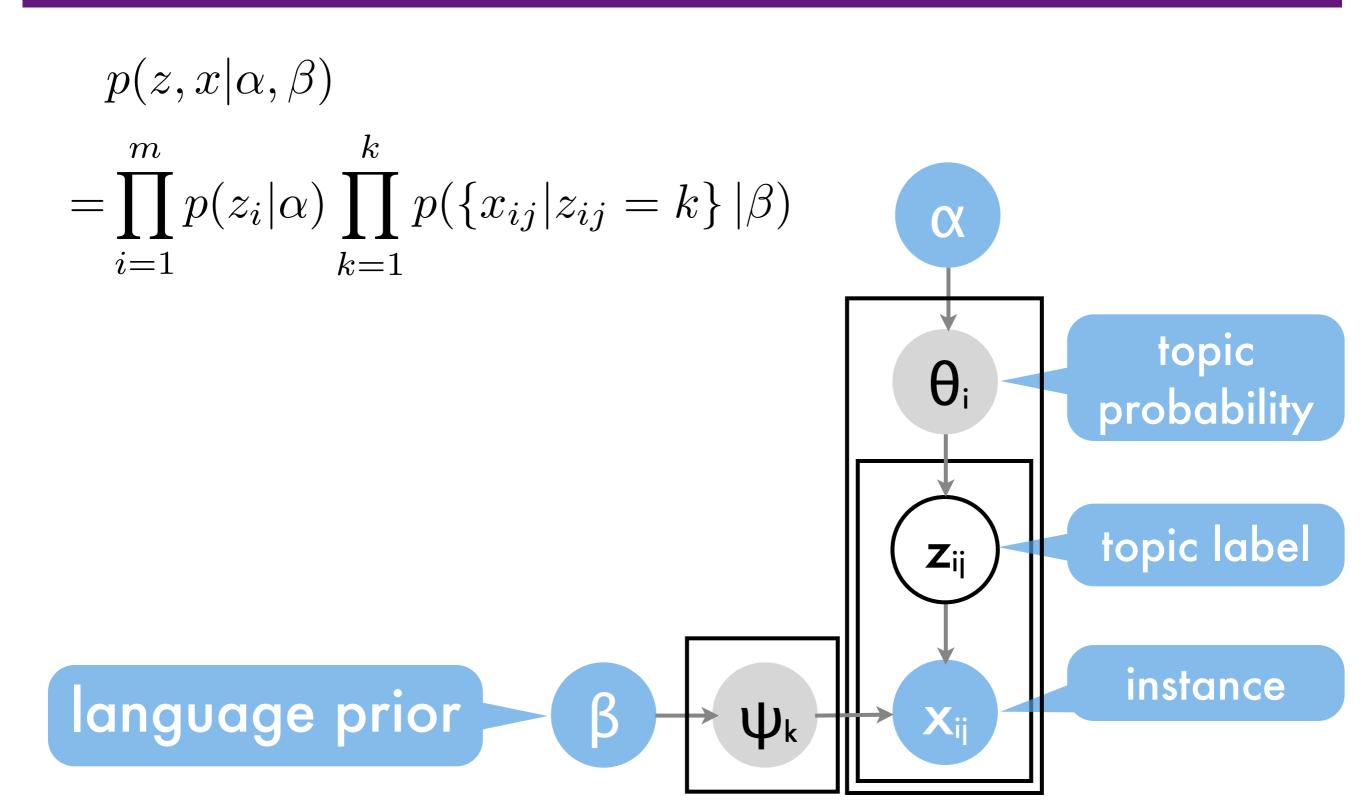
$$(z_{ij}) \quad \text{topic label}$$

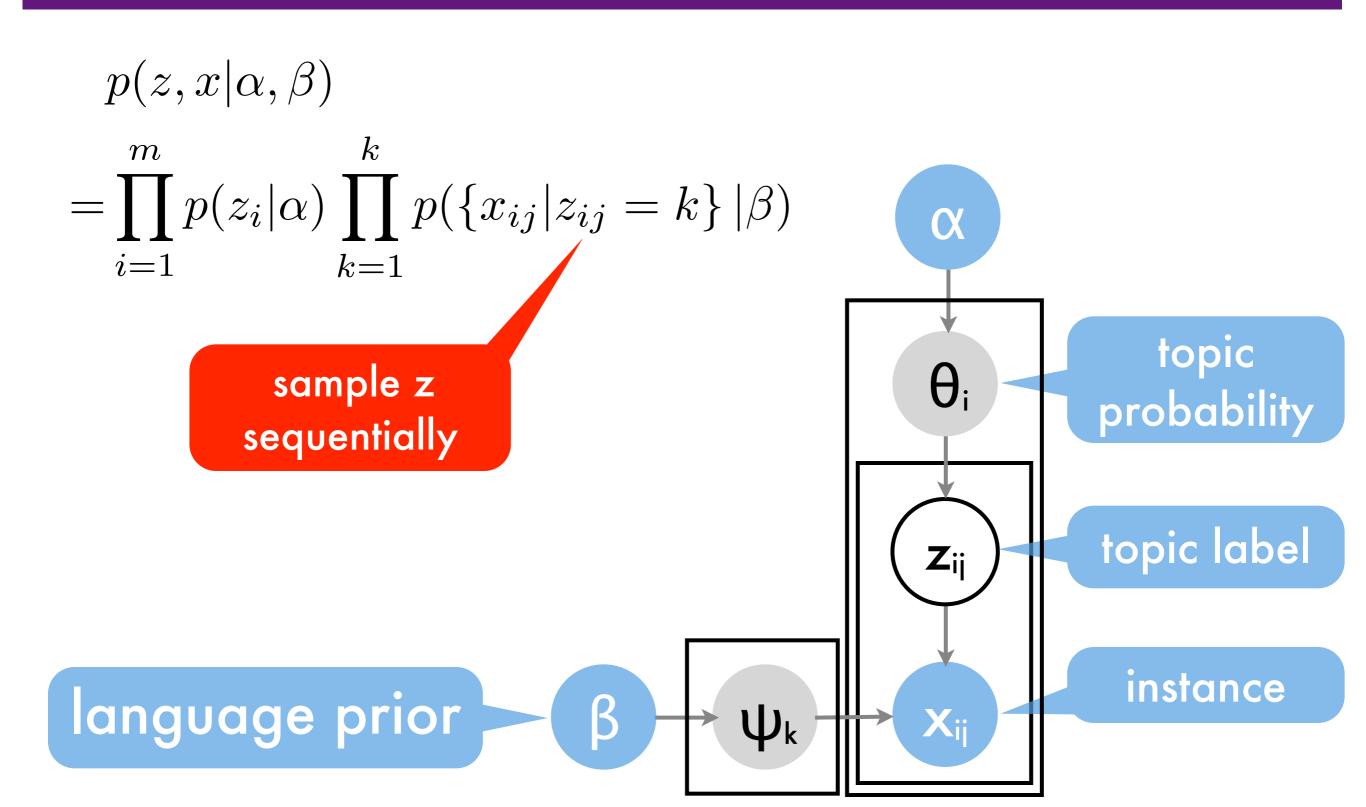
Joint Probability Distribution

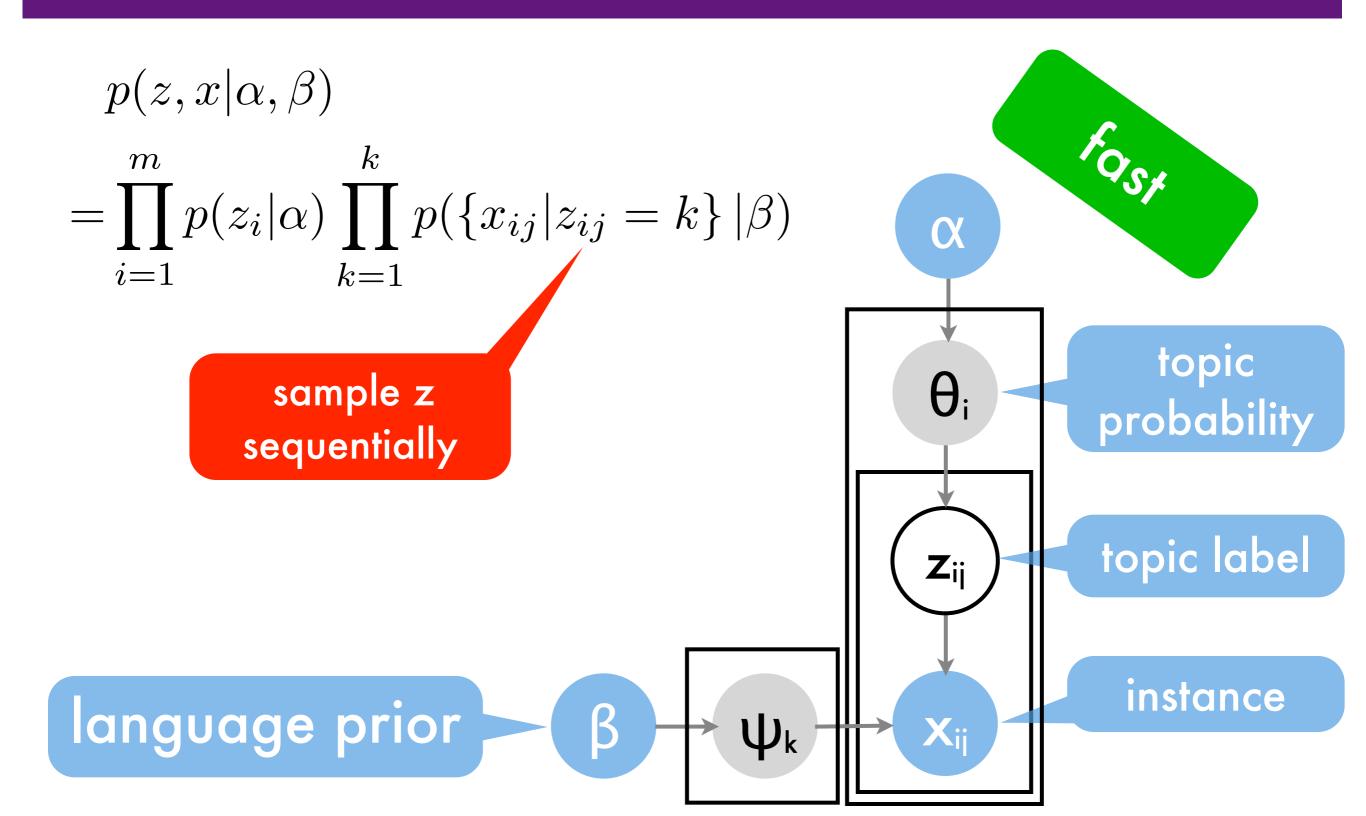


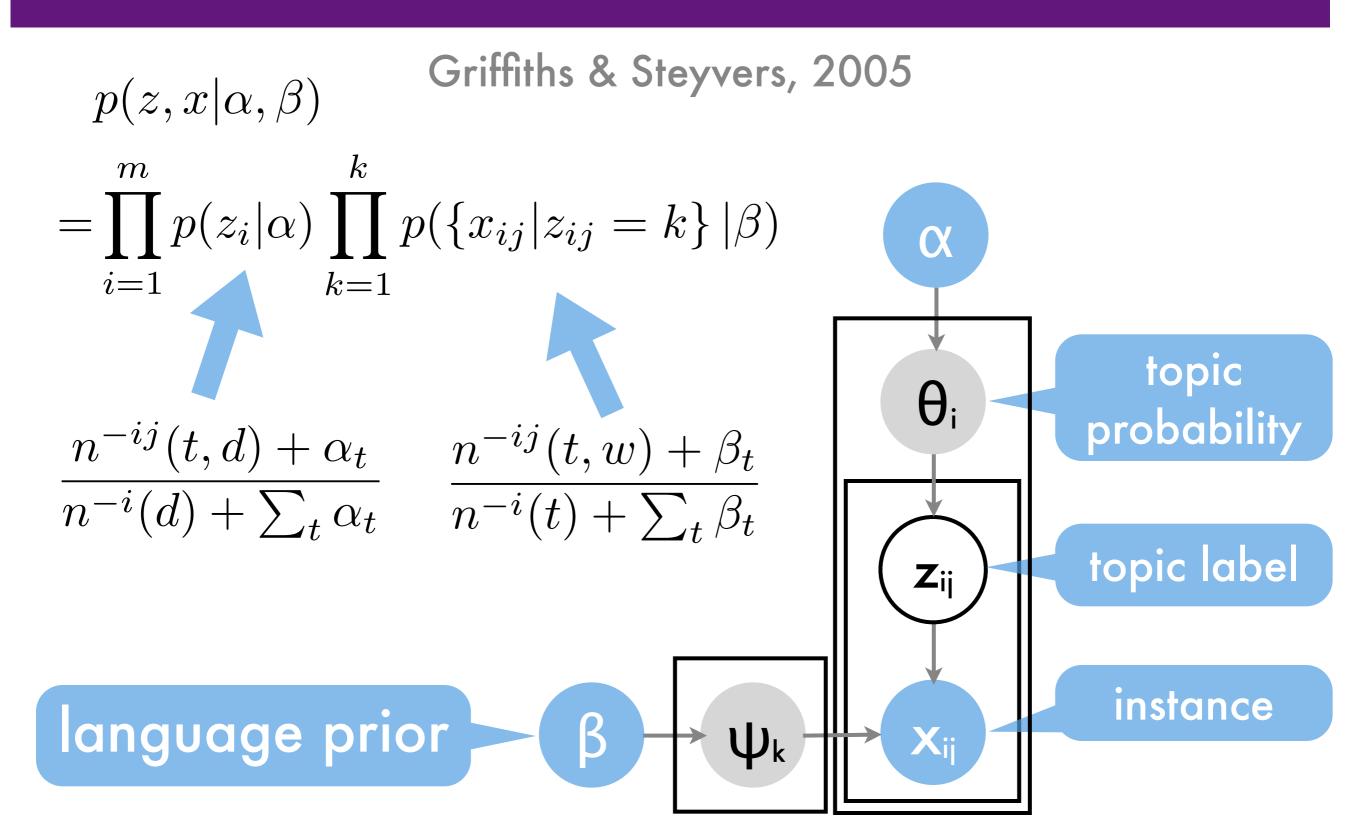
Joint Probability Distribution

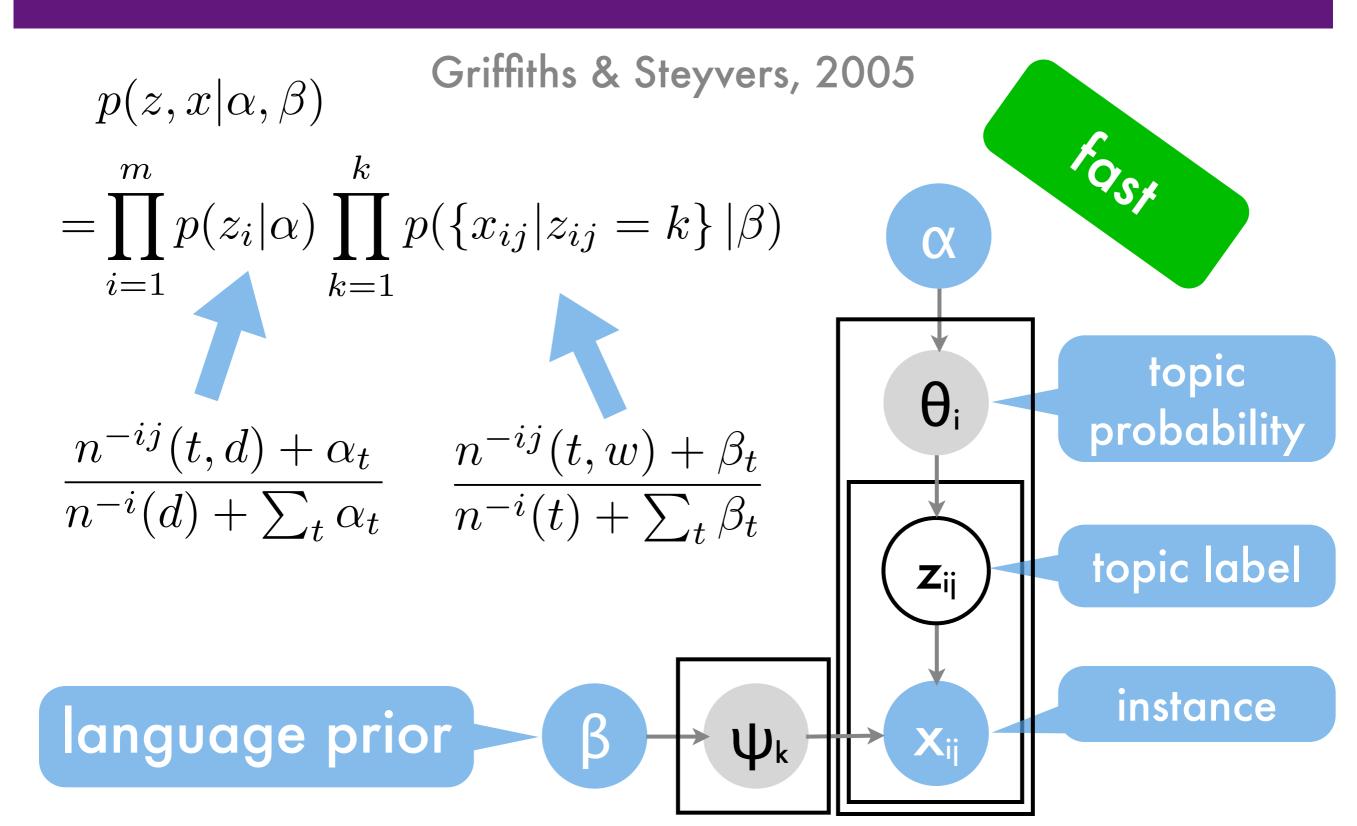












Sequential Algorithm (Gibbs sampler)

- For 1000 iterations do
 - For each document do
 - For each word in the document do
 - Resample topic for the word
 - Update local (document, topic) table
 - Update CPU local (word, topic) table
 - Update global (word, topic) table

Sequential Algorithm (Gibbs sampler)

- For 1000 iterations do
 - For each document do
 - For each word in the document do
 - Resample topic for the word
 - Update local (document, topic) table
 - Update CPU local (word, topic) table
 - Update global (word, topic) table

this kills parallelism

- For 1000 iterations do
 - For each document do
 - For each word in the document do
 - Resample topic for the word
 - Update local (document, topic) table
 - Update CPU local (word, topic) table
 - Update global (word, topic) table

$$p(t|w_{ij}) \propto \beta_w \frac{\alpha_t}{n(t) + \bar{\beta}} + \beta_w \frac{n(t, d=i)}{n(t) + \bar{\beta}} + \frac{n(t, w = w_{ij}) [n(t, d=i) + \alpha_t]}{n(t) + \bar{\beta}}$$

- For 1000 iterations do
 - For each document do
 - For each word in the document do
 - Resample topic for the word
 - Update local (document, topic) table
 - Update CPU local (word, topic) table
 - Update global (word, topic) table

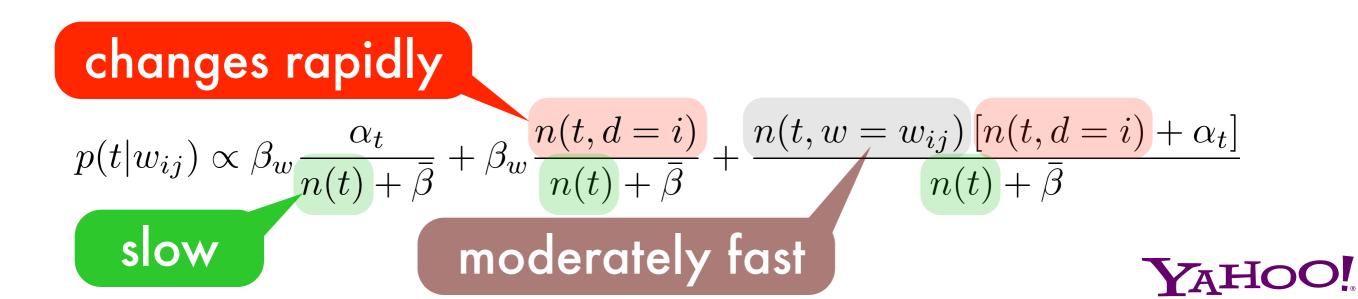
$$p(t|w_{ij}) \propto \beta_w \frac{\alpha_t}{n(t) + \bar{\beta}} + \beta_w \frac{n(t, d = i)}{n(t) + \bar{\beta}} + \frac{n(t, w = w_{ij}) \left[n(t, d = i) + \alpha_t\right]}{n(t) + \bar{\beta}}$$
slow

- For 1000 iterations do
 - For each document do
 - For each word in the document do
 - Resample topic for the word
 - Update local (document, topic) table
 - Update CPU local (word, topic) table
 - Update global (word, topic) table

changes rapidly

$$p(t|w_{ij}) \propto \beta_w \frac{\alpha_t}{n(t) + \bar{\beta}} + \beta_w \frac{n(t, d = i)}{n(t) + \bar{\beta}} + \frac{n(t, w = w_{ij}) \left[n(t, d = i) + \alpha_t\right]}{n(t) + \bar{\beta}}$$
slow

- For 1000 iterations do
 - For each document do
 - For each word in the document do
 - Resample topic for the word
 - Update local (document, topic) table
 - Update CPU local (word, topic) table
 - Update global (word, topic) table

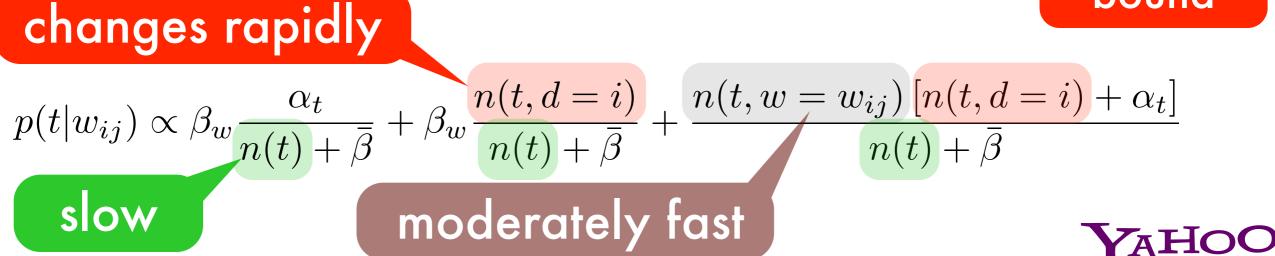


- For 1000 iterations do
 - For each document do
 - For each word in the document do
 - Resample topic for the word
 - Update local (document, topic) table
 - Update CPU local (word, topic) table
 - Update global (word, topic) table

memory inefficient

blocking

network bound



- For 1000 iterations do (independently per computer)
 - For each thread/core do
 - For each document do
 - For each word in the document do
 - Resample topic for the word
 - Update local (document, topic) table
 - Generate computer local (word, topic) message
 - In parallel update local (word, topic) table
 - In parallel update global (word, topic) table

- For 1000 iterations do (independently per computer)
 - For each thread/core do
 - For each document do
 - For each word in the document do
 - Resample topic for the word
 - Update local (document, topic) table
 - Generate computer local (word, topic) message
 - In parallel update local (word, topic) table
 - In parallel update global (word, topic) table

network bound

concurrent cpu hdd net

- For 1000 iterations do (independently per computer)
 - For each thread/core do
 - For each document do
 - For each word in the document do
 - Resample topic for the word
 - Update local (document, topic) table
 - Generate computer local (word, topic) message

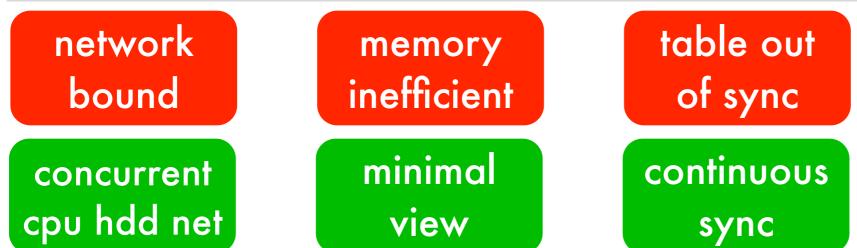
YAHO

- In parallel update local (word, topic) table
- In parallel update global (word, topic) table

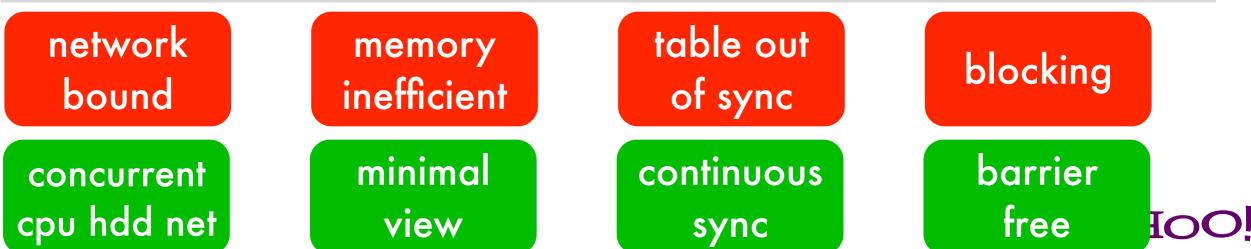
- For 1000 iterations do (independently per computer)
 - For each thread/core do
 - For each document do
 - For each word in the document do
 - Resample topic for the word
 - Update local (document, topic) table
 - Generate computer local (word, topic) message

YAHO

- In parallel update local (word, topic) table
- In parallel update global (word, topic) table

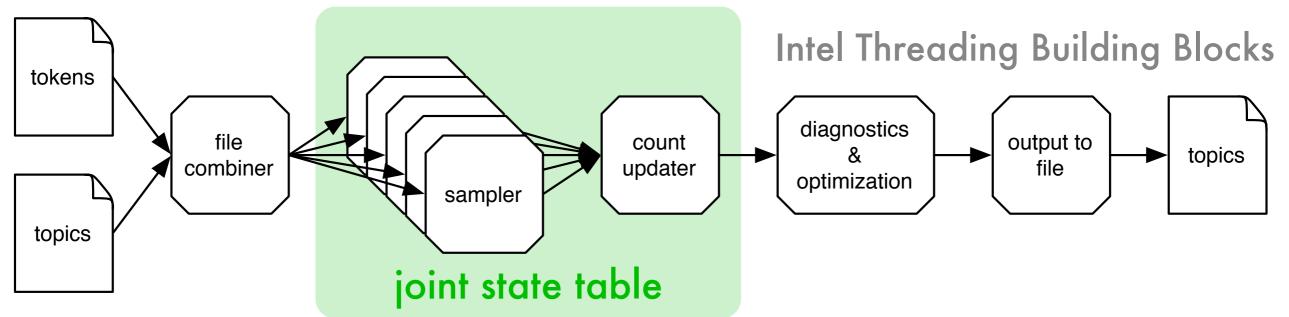


- For 1000 iterations do (independently per computer)
 - For each thread/core do
 - For each document do
 - For each word in the document do
 - Resample topic for the word
 - Update local (document, topic) table
 - Generate computer local (word, topic) message
 - In parallel update local (word, topic) table
 - In parallel update global (word, topic) table



Architecture details

Multicore Architecture

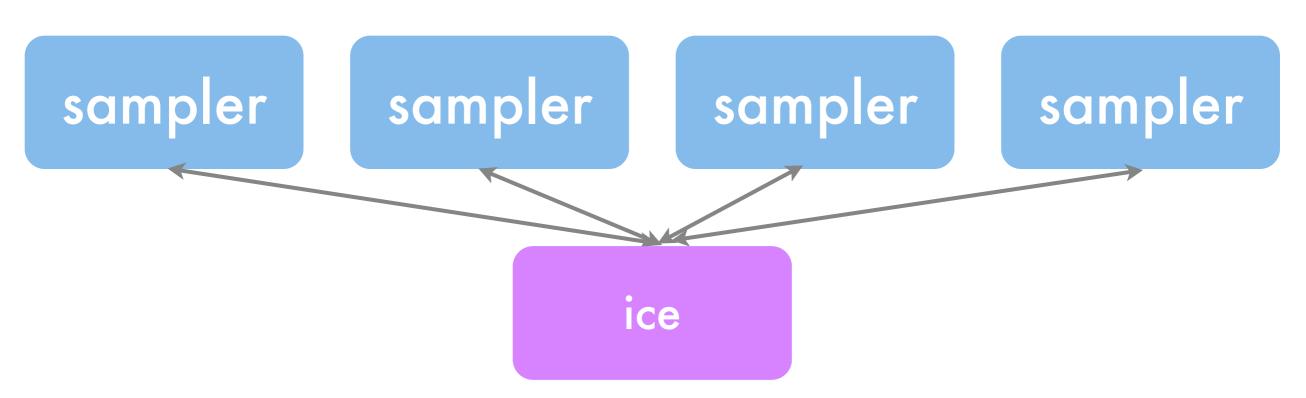


- Decouple multithreaded sampling and updating (almost) avoids stalling for locks in the sampler
- Joint state table
 - much less memory required
 - samplers syncronized (10 docs vs. millions delay)
- Hyperparameter update via stochastic gradient descent

YAHOO!

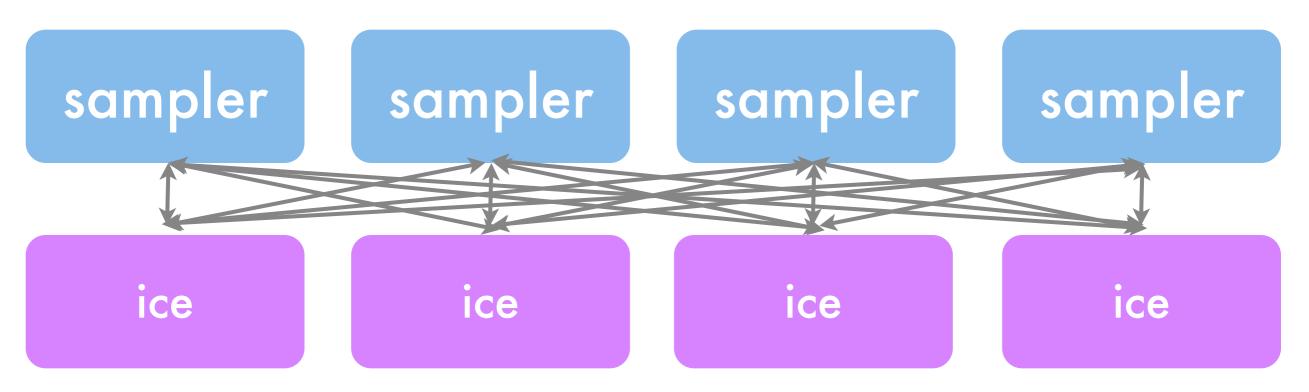
No need to keep documents in memory (streaming)

Cluster Architecture



- Distributed (key,value) storage via memcached
- Background asynchronous synchronization
 - single word at a time to avoid deadlocks
 - no need to have joint dictionary
 - uses disk, network, cpu simultaneously_

Cluster Architecture



- Distributed (key,value) storage via ICE
- Background asynchronous synchronization
 - single word at a time to avoid deadlocks
 - no need to have joint dictionary
 - uses disk, network, cpu simultaneously_

Making it work

- Startup
 - Randomly initialize topics on each node (read from disk if already assigned - hotstart)
 - Sequential Monte Carlo for startup much faster
 - Aggregate changes on the fly
- Failover
 - State constantly being written to disk (worst case we lose 1 iteration out of 1000)
 - Restart via standard startup routine
- Achilles heel: need to restart from checkpoint if even a single machine dies.

YAHO

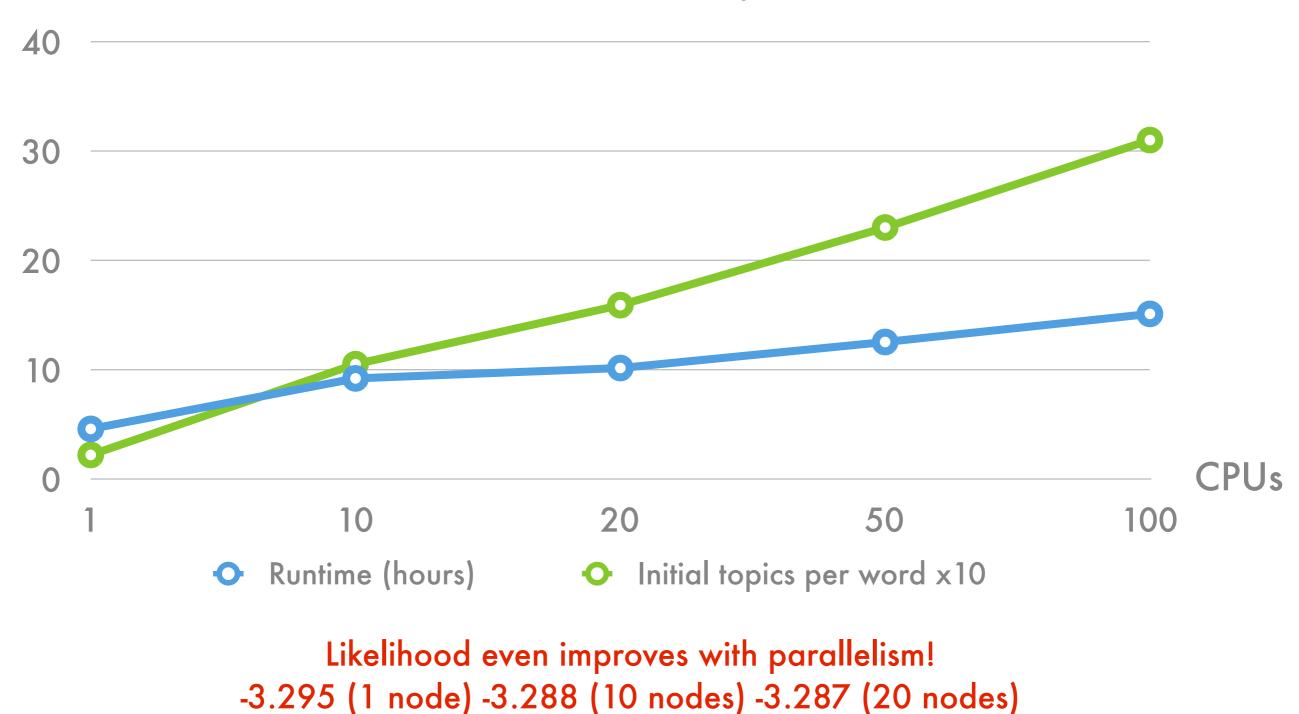
Easily extensible

- Better language model (topical n-grams) can process millions of users (vs 1000s)
- Conditioning on side information (upstream) estimate topic based on authorship, source, joint user model ...
- Conditioning on dictionaries (downstream) integrate topics between different languages
- Time dependent sampler for user model approximate inference per episode

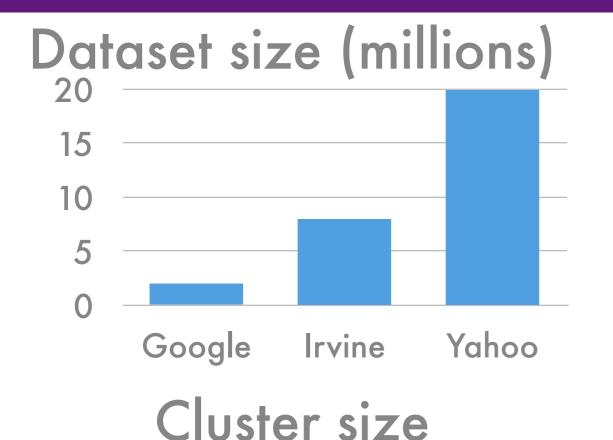
	Google LDA	Mallet	Irvine'08	Irvine'09	Yahoo LDA
Multicore	no	yes	yes	yes	yes
Cluster	MPI	no	MPI	point 2 point	memcached
State table	dictionary split	separate sparse	separate	separate	joint sparse
Schedule	synchronous exact	synchronous exact	synchronous exact	asynchronous approximate messages	asynchronous exact

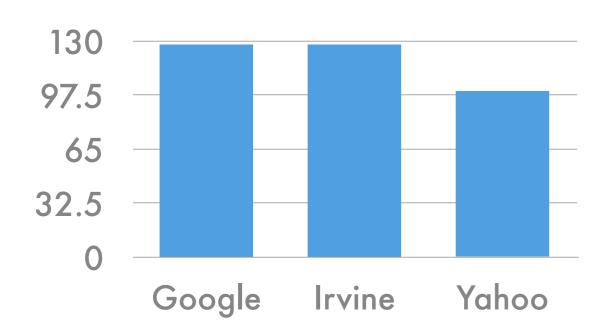
- IM documents per day on 1 computer
 (1000 topics per doc, 1000 words per doc)
- 350k documents per day per node (context switches & memcached & stray reducers)
- 8 Million docs (Pubmed) (sampler does not burn in well - too short doc)
 - Irvine: 128 machines, 10 hours
 - Yahoo: 1 machine, 11 days
 - Yahoo: 20 machines, 9 hours
- 20 Million docs (Yahoo! News Articles)
 - Yahoo: 100 machines, 12 hours

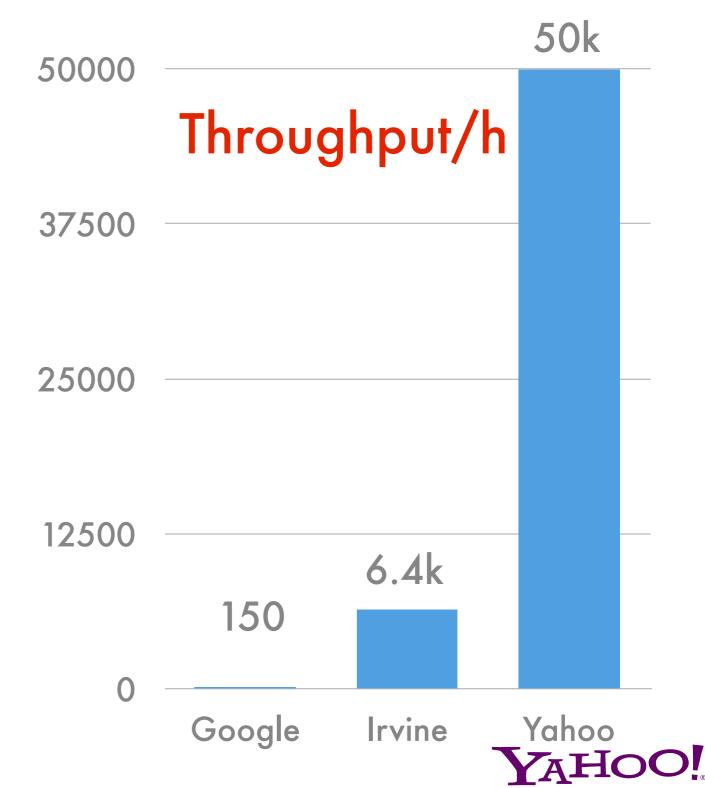
200k documents/computer



The Competition



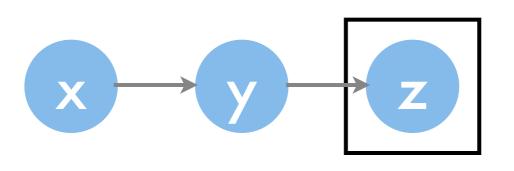


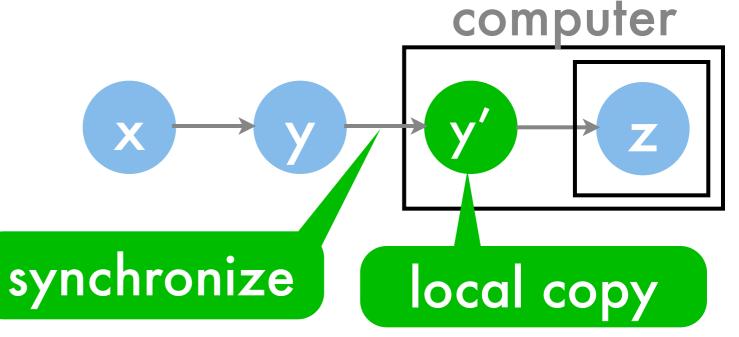


Design Principles

Variable Replication

Global shared variable

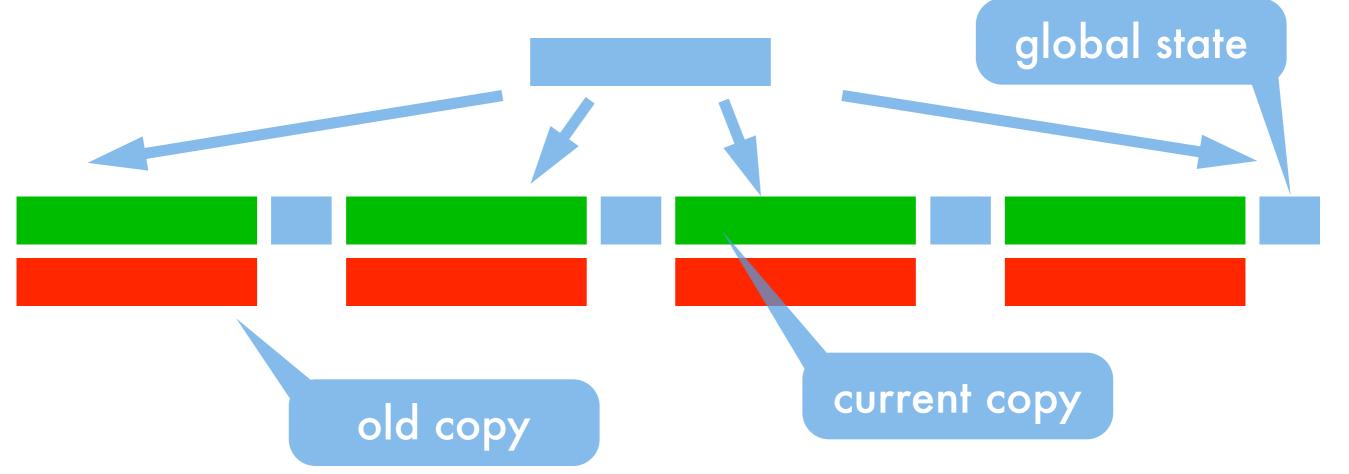




- Make local copy
 - Distributed (key,value) storage table for global copy
 - Do all bookkeeping locally (store old versions)
 - Sync local copies asynchronously using message passing (no global locks are needed)
- This is an approximation!

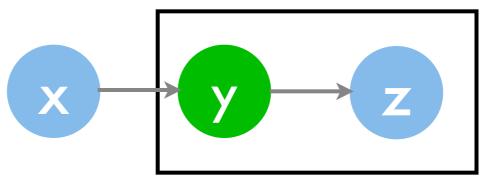
Asymmetric Message Passing

- Large global shared state space (essentially as large as the memory in computer)
- Distribute global copy over several machines (distributed key,value storage)

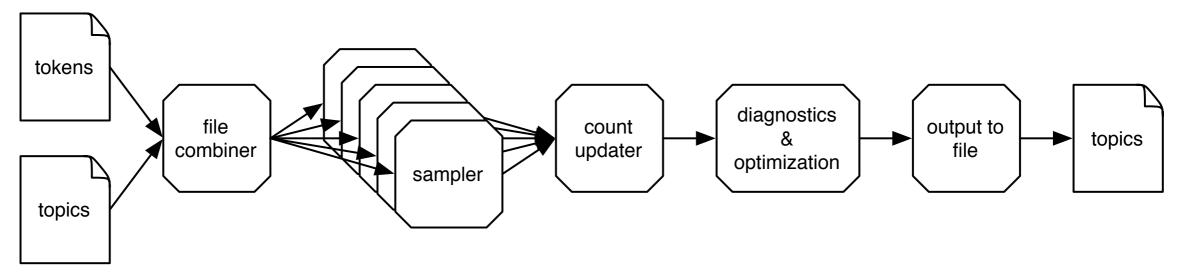


Out of core storage

• Very large state space



- Gibbs sampling requires us to traverse the data sequentially many times (think 1000x)
- Stream local data from disk and update coupling variable each time local data is accessed
- This is exact

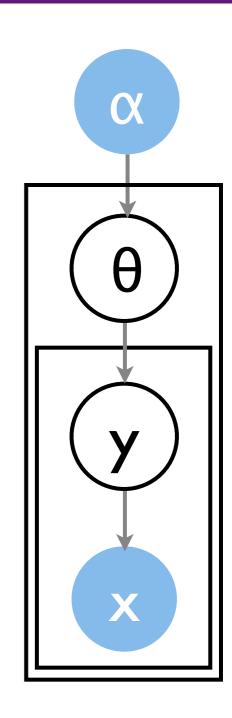


Part 6 - Advanced Modeling

Advances in Representation

Extensions to topic models

- Prior over document topic vector
 - Usually as Dirichlet distribution
 - Use correlation between topics (CTM)
 - Hierarchical structure over topics
- Document structure
 - Bag of words
 - n-grams (Li & McCallum)
 - Simplical Mixture (Girolami & Kaban)
- Side information
 - Upstream conditioning (Mimno & McCallum)
 - Downstream conditioning (Petterson et al.)
 - Supervised LDA (Blei and McAulliffe 2007; Lacoste, Sha and Jordan 2008; Zhu, Ahmed and Xing 2009)



Correlated topic models

- Dirichlet distribution
 - Can only model which topics are hot
 - Does not model relationships between topics

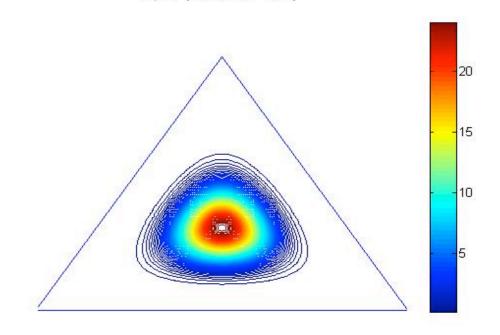
Correlated topic models

- Dirichlet distribution
 - Can only model which topics are hot
 - Does not model relationships between topics
- Key idea
 - We expect to see documents about sports and health but not about sports and politics
 - Uses a logistic normal distribution as a prior
- Conjugacy is no longer maintained
- Inference is harder than in LDA

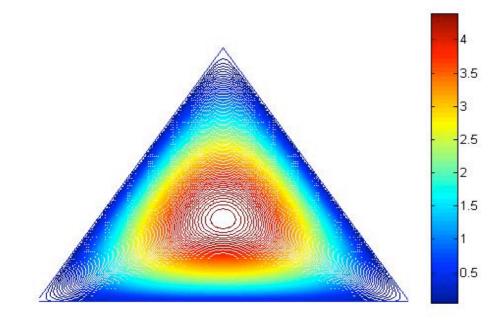
Blei & Lafferty 2005; Ahmed & Xing 2007

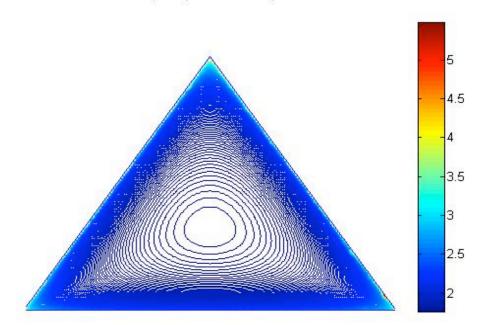
Dirichlet prior on topics

Alpha =[10.00 10.00 10.00]

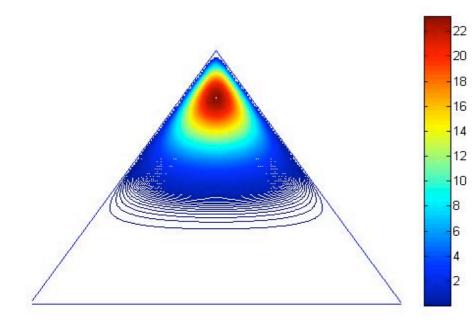


Alpha =[2.00 2.00 2.00]

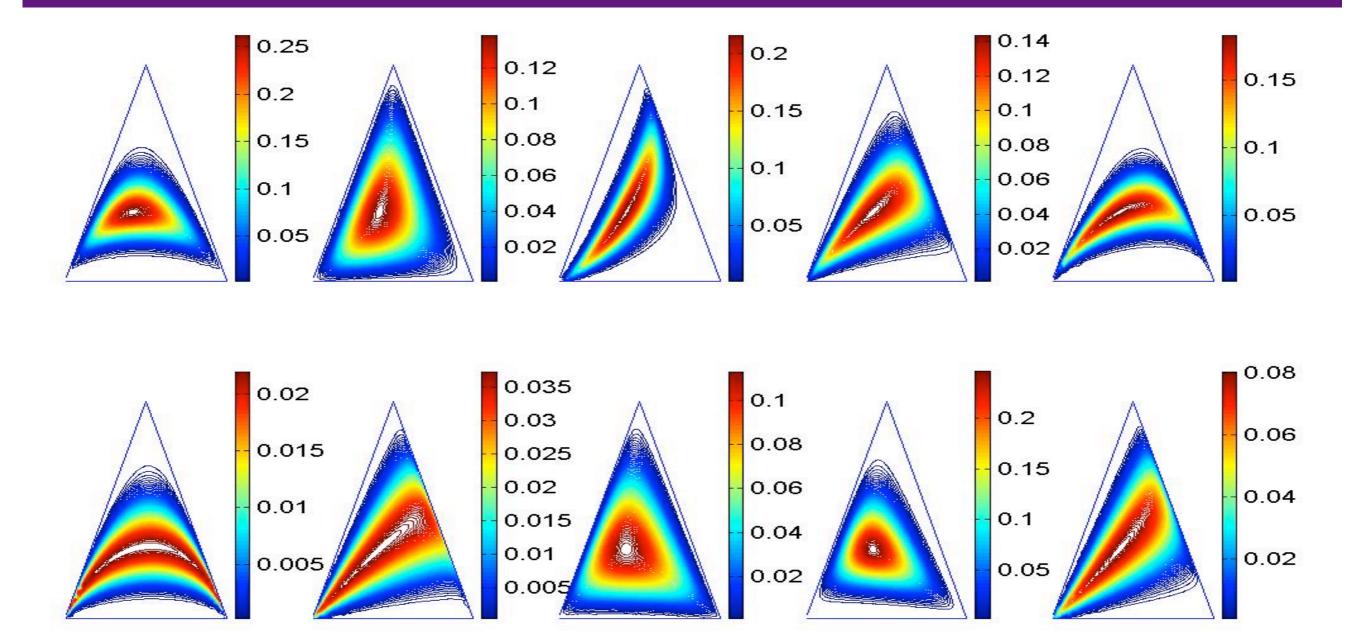




Alpha =[2.00 10.00 2.00]

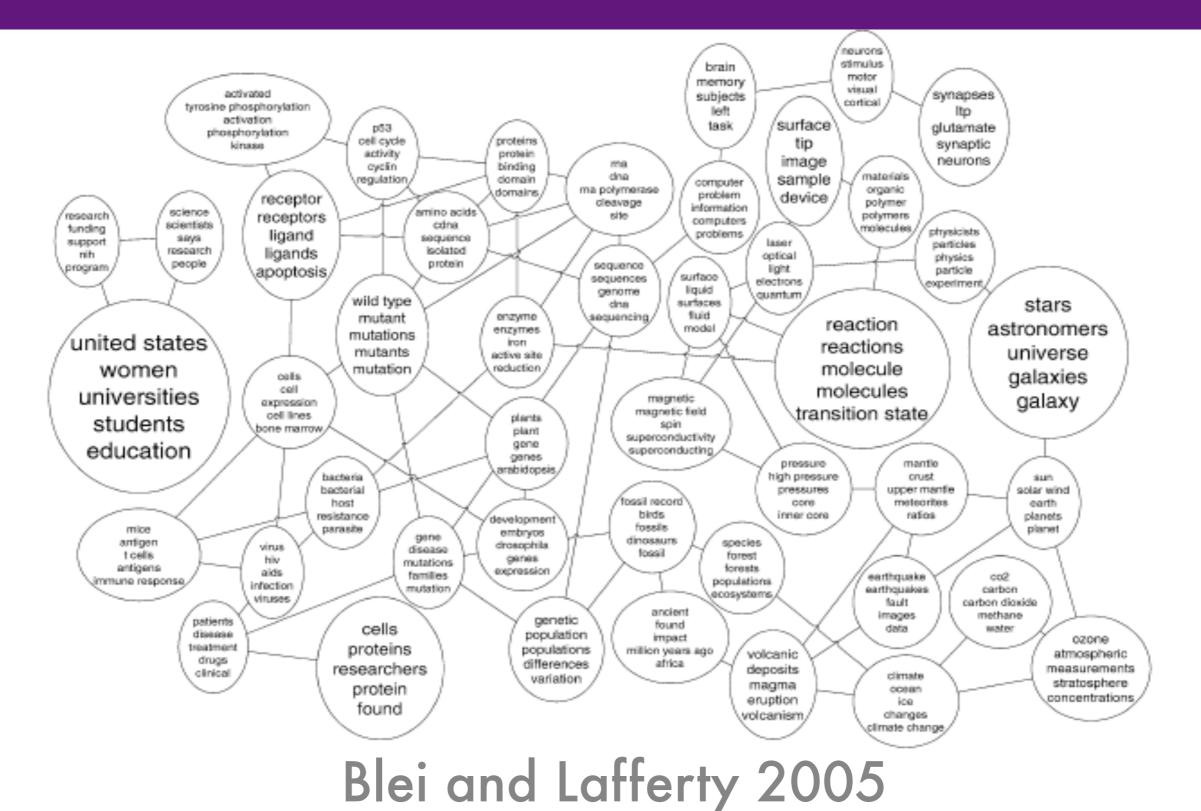


Log-normal prior on topics

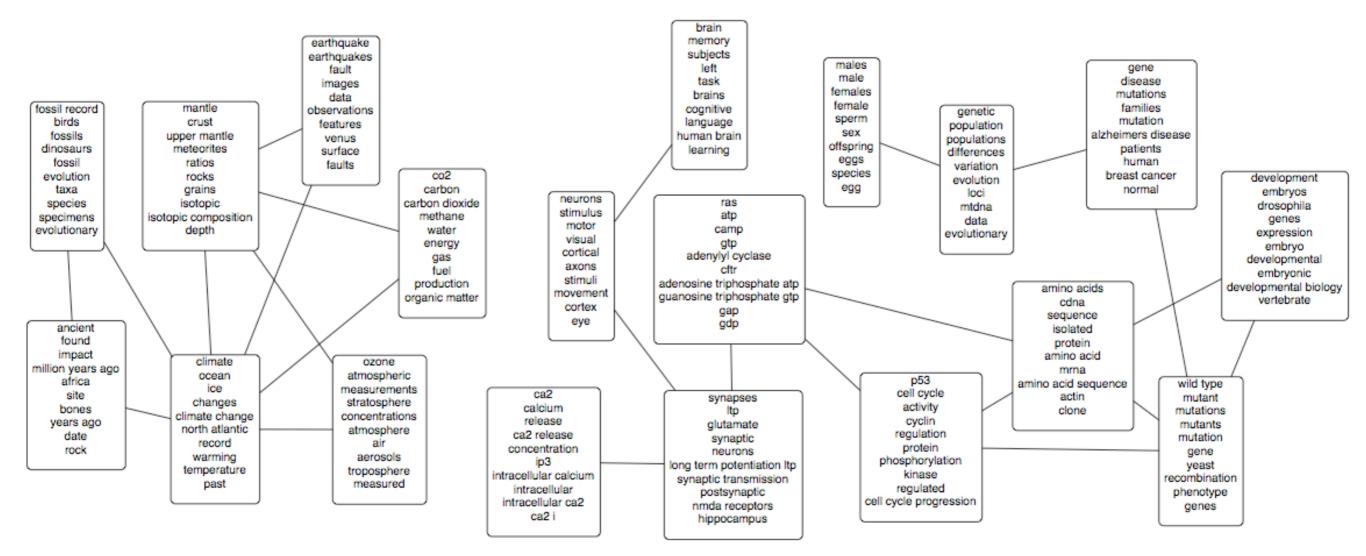


 $\theta = e^{\eta - g(\eta)}$ with $\eta \sim \mathcal{N}(\mu, \Sigma)$

Correlated topics

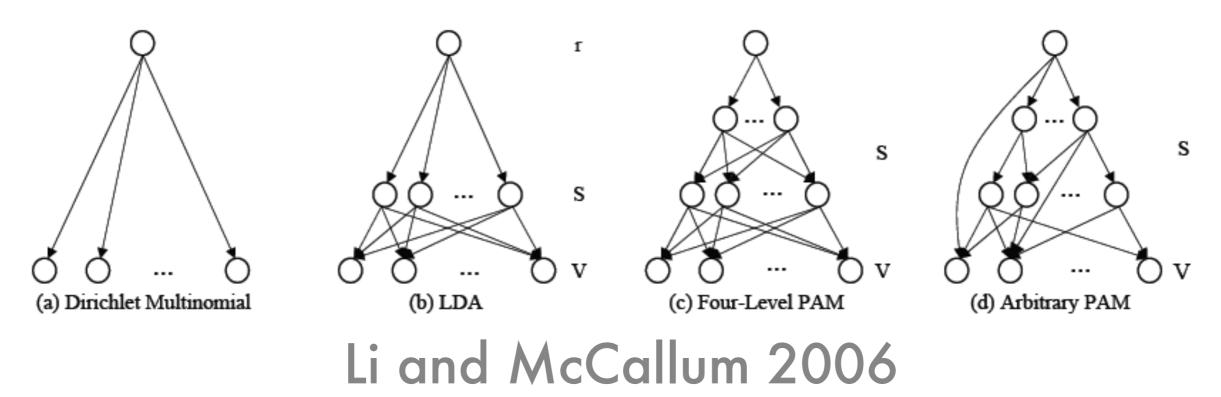


Correlated topics

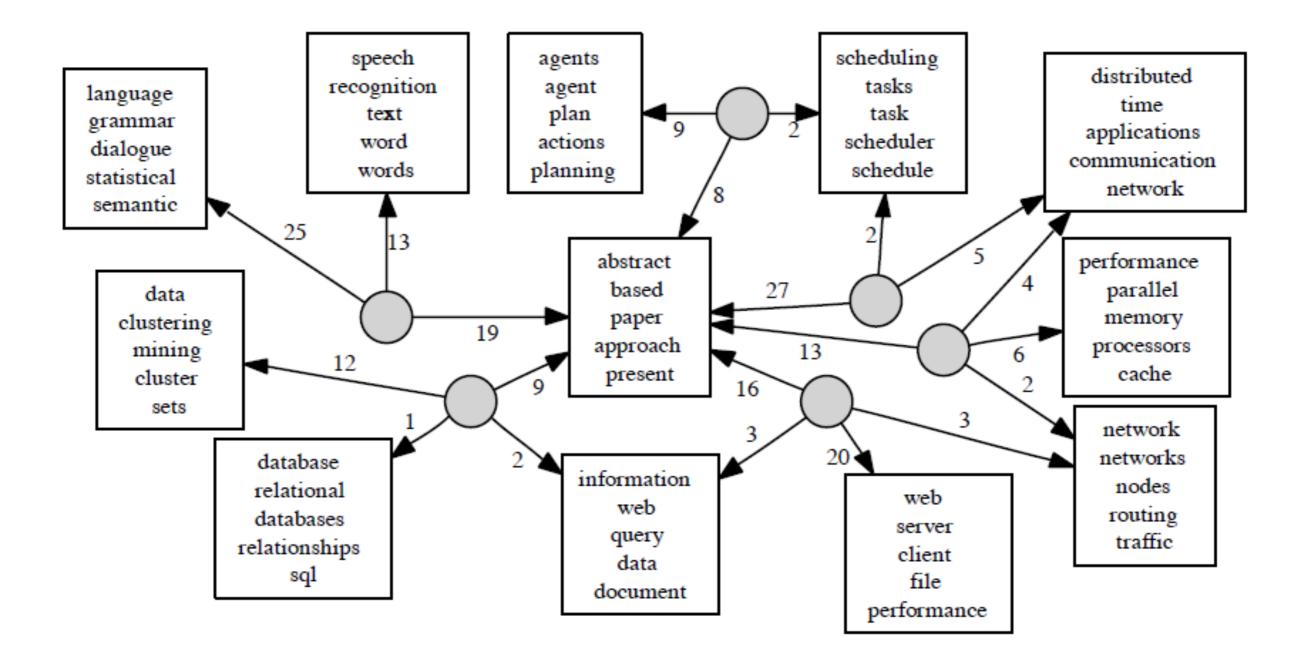


Pachinko Allocation

- Model the prior as a Directed Acyclic Graph
- Each document is modeled as multiple paths
- To sample a word, first select a path and then sample a word from the final topic
- The topics reside on the leaves of the tree



Pachinko Allocation

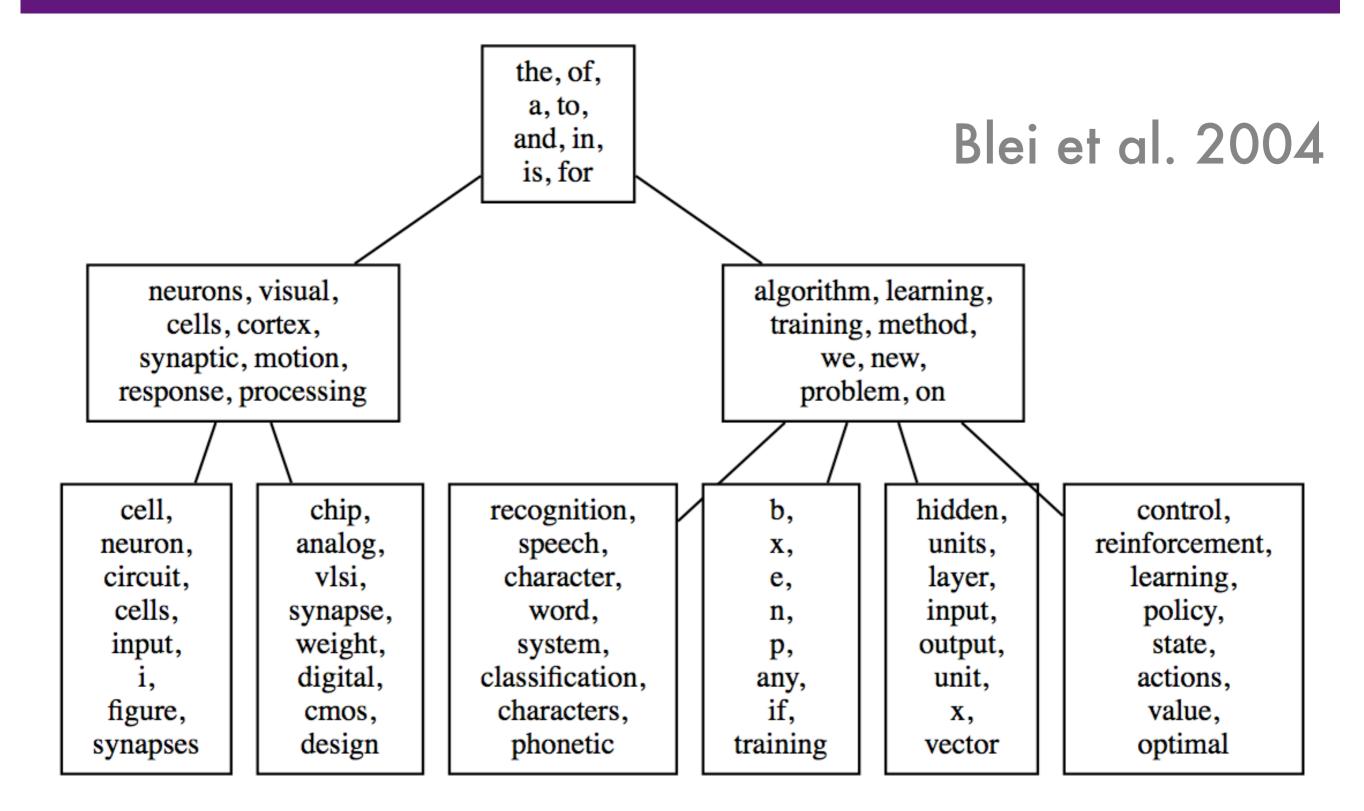


Li and McCallum 2006

Topic Hierarchies

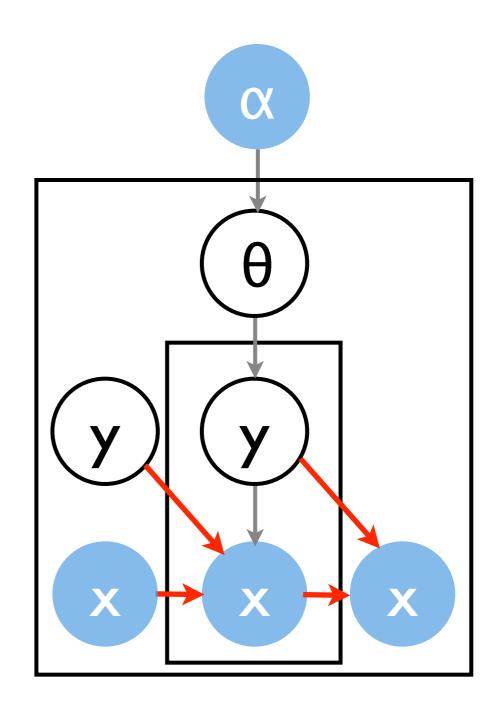
- Topics can appear anywhere in the tree
- Each document is modeled as
 - Single path over the tree (Blei et al., 2004)
 - Multiple paths over the tree (Mimno et al.,2007)

Topic Hierarchies



Topical n-grams

- Documents as bag of words
- Exploit sequential structure
- N-gram models
 - Capture longer phrases
 - Switch variables to determine segments
 - Dynamic programming needed



Girolami & Kaban, 2003; Wallach, 2006; Wang & McCallum, 2007

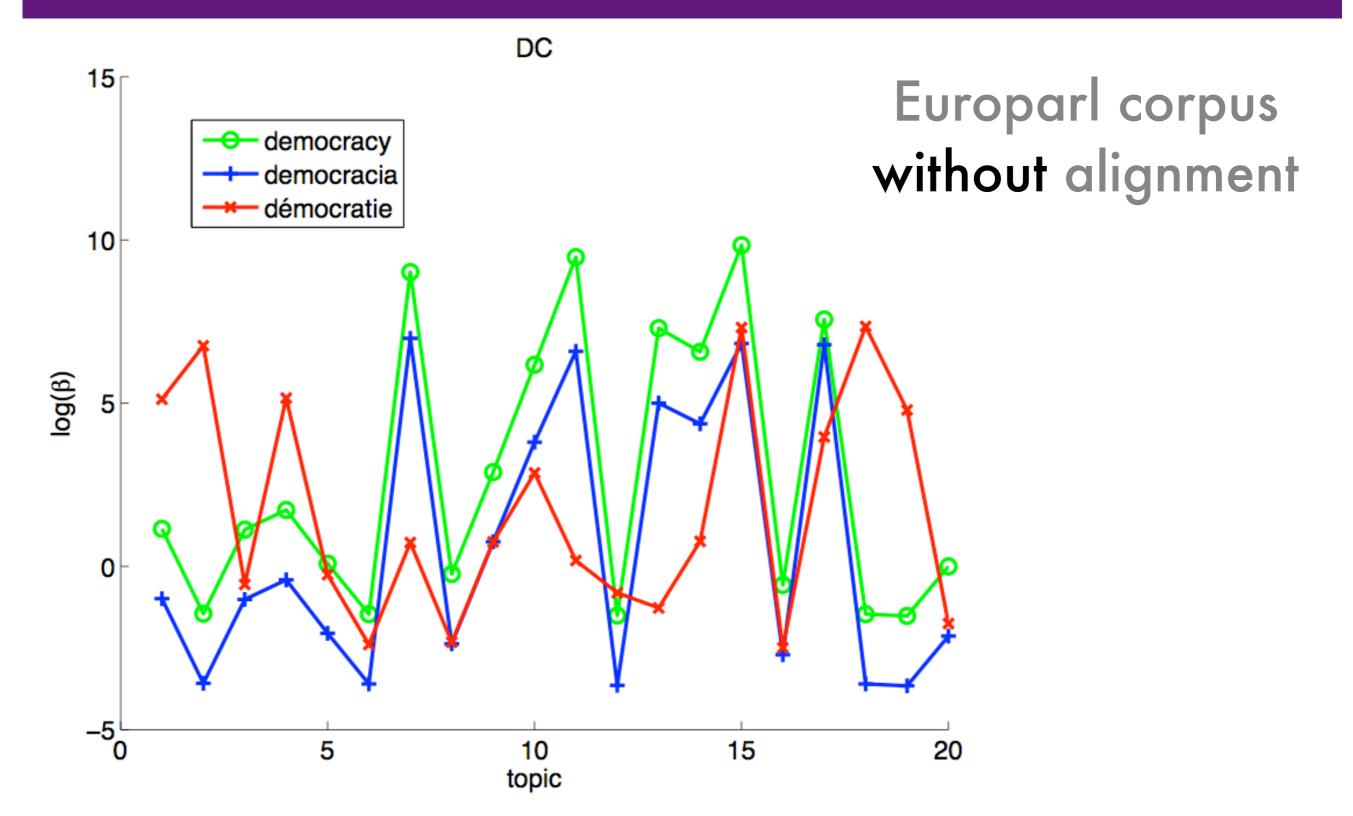
Topic n-grams

	Speech Recognition	Support Vector Machines			
LDA	<i>n</i> -gram (2+)	n-gram (1)	LDA	<i>n</i> -gram (2+)	n-gram (1)
recognition	speech recognition	speech	kernel	support vectors	kernel
system	training data	word	linear	test error	training
word	neural network	training	vector	support vector machines	support
face	error rates	system	support	training error	margin
context	neural net	recognition	set	feature space	svm
character	hidden markov model	hmm	nonlinear	training examples	solution
hmm	feature vectors	speaker	data	decision function	kernels
based	continuous speech	performance	algorithm	cost functions	regularization
frame	training procedure	phoneme	space	test inputs	adaboost
segmentation	continuous speech recognition	acoustic	pca	kkt conditions	test
training	gamma filter	words	function	leave-one-out procedure	data
characters	hidden control	context	problem	soft margin	generalization
set	speech production	systems	margin	bayesian transduction	examples
probabilities	neural nets	frame	vectors	training patterns	cost
features	input representation	trained	solution	training points	convex
faces	output layers	sequence	training	maximum margin	algorithm
words	training algorithm	phonetic	svm	strictly convex	working
frames	test set	speakers	kernels	regularization operators	feature
database	speech frames	mlp	matrix	base classifiers	sv
mlp	speaker dependent	hybrid	machines	convex optimization	functions

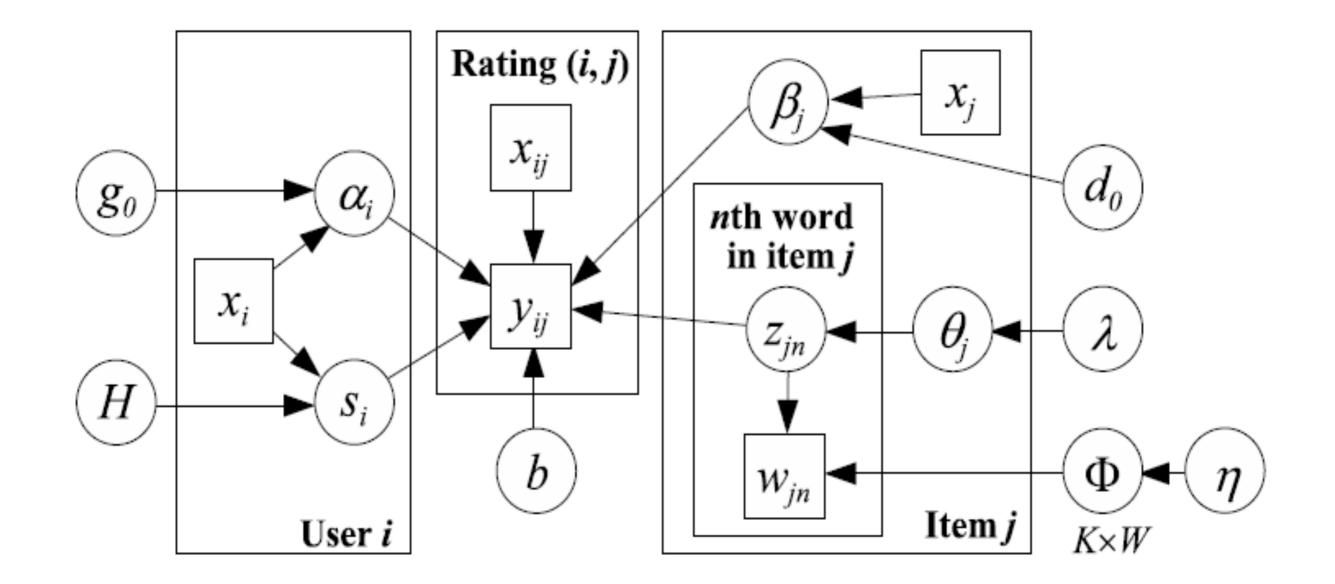
Side information

- Upstream conditioning (Mimno et al., 2008)
 - Document features are informative for topics
 - Estimate topic distribution e.g. based on authors, links, timestamp
- Downstream conditioning (Petterson et al., 2010)
 - Word features are informative on topics
 - Estimate topic distribution for words e.g. based on dictionary, lexical similarity, distributional similarity
- Class labels (Blei and McAulliffe 2007; Lacoste, Sha and Jordan 2008; Zhu, Ahmed and Xing 2009)
 - Joint model of unlabeled data and labels
 - Joint likelihood semisupervised learning done right!

Downstream conditioning



Recommender Systems



Agarwal & Chen, 2010

Chinese Restaurant Process



Problem

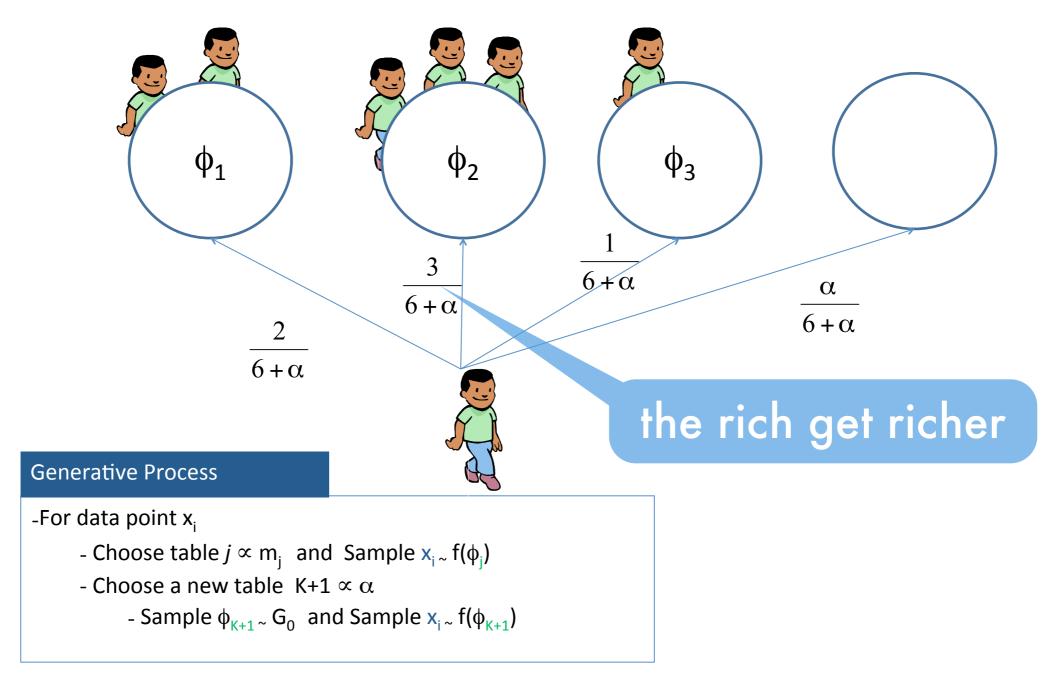
- How many clusters should we pick?
- How about a prior for infinitely many clusters?
- Finite model

$$p(y|Y,\alpha) = \frac{n(y) + \alpha_y}{n + \sum_{y'} \alpha_{y'}}$$

 Infinite model Assume that the total smoother weight is constant

$$p(y|Y, \alpha) = \frac{n(y)}{n + \sum_{y'} \alpha_{y'}}$$
 and $p(\text{new}|Y, \alpha) = \frac{\alpha}{n + \alpha}$

Chinese Restaurant Metaphor

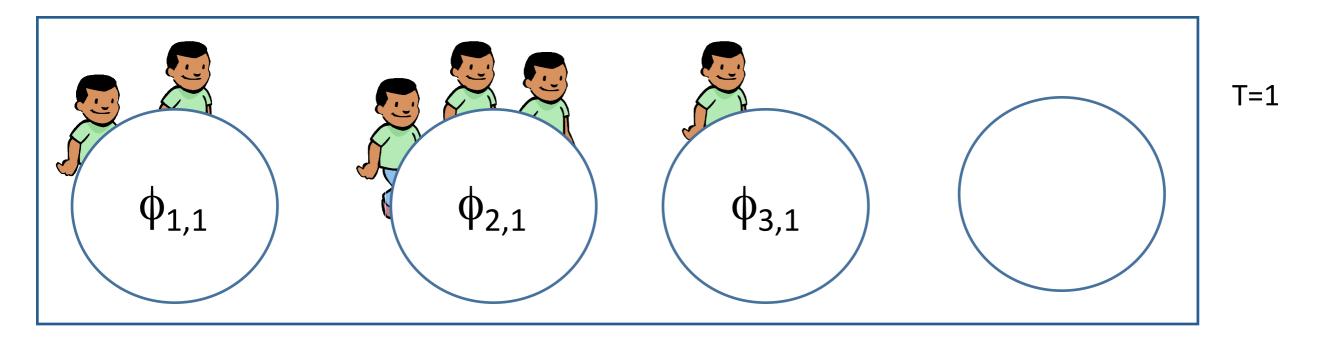


Pitman; Antoniak; Ishwaran; Jordan et al.; Teh et al.;

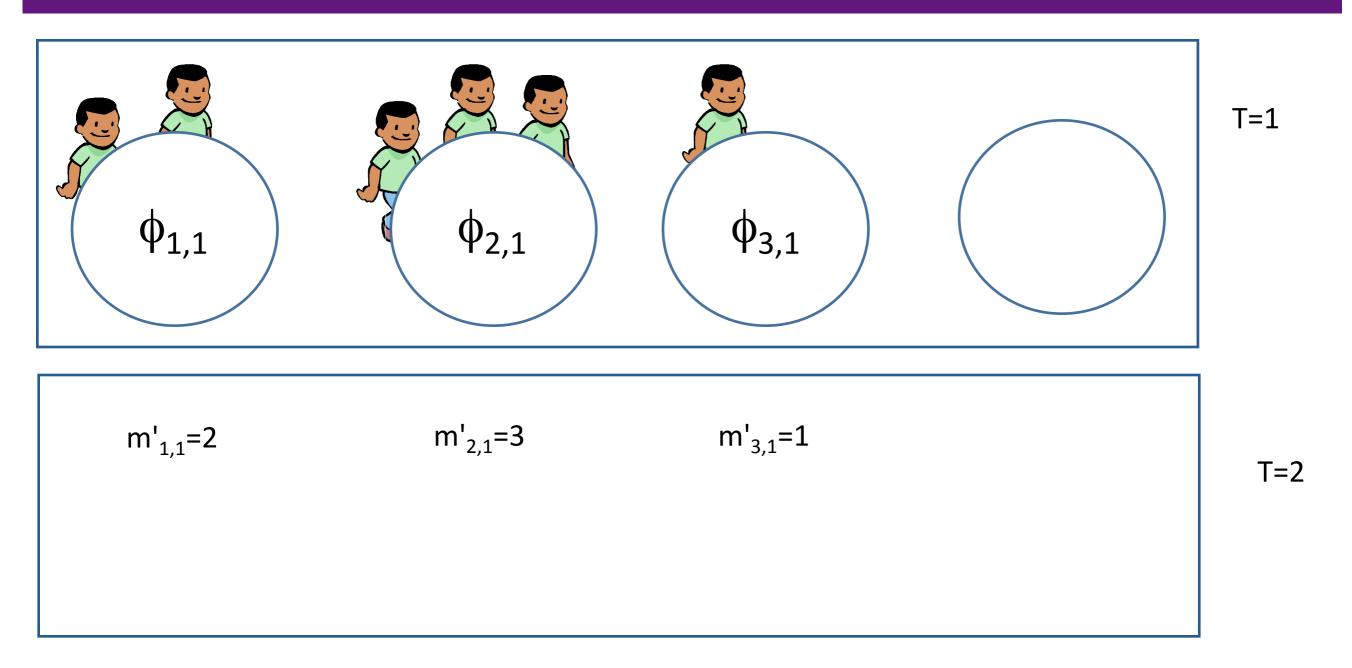
Evolutionary Clustering

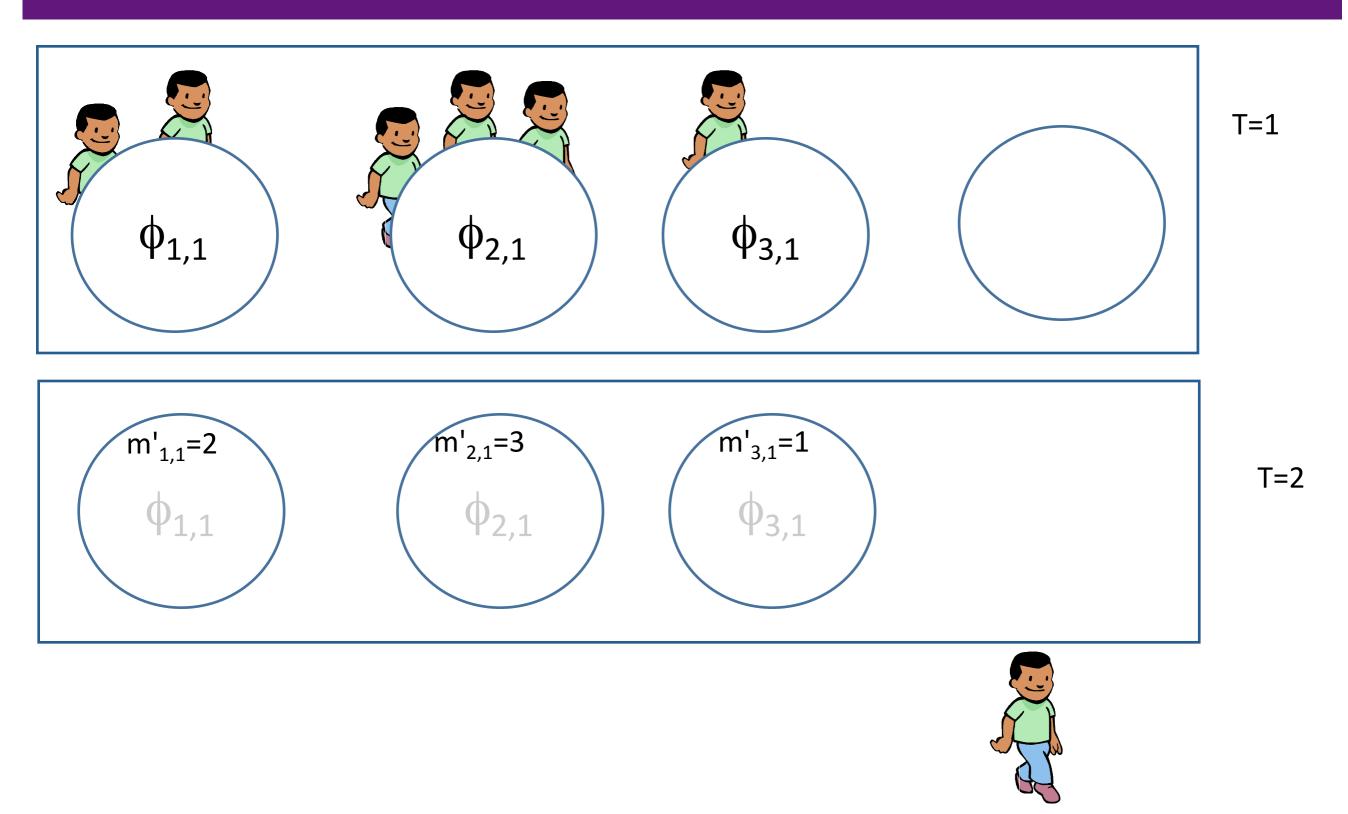
- Time series of objects, e.g. news stories
- Stories appear / disappear
- Want to keep track of clusters automatically

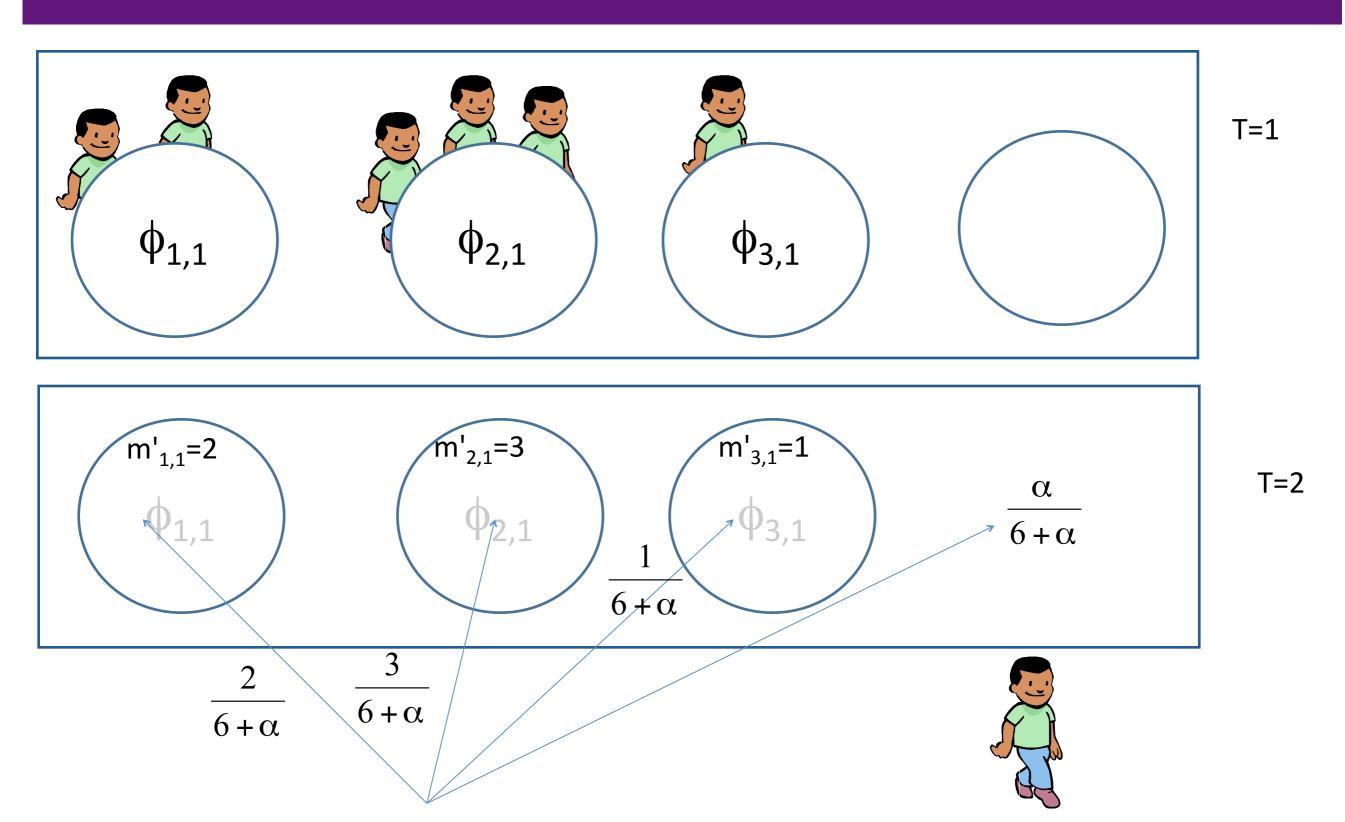
Recurrent Chinese Restaurant Process

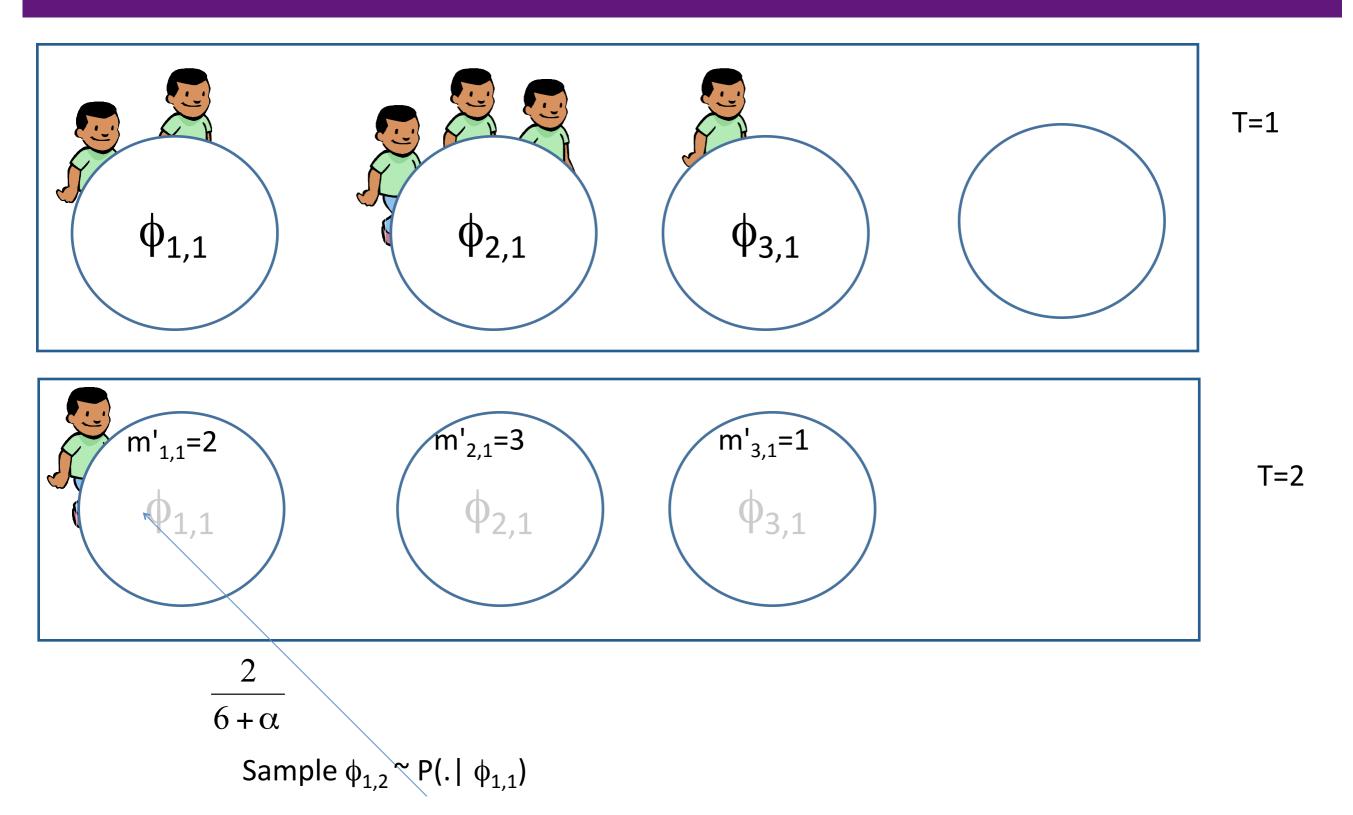


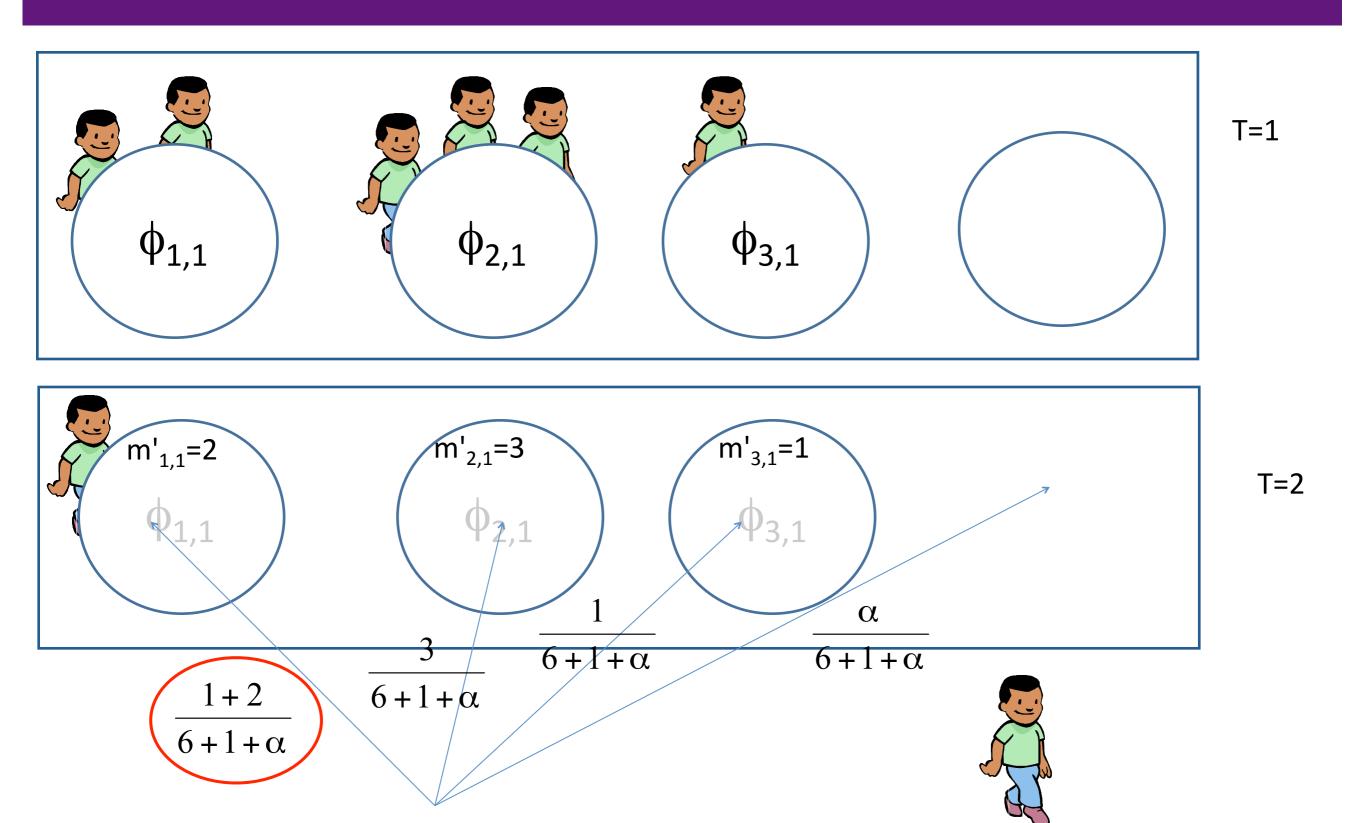
Recurrent Chinese Restaurant Process

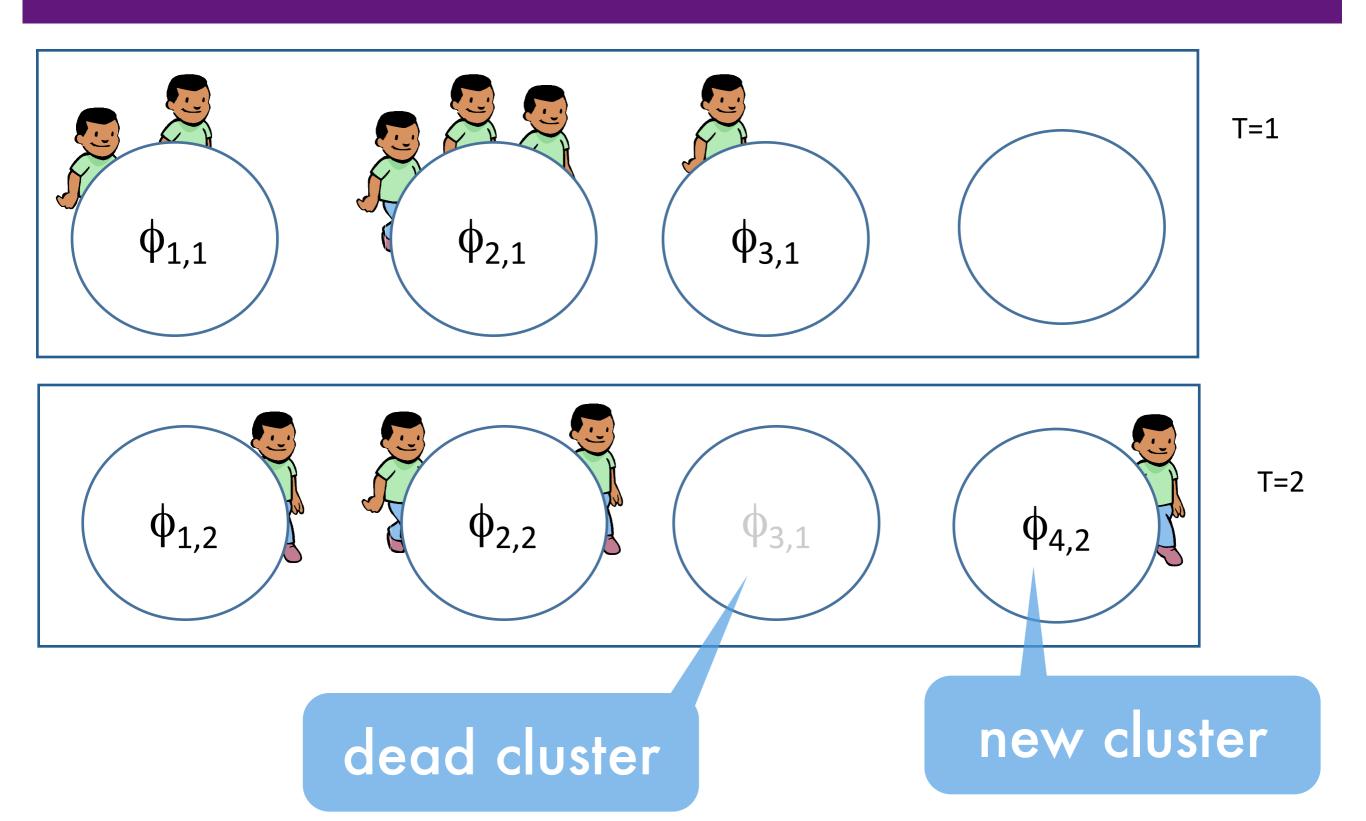




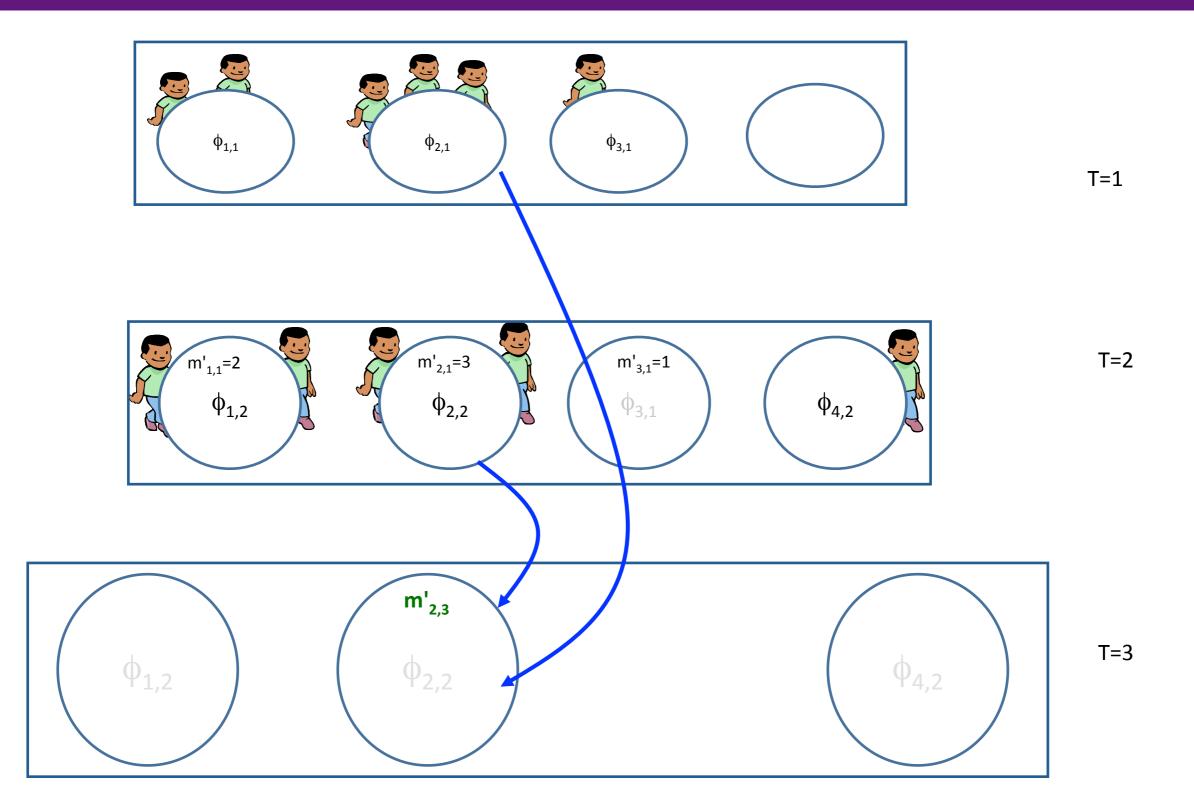




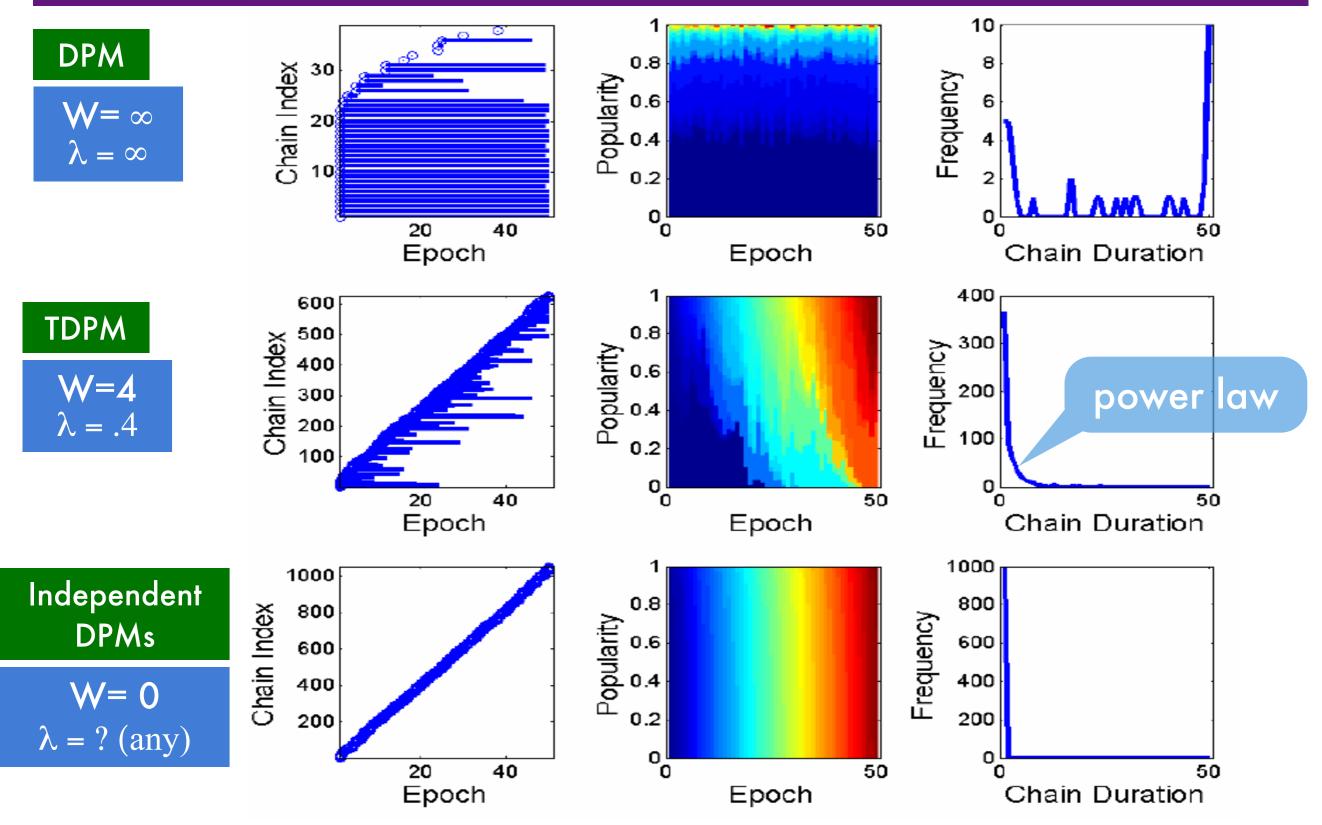




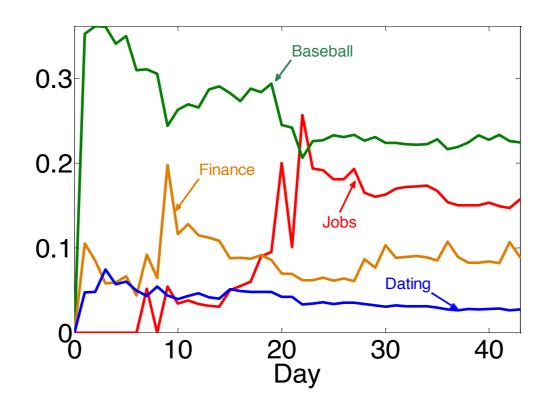
Longer History



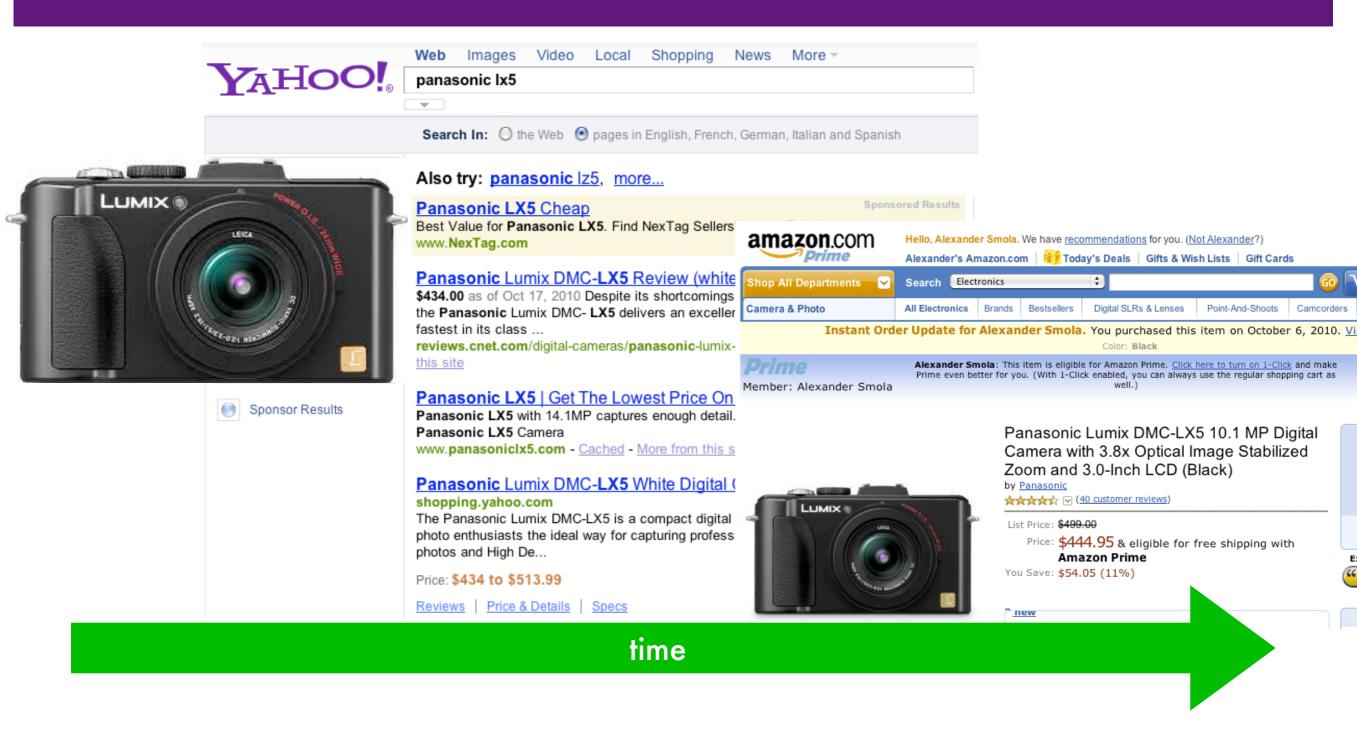
TDPM Generative Power

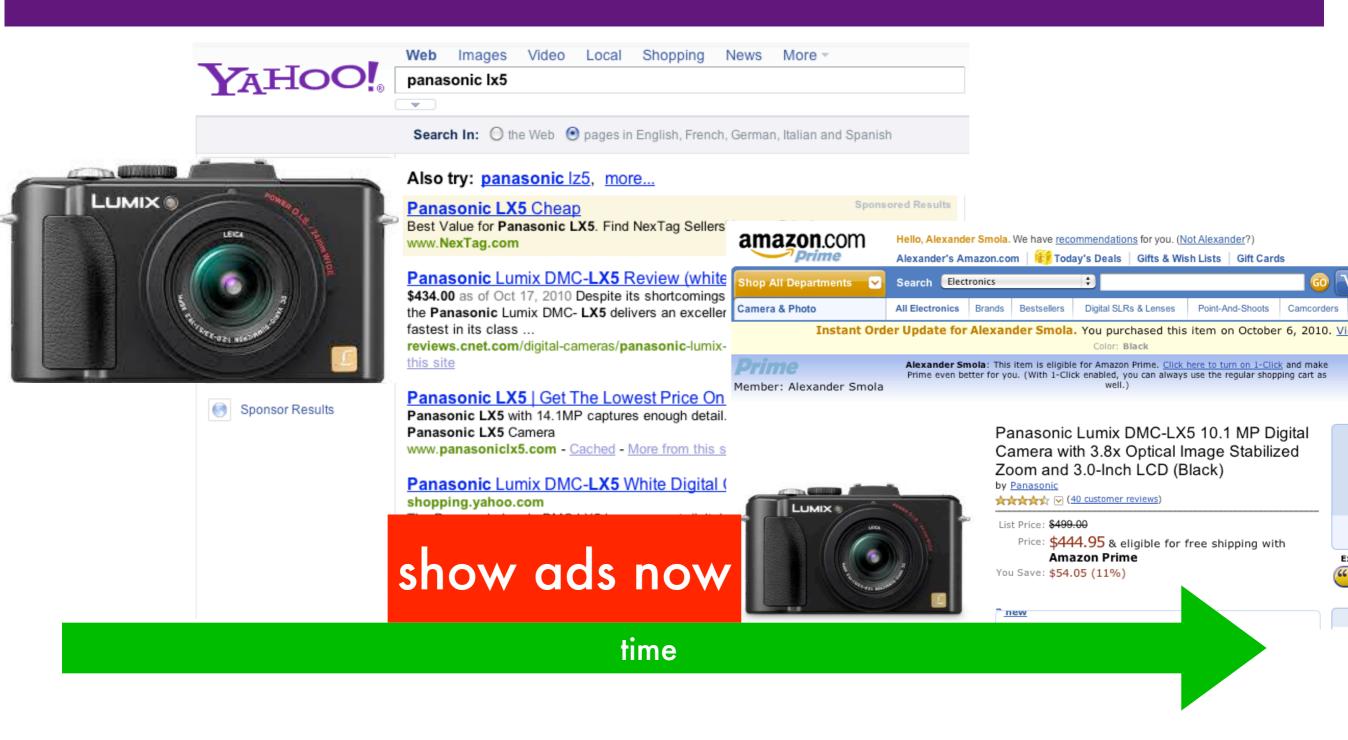


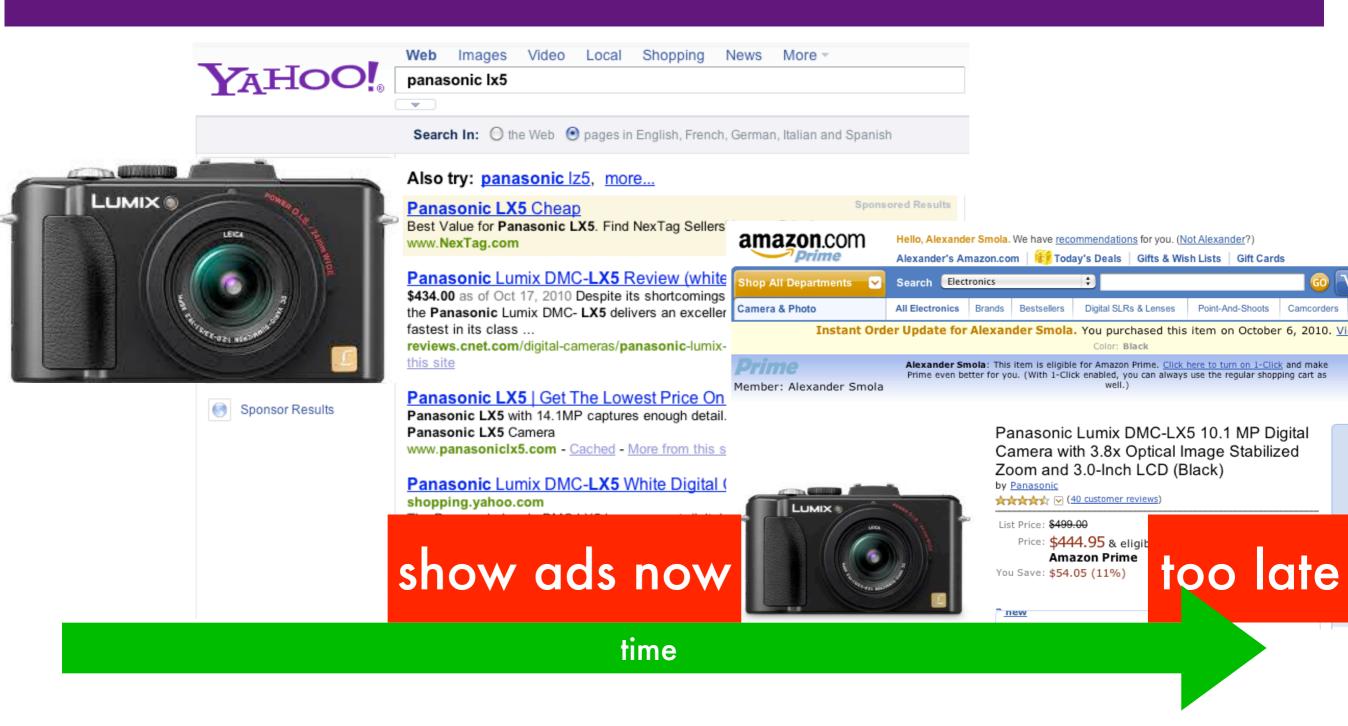
User modeling



time

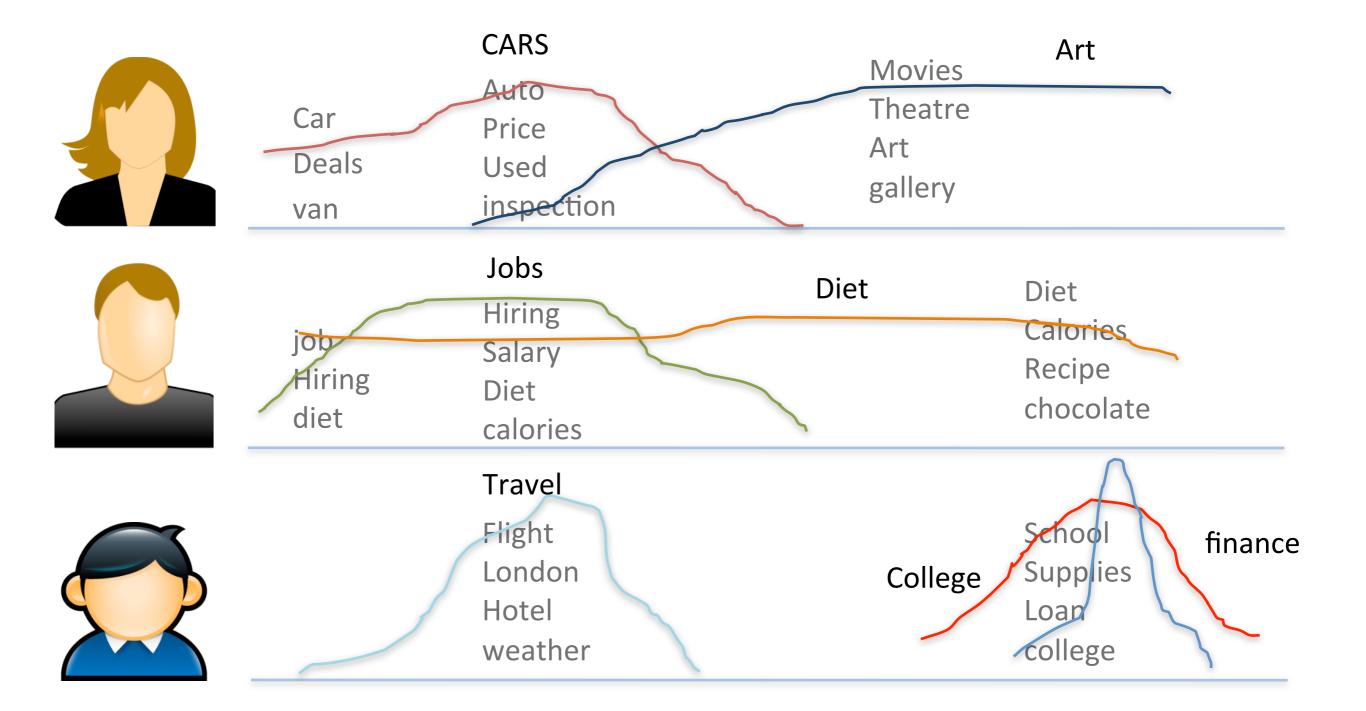








Car Deals van	Auto Price Used inspection	Movies Theatre Art gallery	
job Hiring diet	Hiring Salary Diet calories		Diet Calories Recipe chocolate
	Flight London Hotel weather		School Supplies Loan college

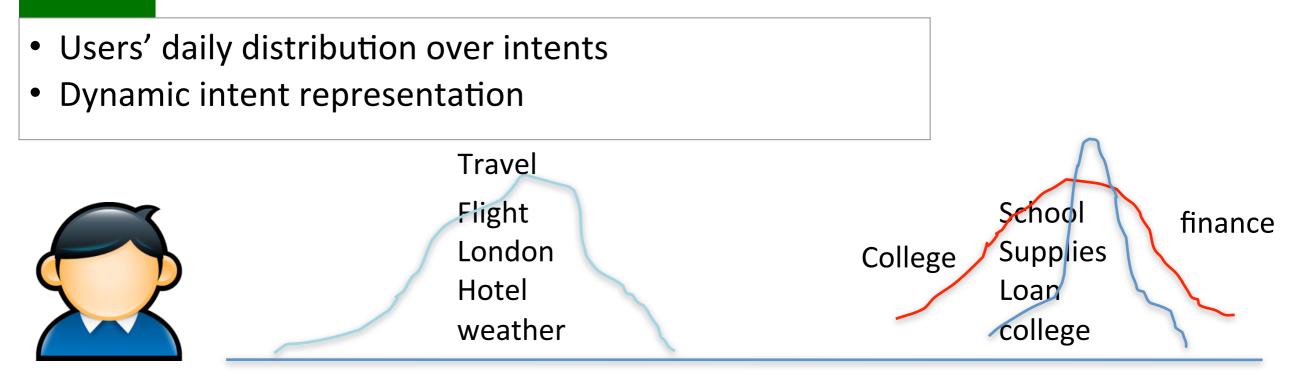


User modeling

Input

- Queries issued by the user or Tags of watched content
- Snippet of page examined by user
- Time stamp of each action (day resolution)

Output

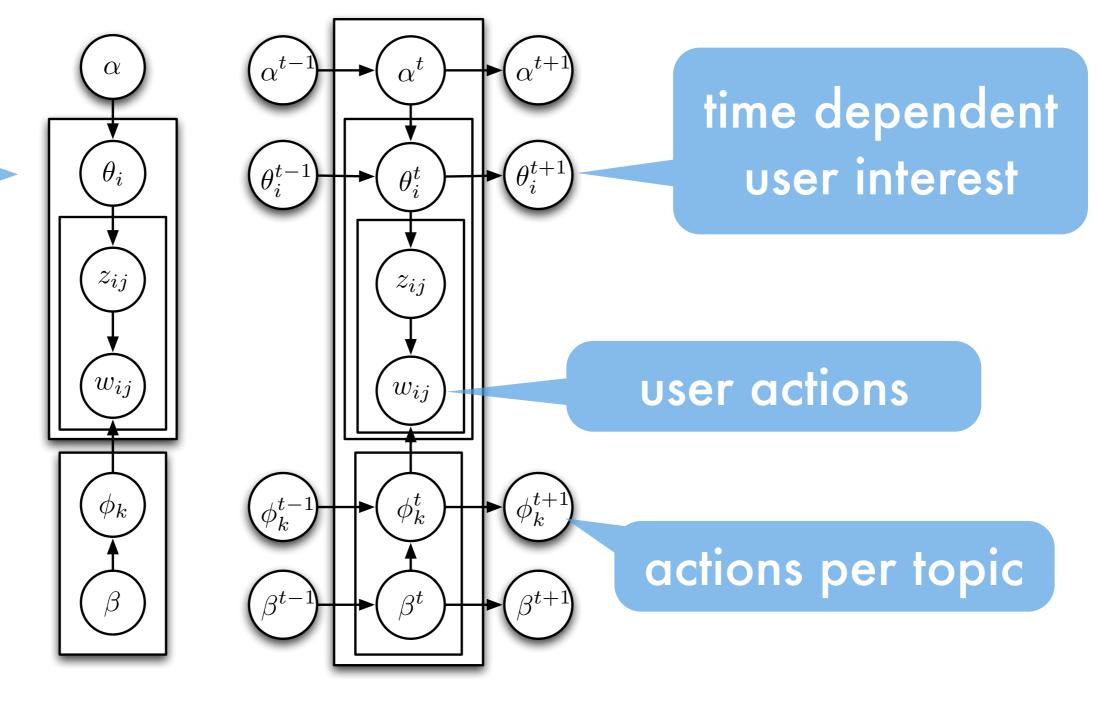


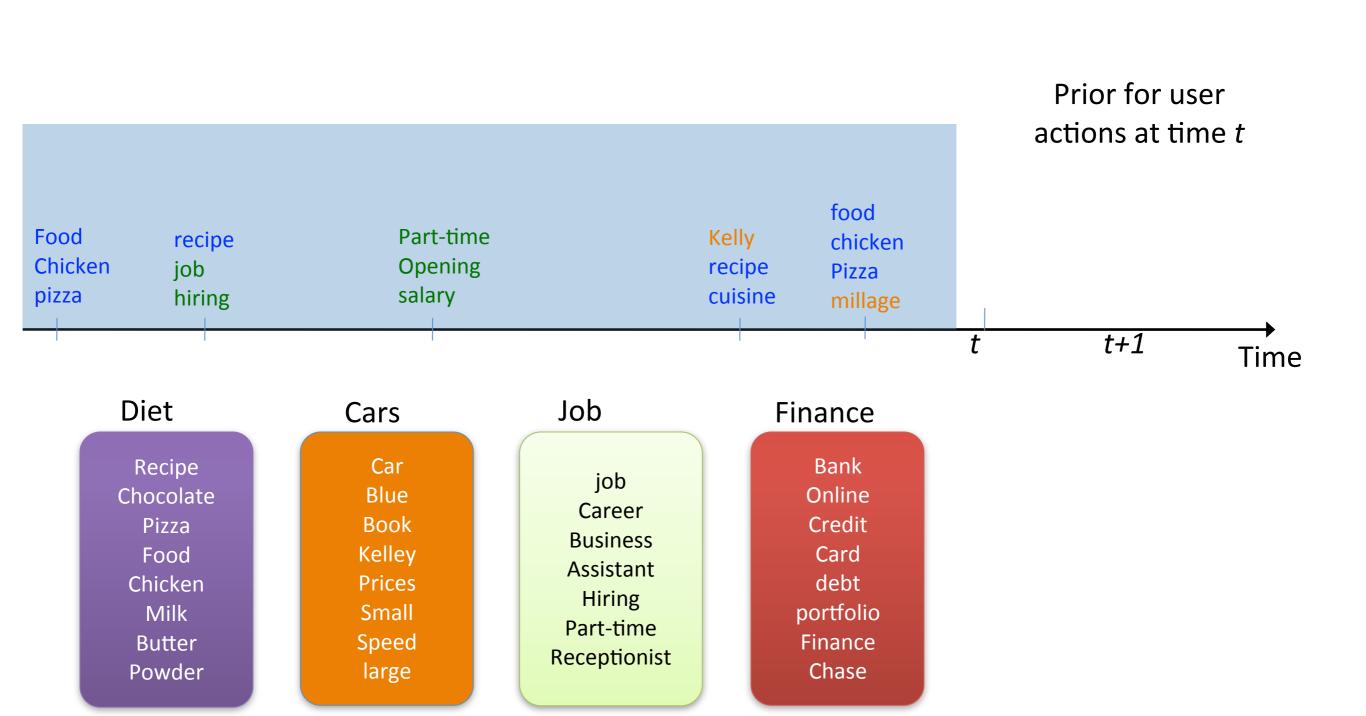
Time dependent models

- LDA for topical model of users where
 - User interest distribution changes over time
 - Topics change over time
- This is like a Kalman filter except that
 - Don't know what to track (a priori)
 - Can't afford a Rauch-Tung-Striebel smoother
 - Much more messy than plain LDA

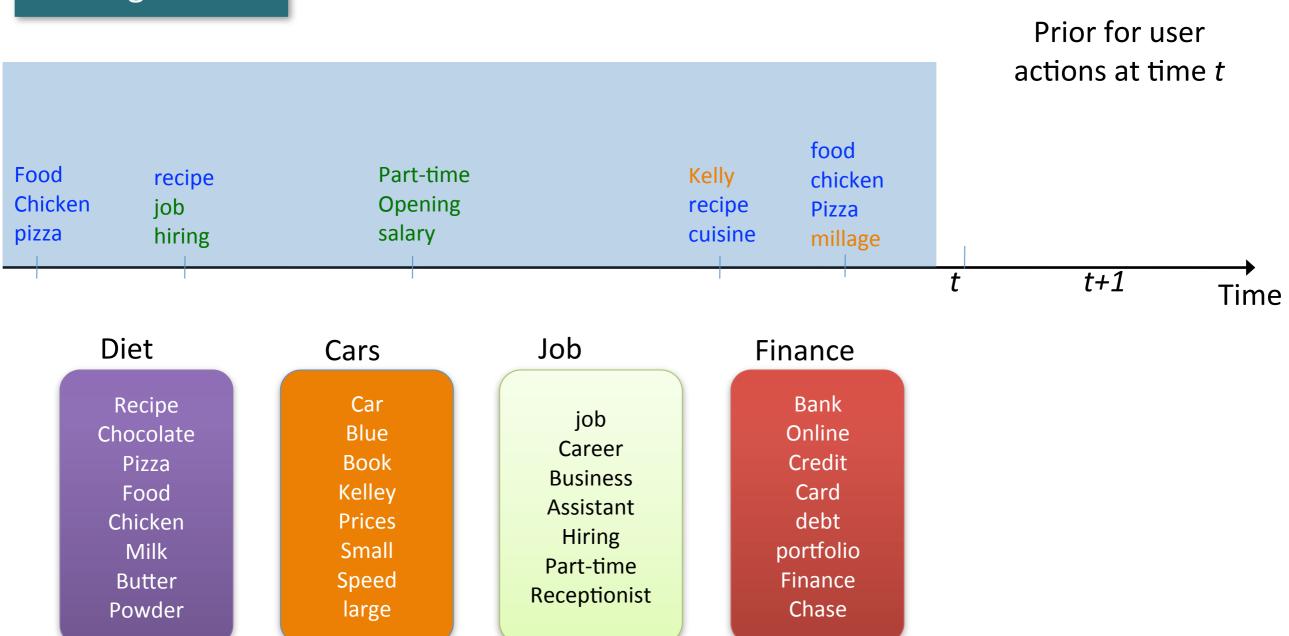
Graphical Model

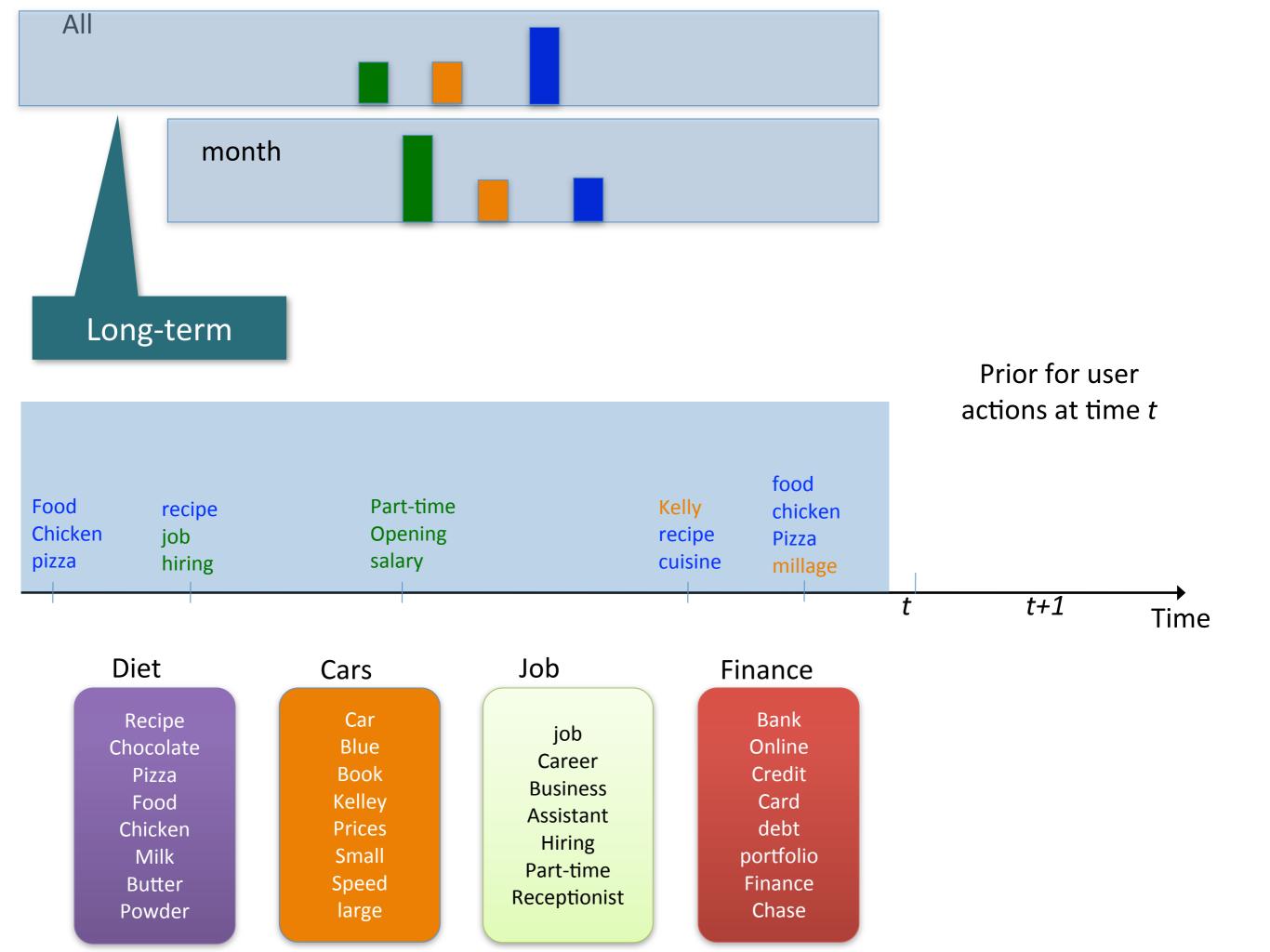
plain LDA

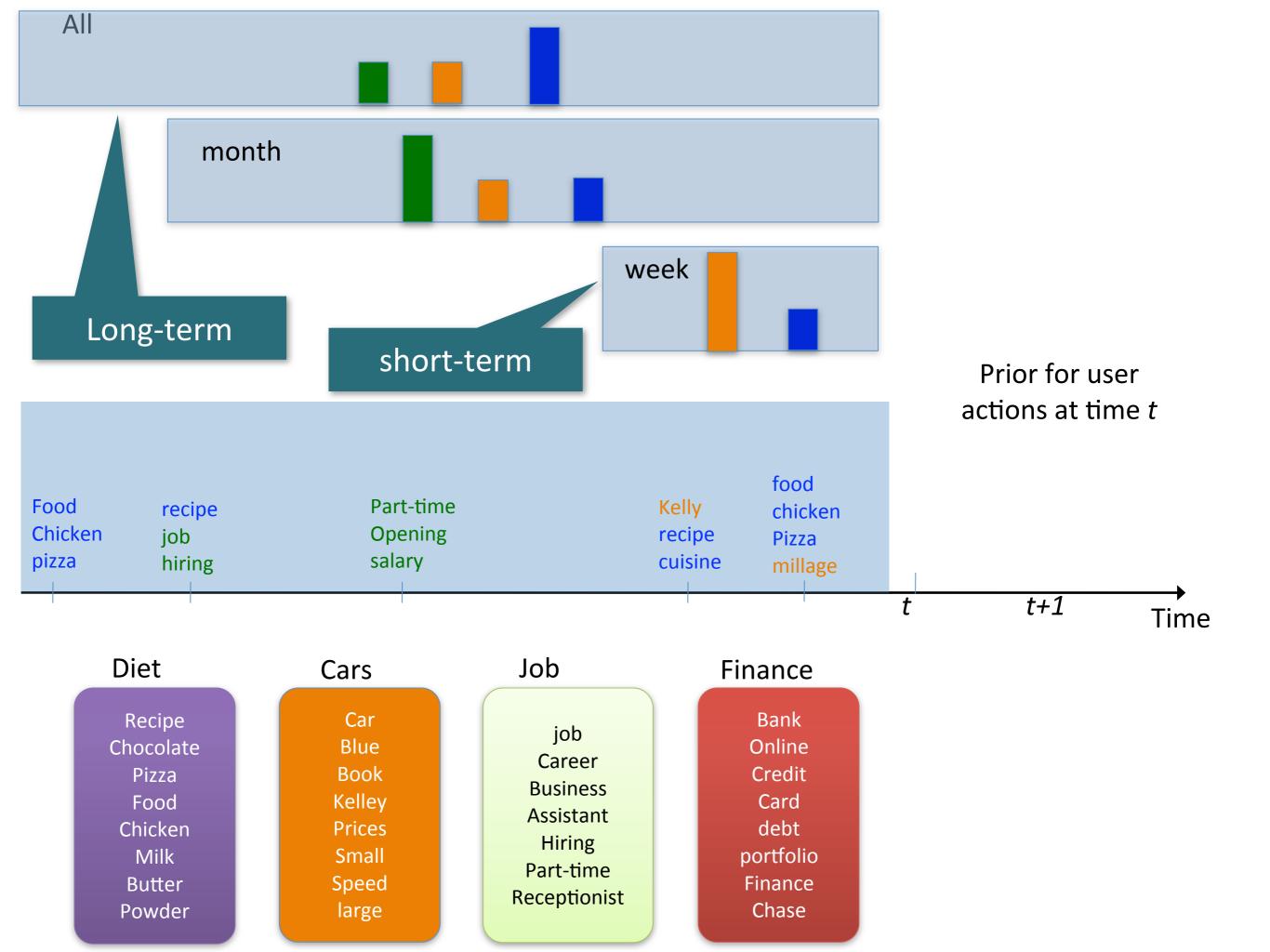


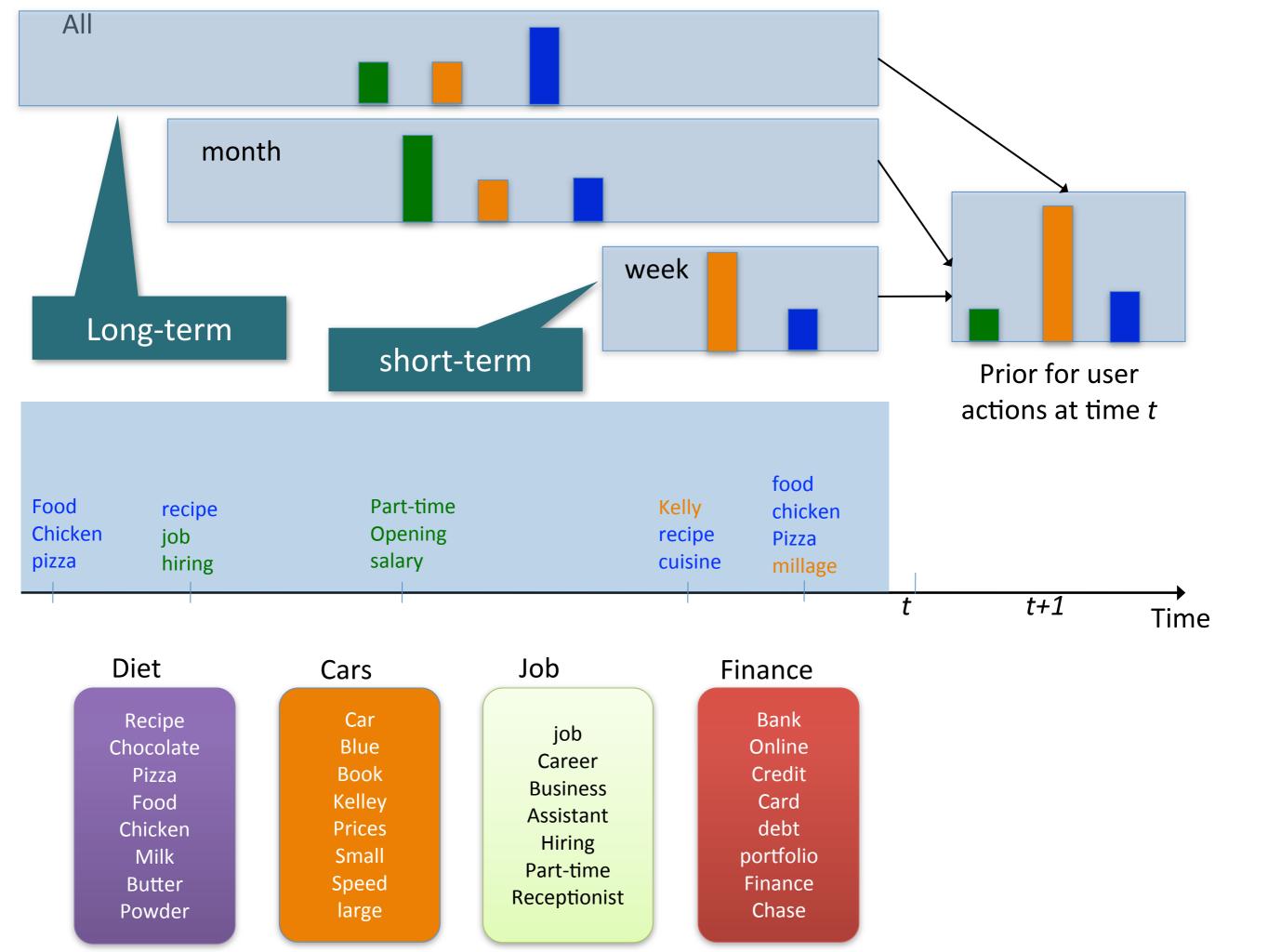


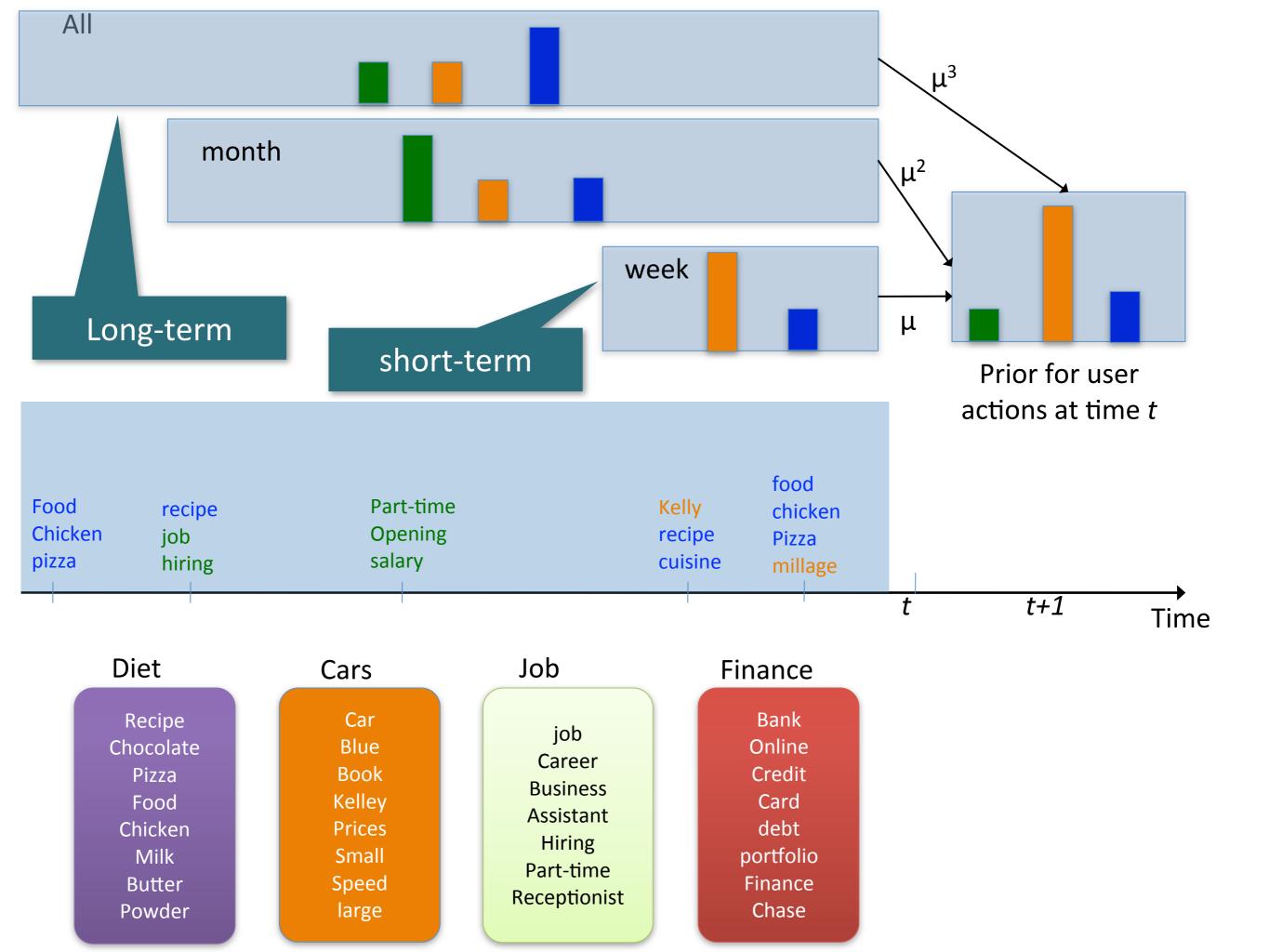
All

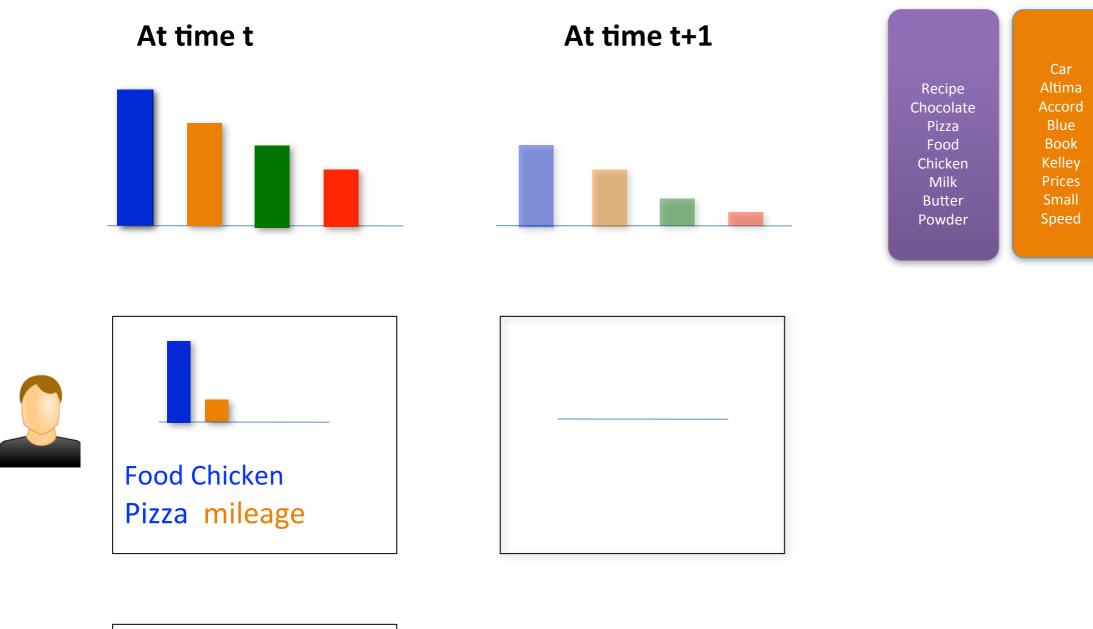












job

Career

Business

Assistant

Hiring

Part-time

Receptioni

st

Bank

Online

Credit

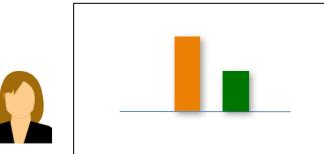
Card

debt

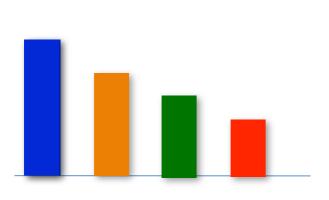
portfolio

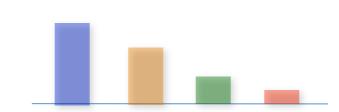
Finance

Chase



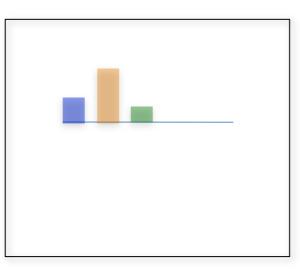
Car speed offer Camry accord career



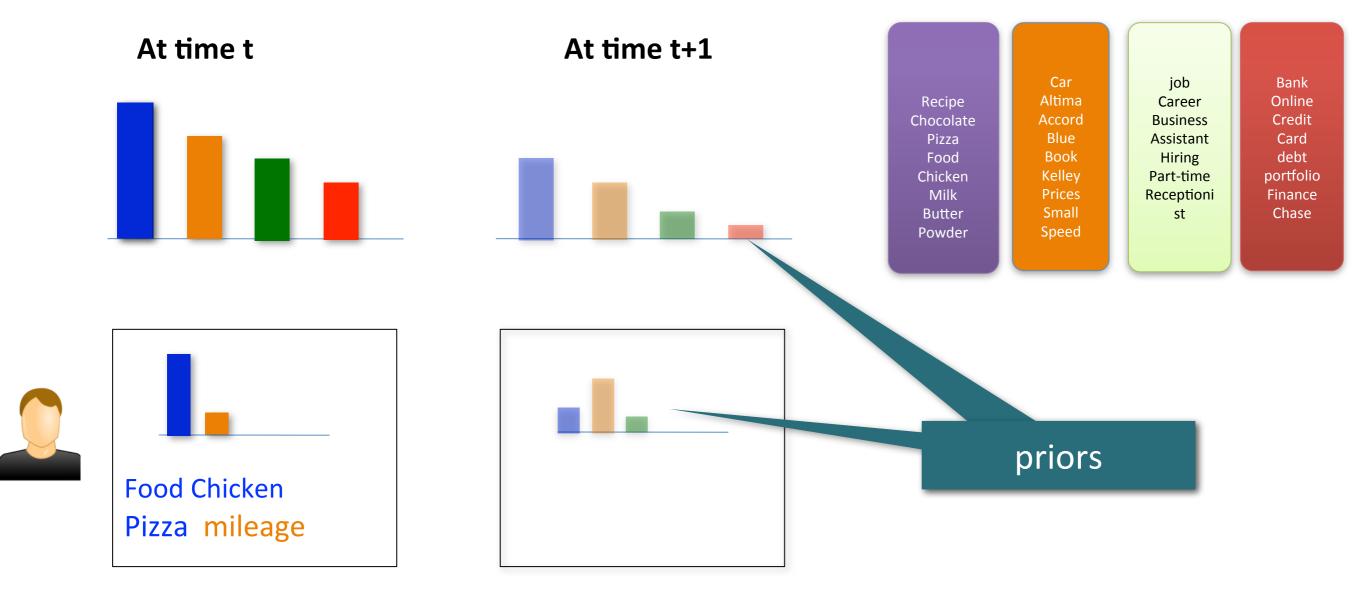


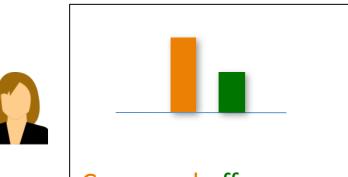
Butter Small Powder Speed	Career Online Business Credit ssistant Card Hiring debt art-time portfolio
Butter Small	art-time portfolio
Dowdor Spood	eceptioni Finance st Chase
Powder Speed	

At time t

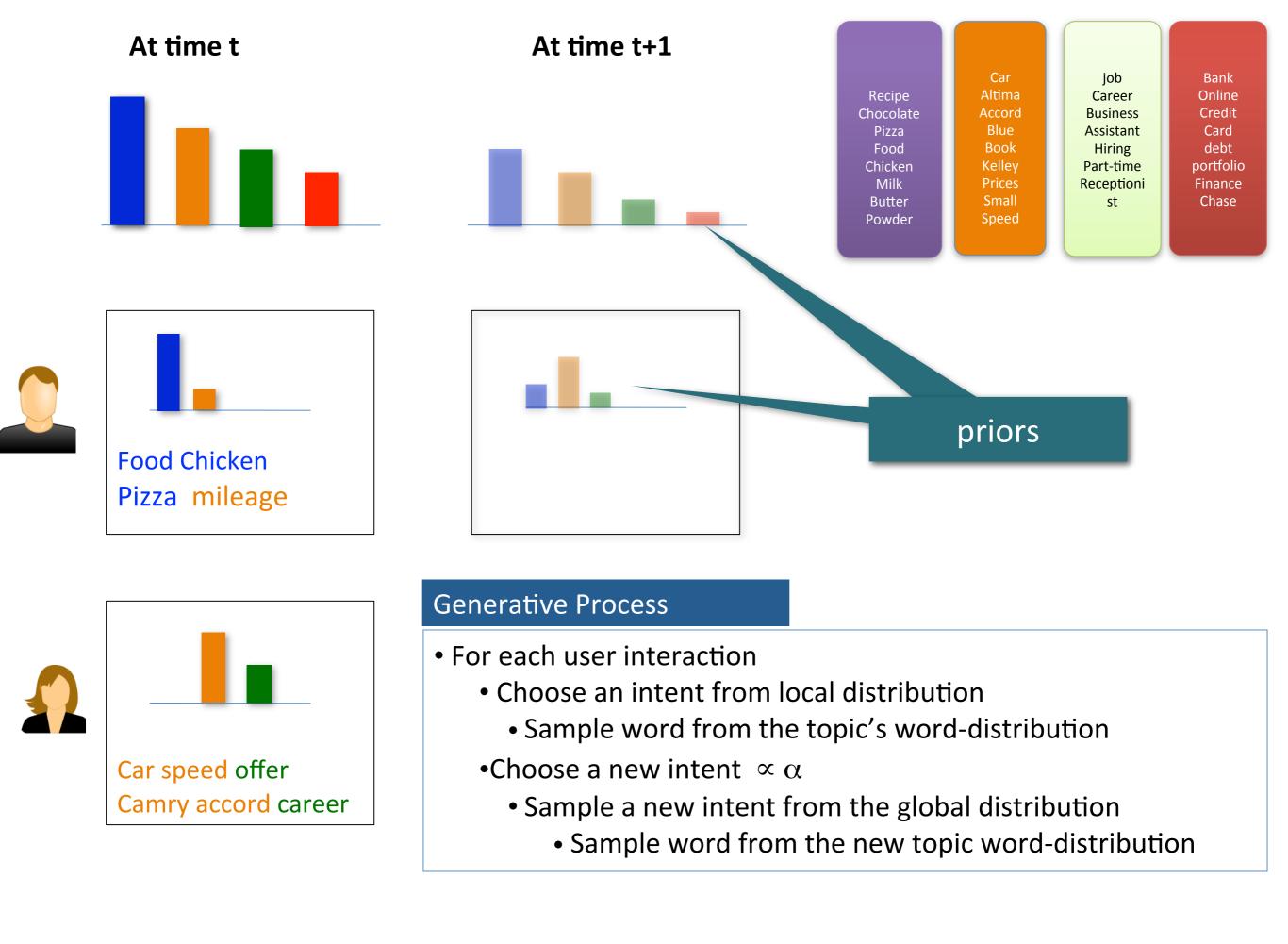


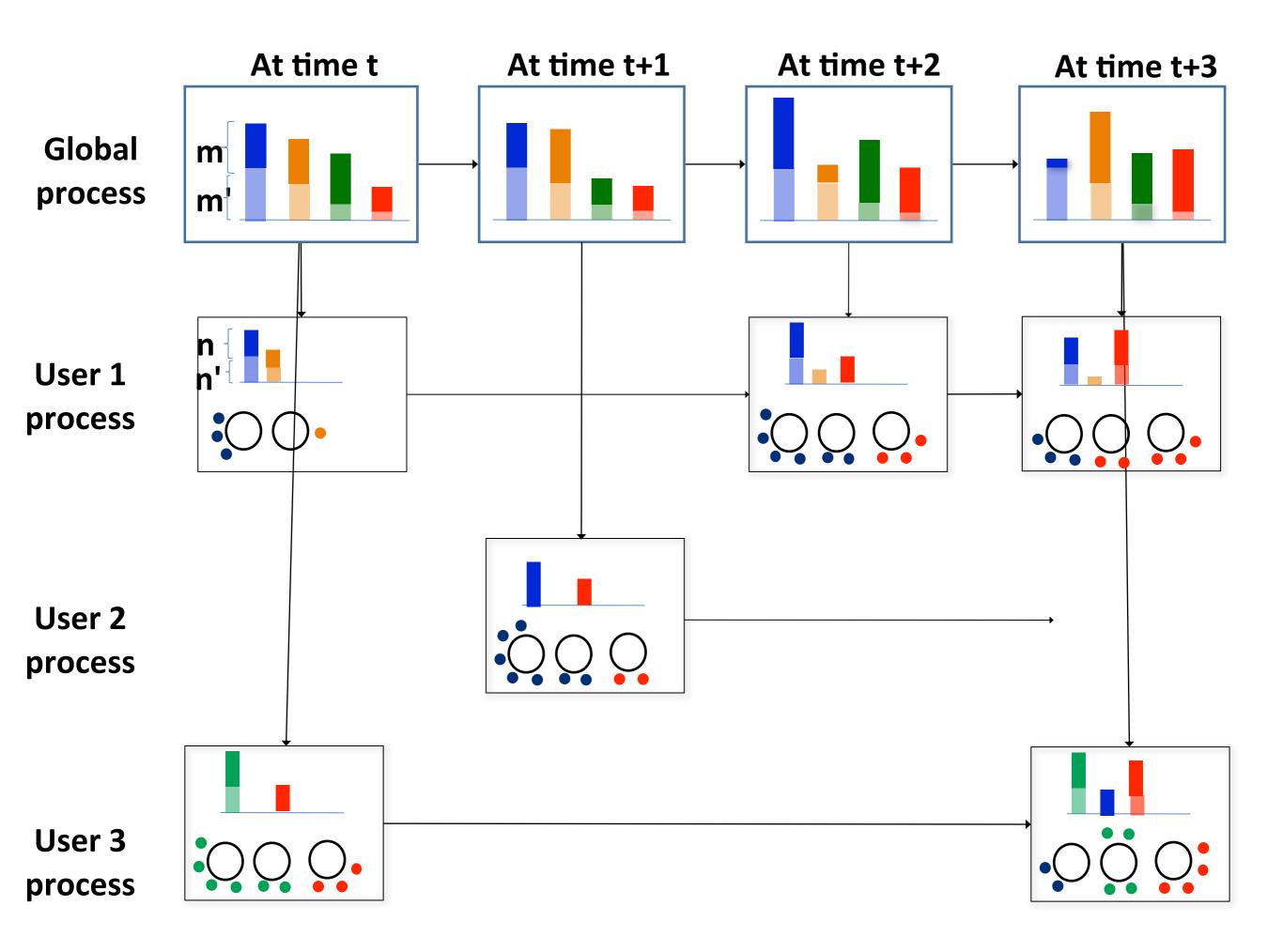
Car speed offer Camry accord career



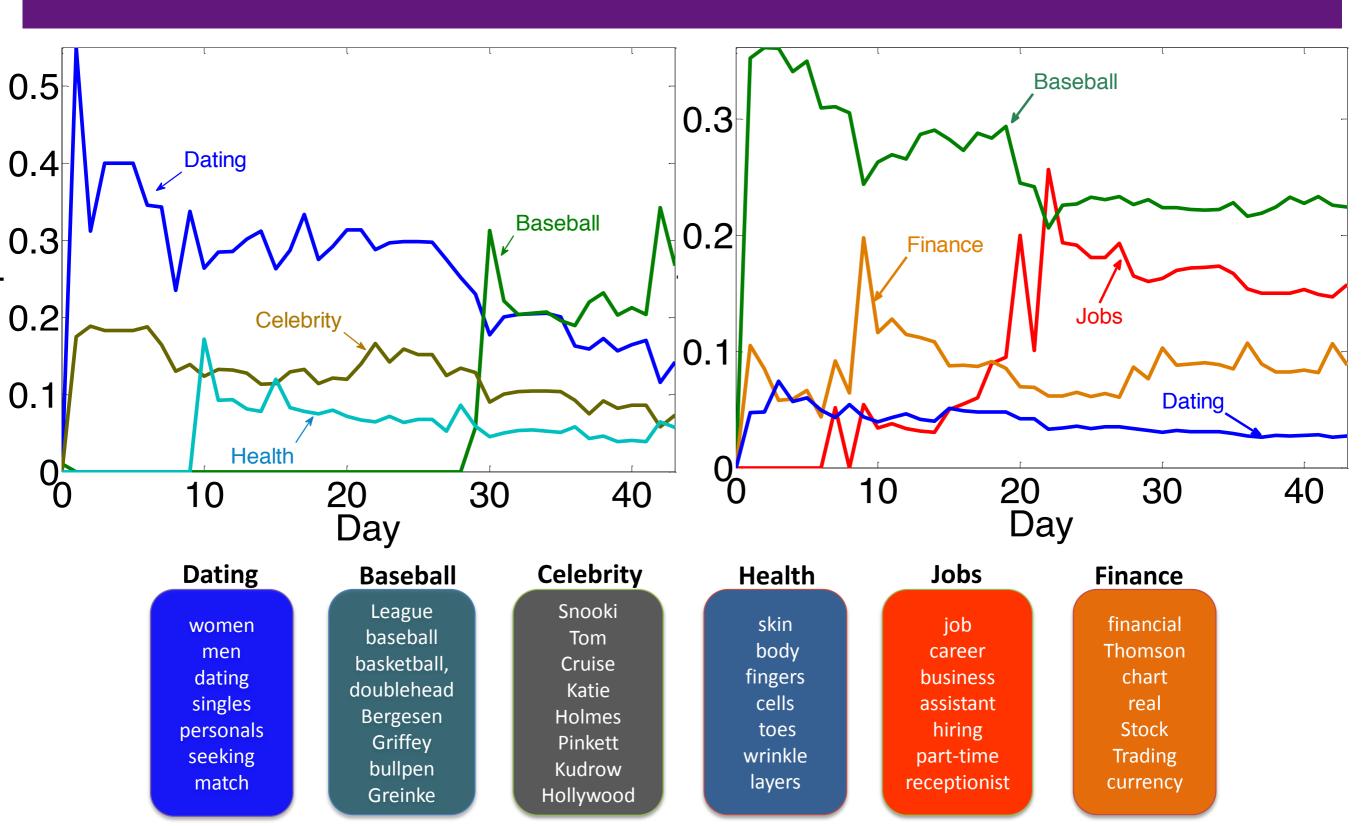


Car speed offer Camry accord career

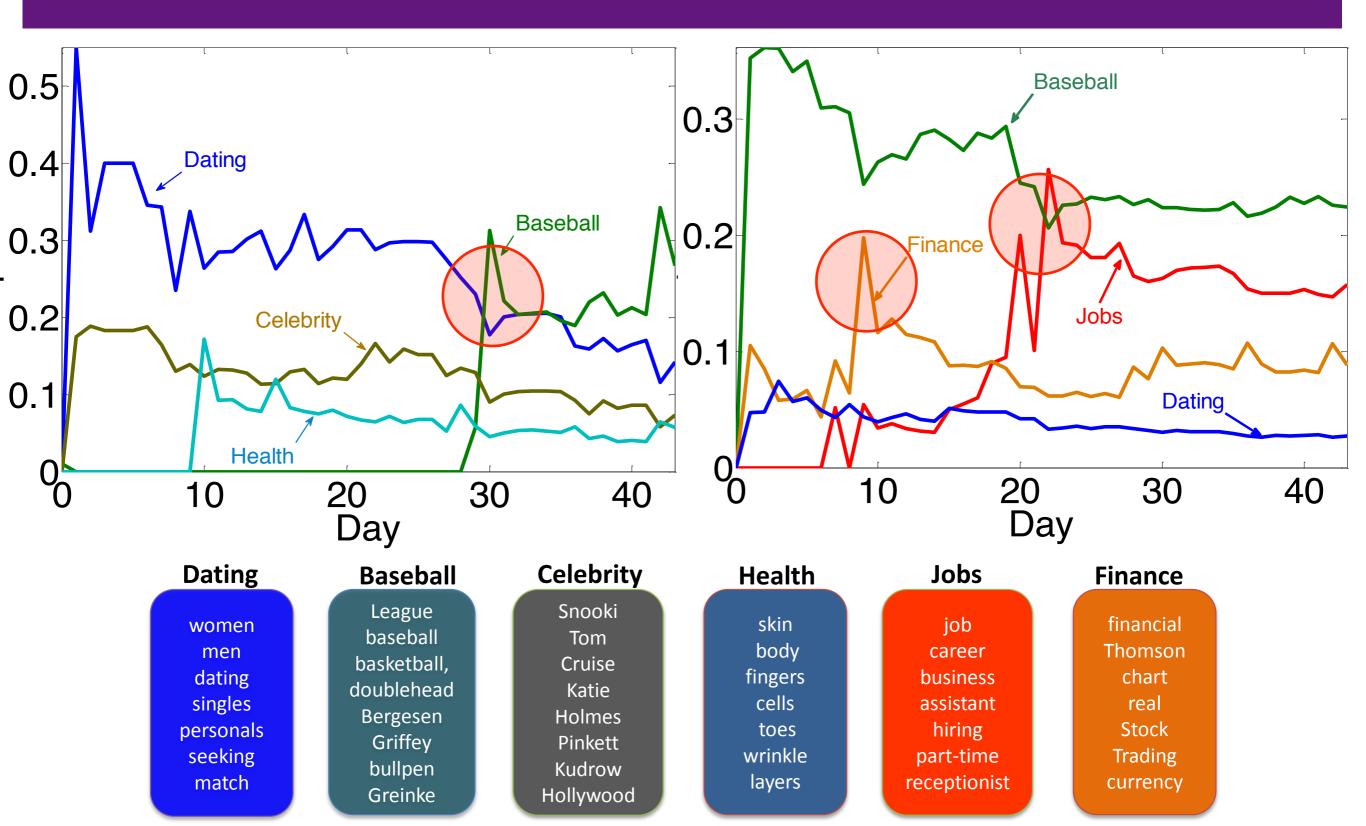




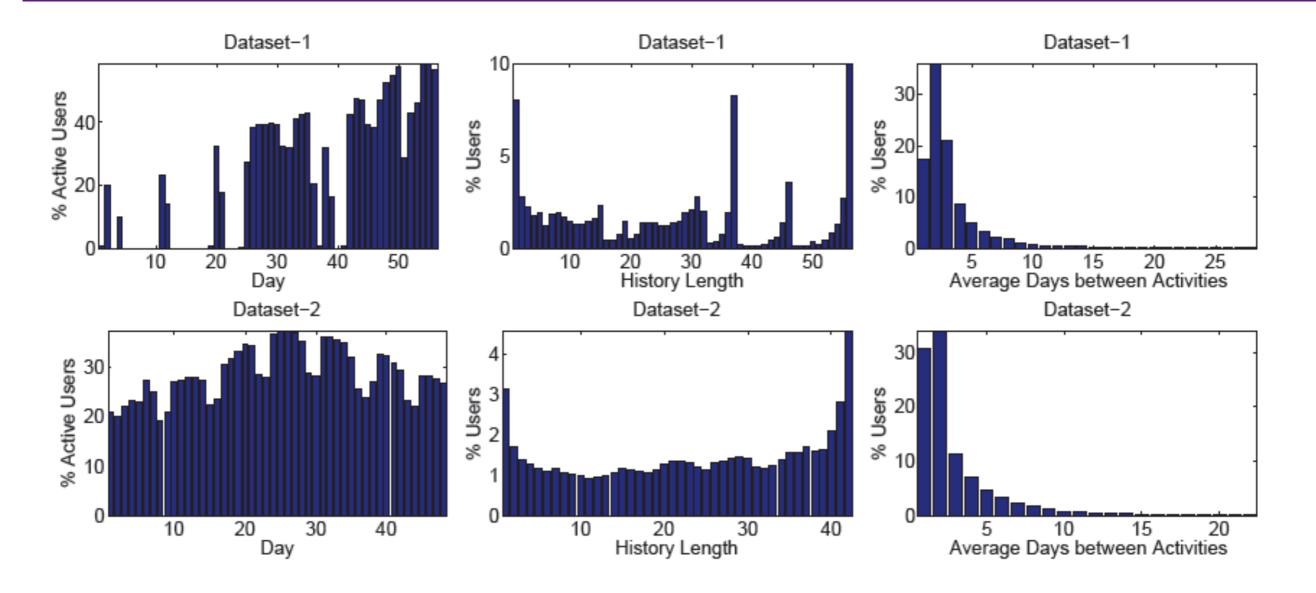
Sample users



Sample users

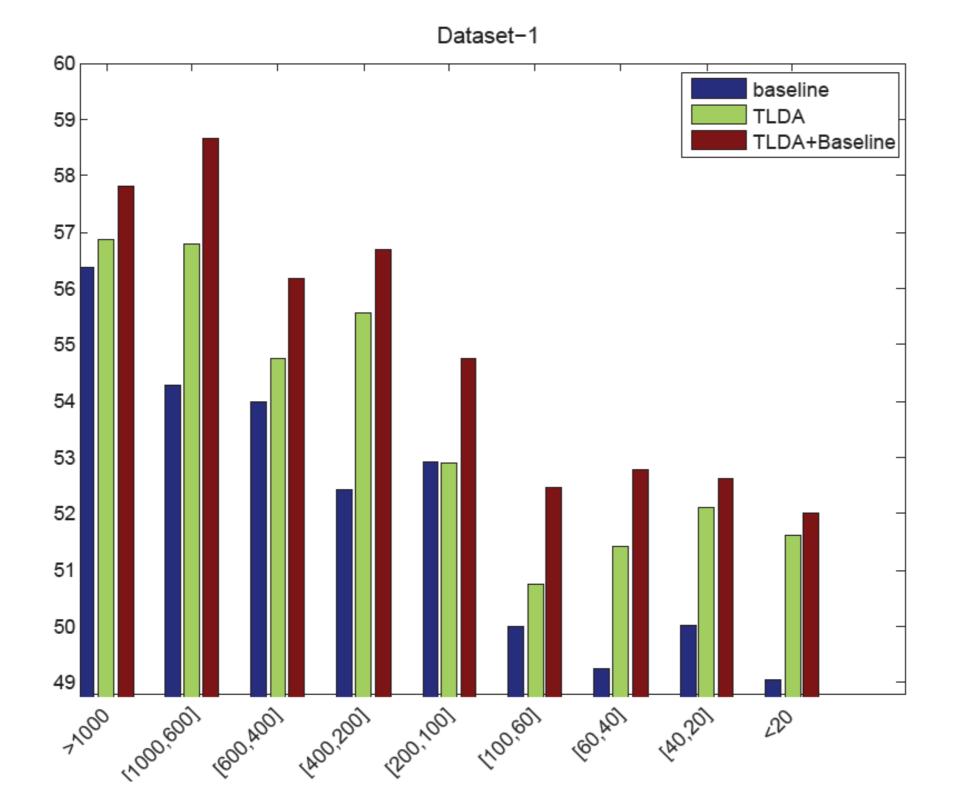


Data

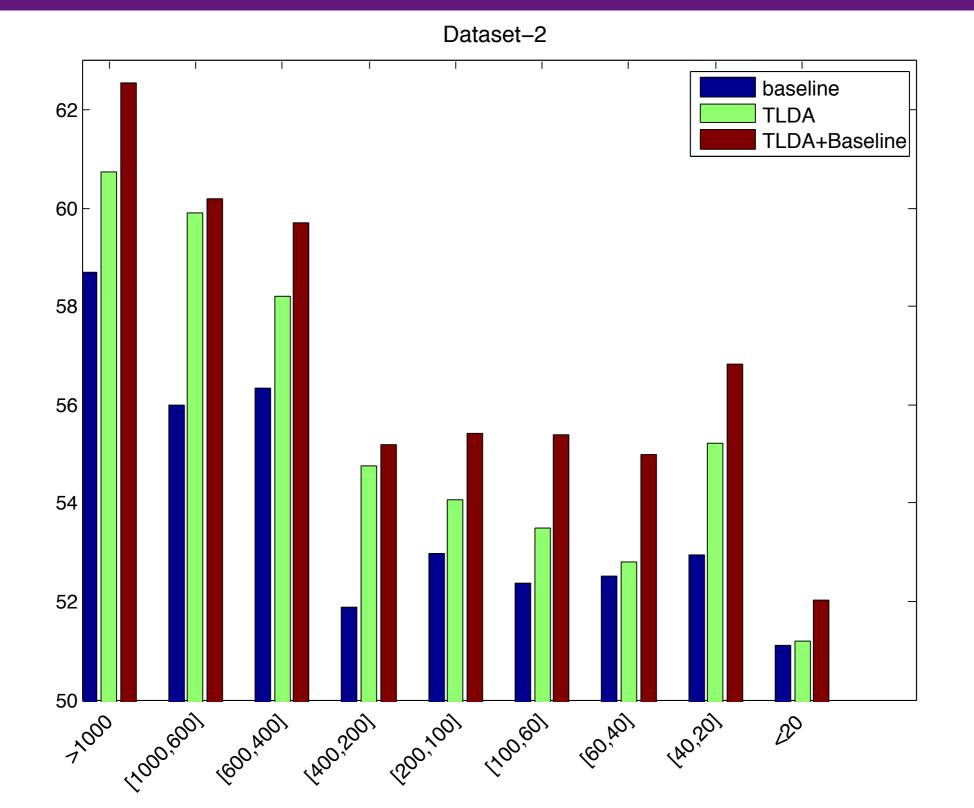


dataset	# days	# users	# campaigns	size	
1	56	$13.34\mathrm{M}$	241	242GB	
2	44	$33.5\mathrm{M}$	216	435 GB	

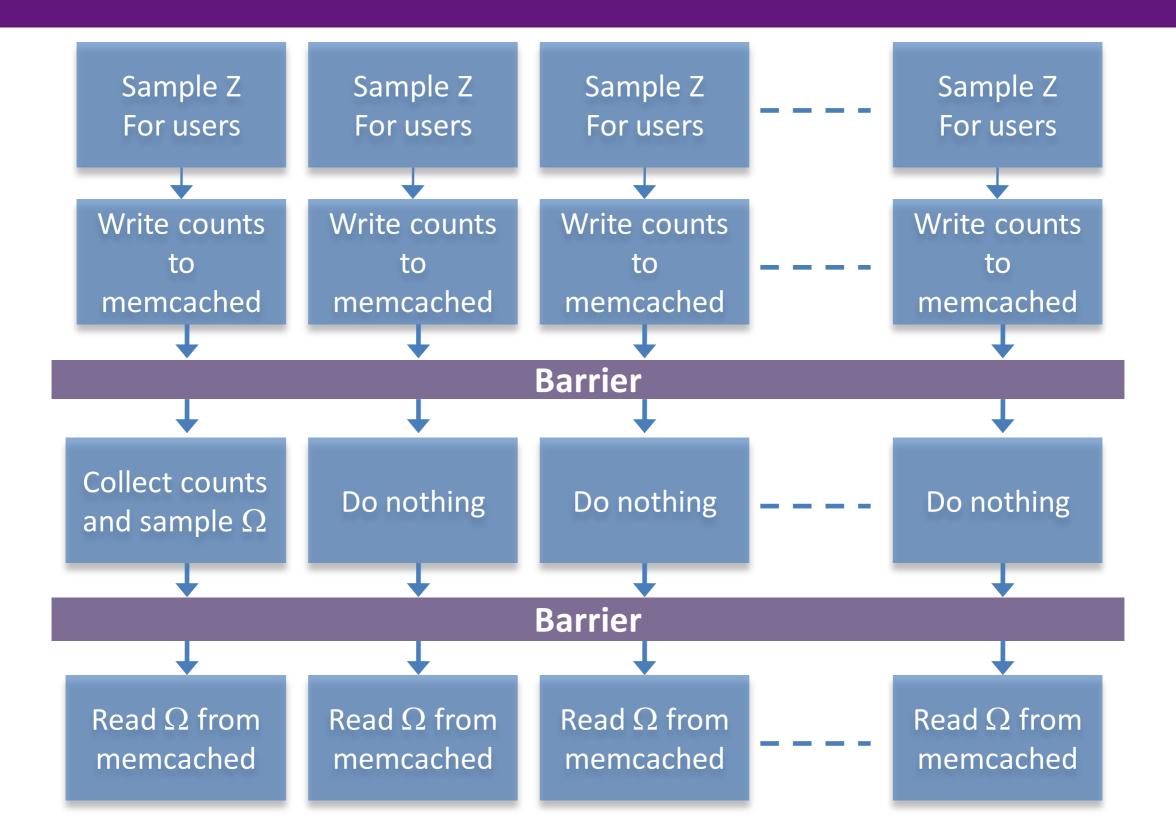
ROC score improvement



ROC score improvement



LDA for user profiling



News Stream

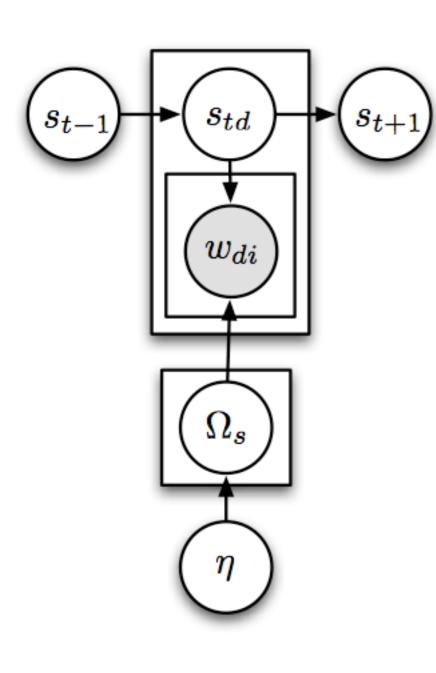
Johan Spanner for The New York Time

As part of its citywide system, Kristianstad burns wood waste like tree prunings and scraps from flooring factories to power an underground district heating grid.

News Stream

- Over 1 high quality news article per second
- Multiple sources (Reuters, AP, CNN, ...)
- Same story from multiple sources
- Stories are related
- Goals
 - Aggregate articles into a storyline
 - Analyze the storyline (topics, entities)

Clustering / RCRP



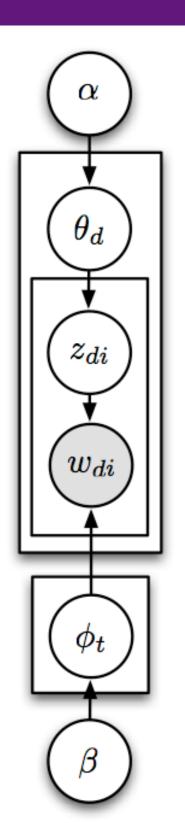
- Assume active story distribution at time t
- Draw story indicator
- Draw words from story distribution
- Down-weight story counts for next day

Ahmed & Xing, 2008

Clustering / RCRP

- Pro
 - Nonparametric model of story generation (no need to model frequency of stories)
 - No fixed number of stories
 - Efficient inference via collapsed sampler
- Con
 - We learn nothing!
 - No content analysis

Latent Dirichlet Allocation



- Generate topic distribution per article
- Draw topics per word from topic distribution
- Draw words from topic specific word distribution

Blei, Ng, Jordan, 2003

Latent Dirichlet Allocation

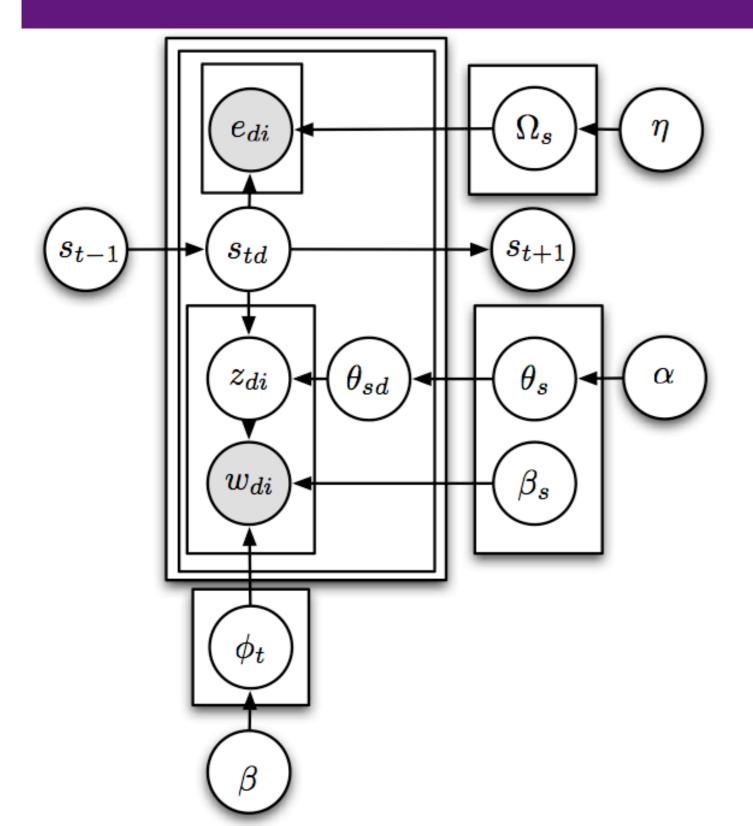
• Pro

- Topical analysis of stories
- Topical analysis of words (meaning, saliency)
- More documents improve estimates
- Con
 - No clustering

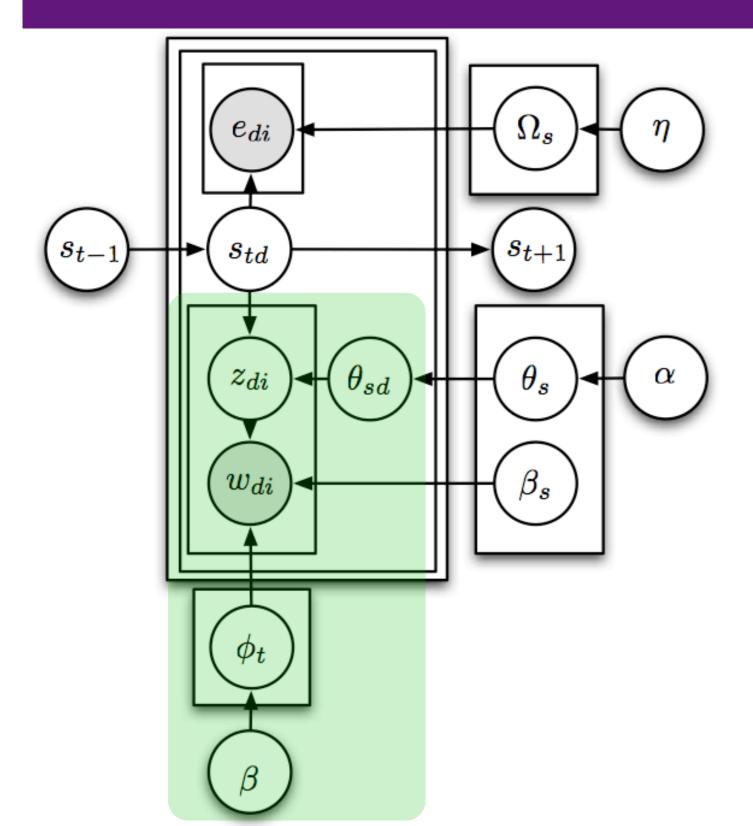
More Issues

More Issues

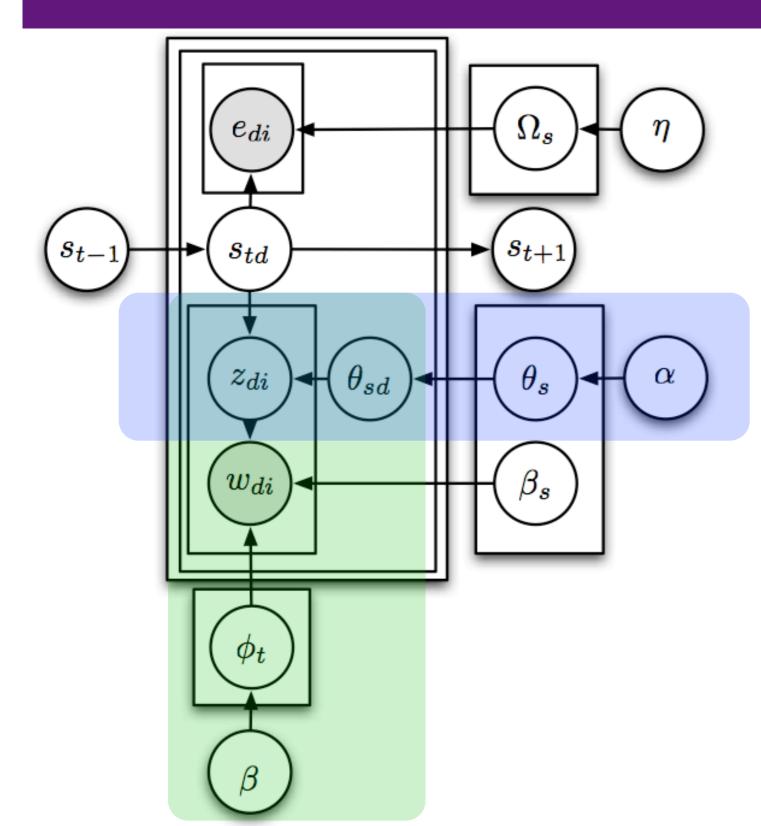
- Named entities are special, topics less (e.g. Tiger Woods and his mistresses)
- Some stories are strange (topical mixture is not enough - dirty models)
- Articles deviate from general story (Hierarchical DP)



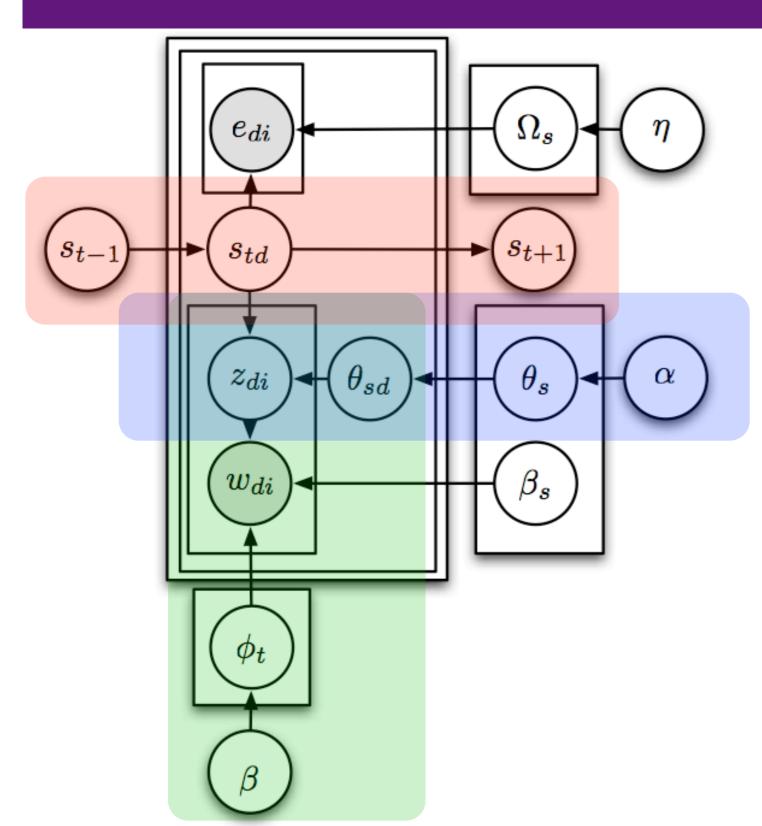
- Topic model
- Topics per cluster
- RCRP for cluster
- Hierarchical DP for article
- Separate model for named entities
- Story specific correction



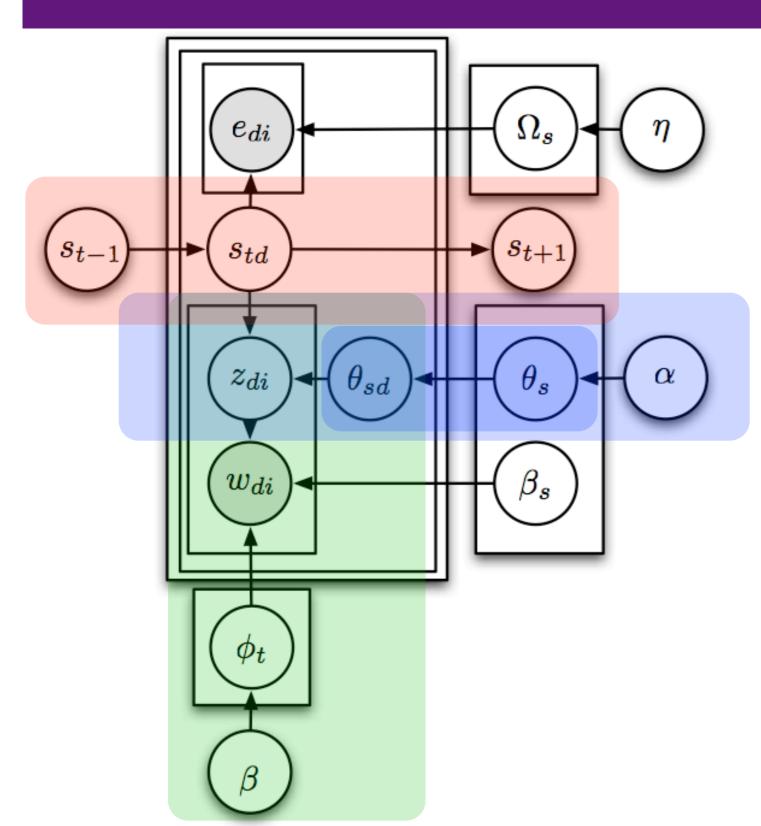
- Topic model
- Topics per cluster
- RCRP for cluster
- Hierarchical DP for article
- Separate model for named entities
- Story specific correction



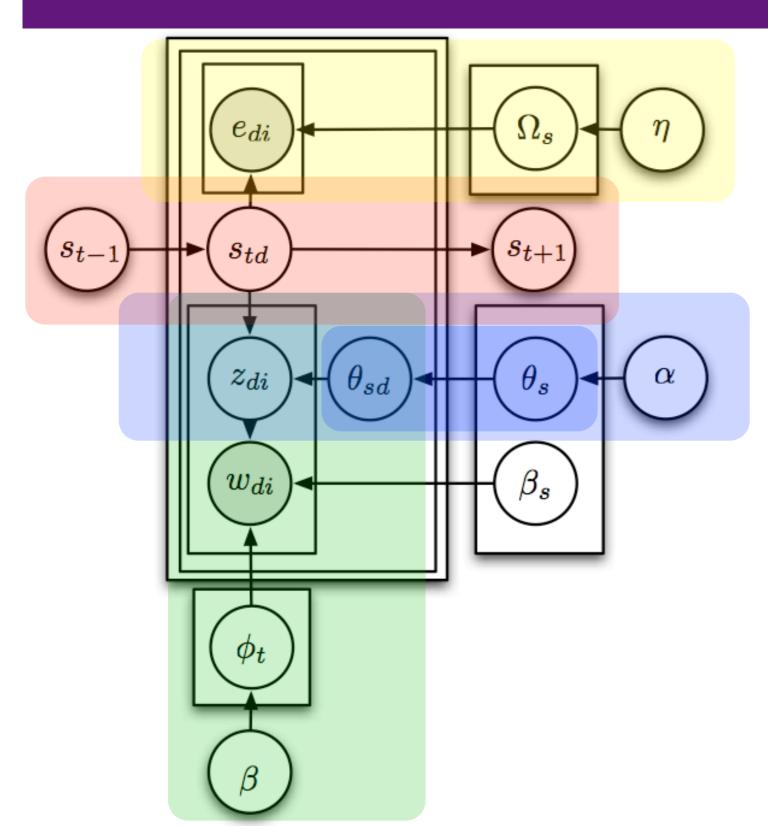
- Topic model
- Topics per cluster
- RCRP for cluster
- Hierarchical DP for article
- Separate model for named entities
- Story specific correction



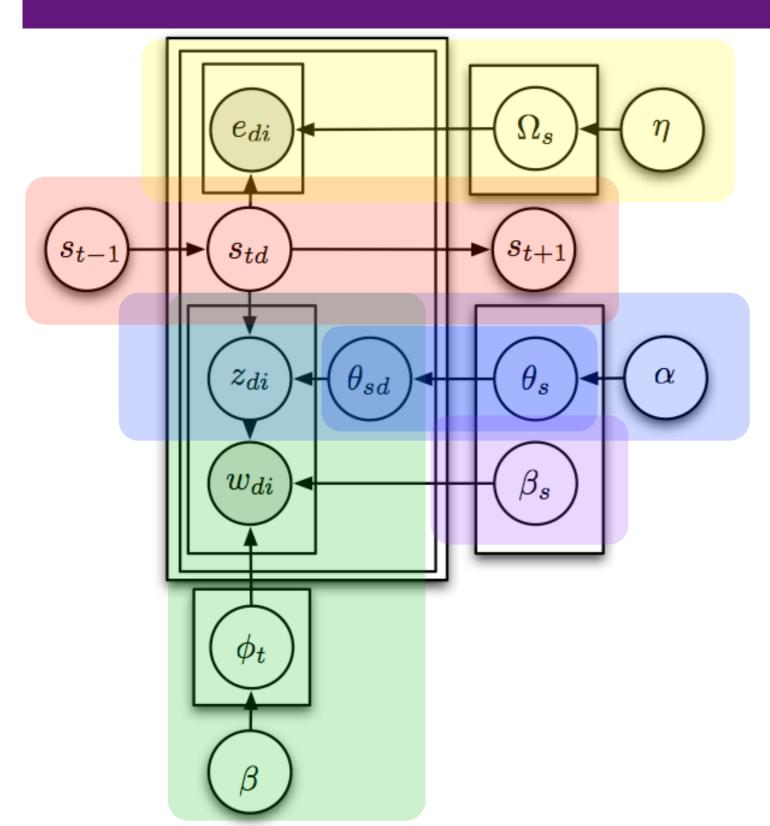
- Topic model
- Topics per cluster
- RCRP for cluster
- Hierarchical DP for article
- Separate model for named entities
- Story specific correction



- Topic model
- Topics per cluster
- RCRP for cluster
- Hierarchical DP for article
- Separate model for named entities
- Story specific correction

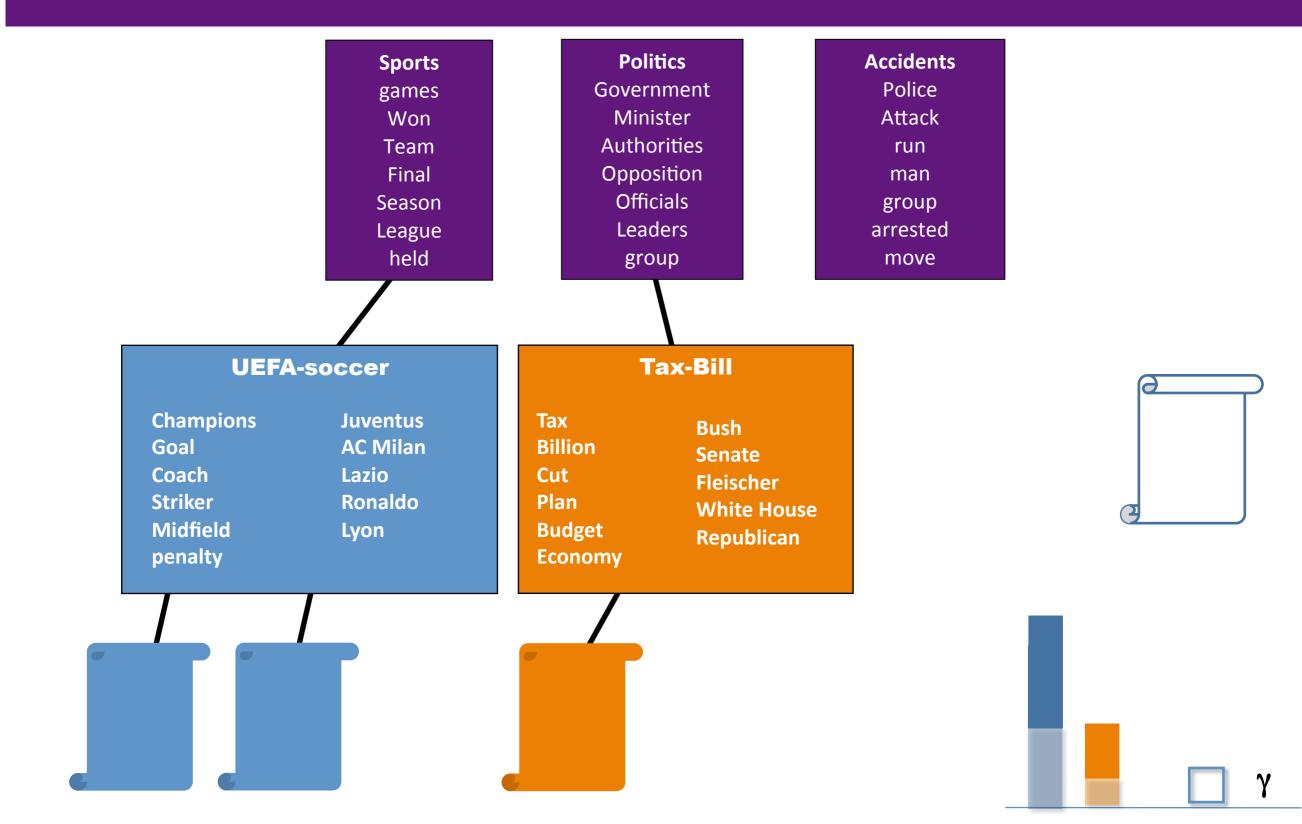


- Topic model
- Topics per cluster
- RCRP for cluster
- Hierarchical DP for article
- Separate model for named entities
- Story specific correction

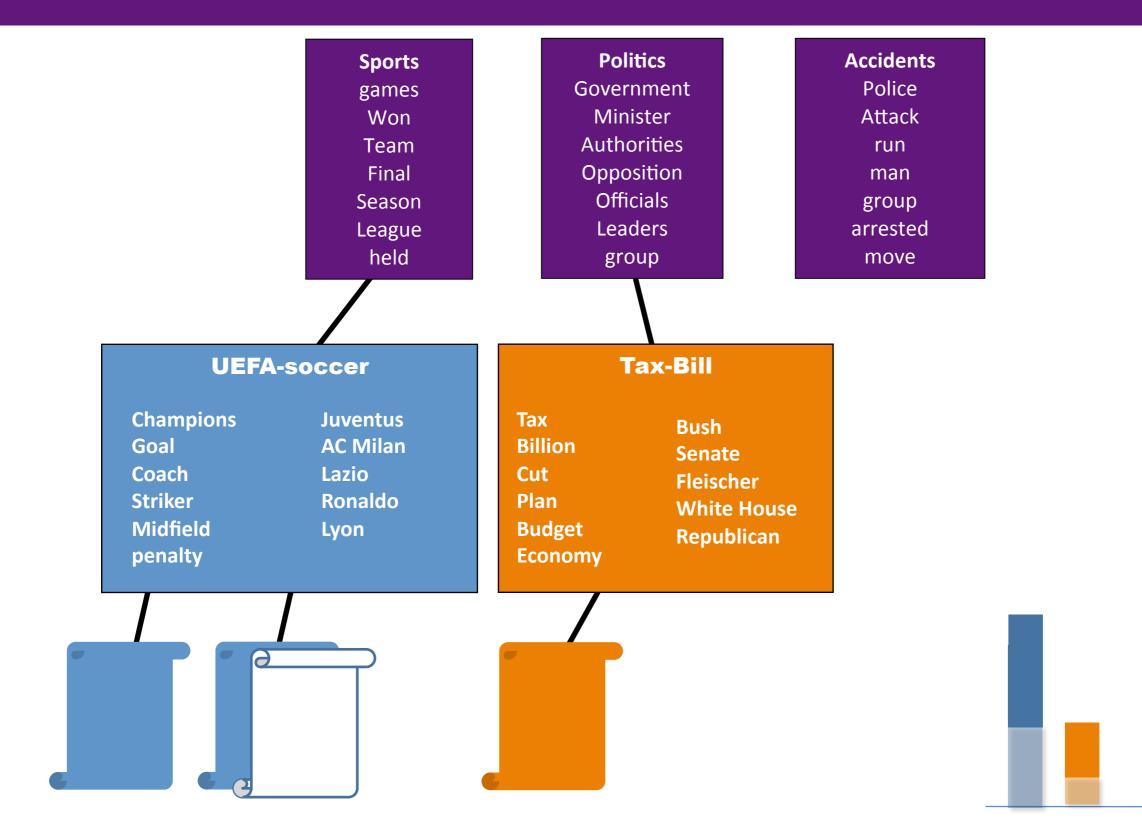


- Topic model
- Topics per cluster
- RCRP for cluster
- Hierarchical DP for article
- Separate model for named entities
- Story specific correction

Dynamic Cluster-Topic Hybrid

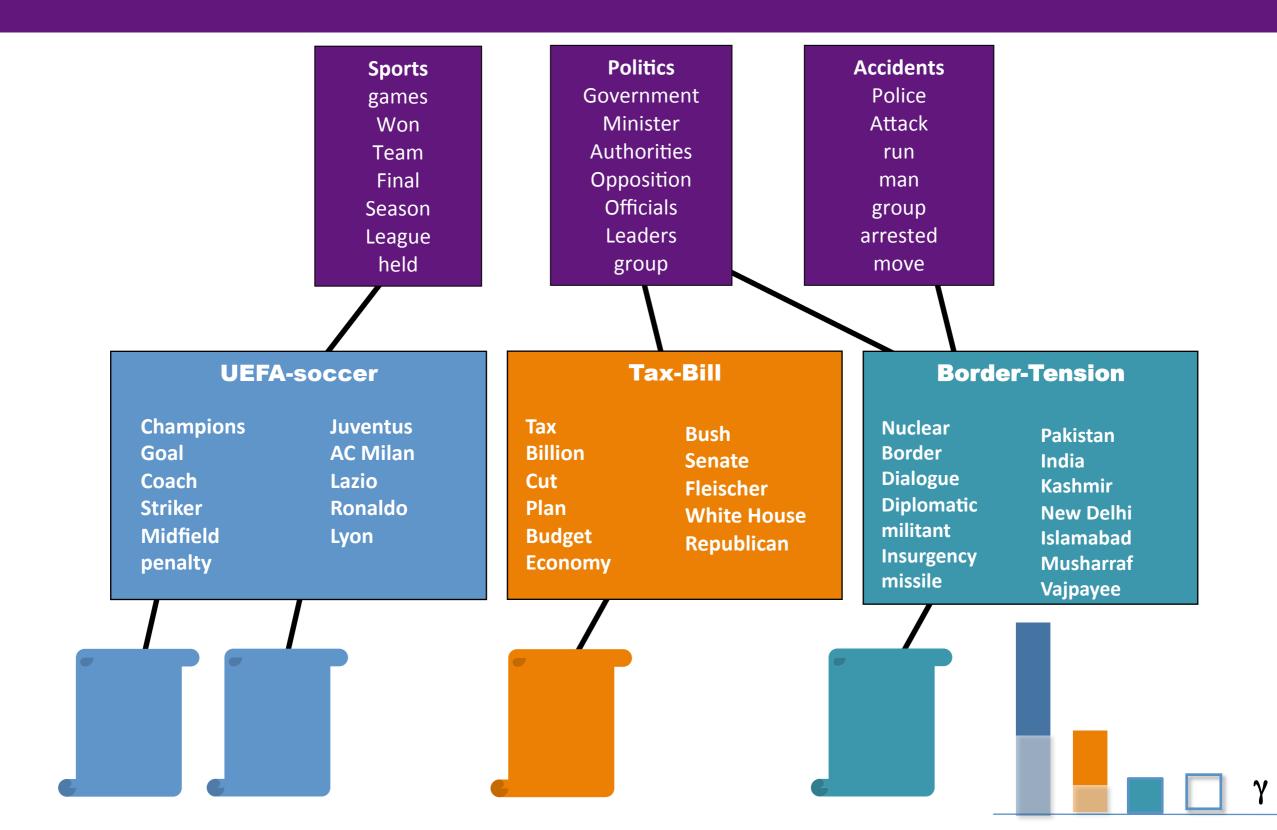


Dynamic Cluster-Topic Hybrid



γ

Dynamic Cluster-Topic Hybrid



Inference

- We receive articles as a stream Want topics & stories now
- Variational inference infeasible (RCRP, sparse to dense, vocabulary size)
- We have a 'tracking problem'
 - Sequential Monte Carlo
 - Use sampled variables of surviving particle
 - Use ideas from Cannini et al. 2009

• Proposal distribution - draw stories s, topics z

 $p(s_{t+1}, z_{t+1} | x_{1...t+1}, s_{1...t}, z_{1...t})$

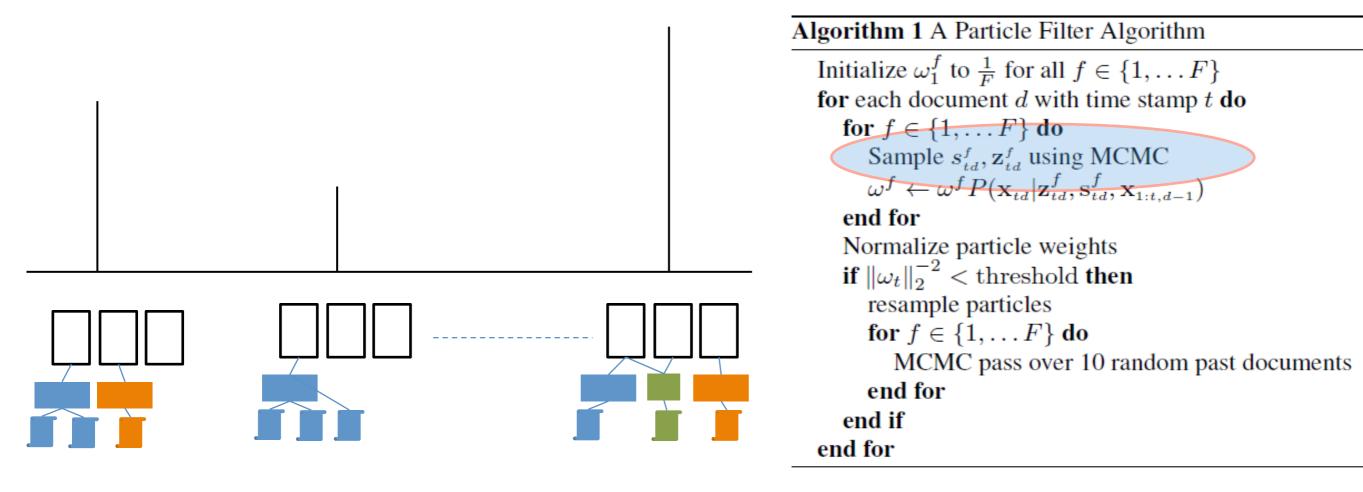
using Gibbs Sampling for each particle

Reweight particle via

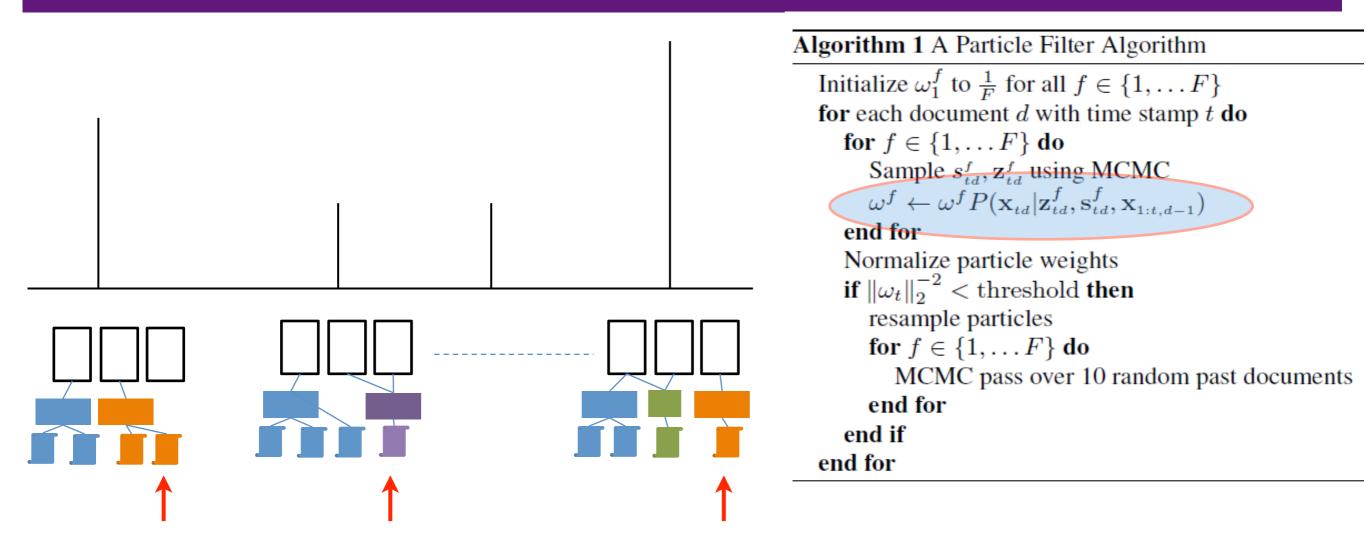
past state

new data $p(x_{t+1}|x_{1...t}, s_{1...t}, z_{1...t})$

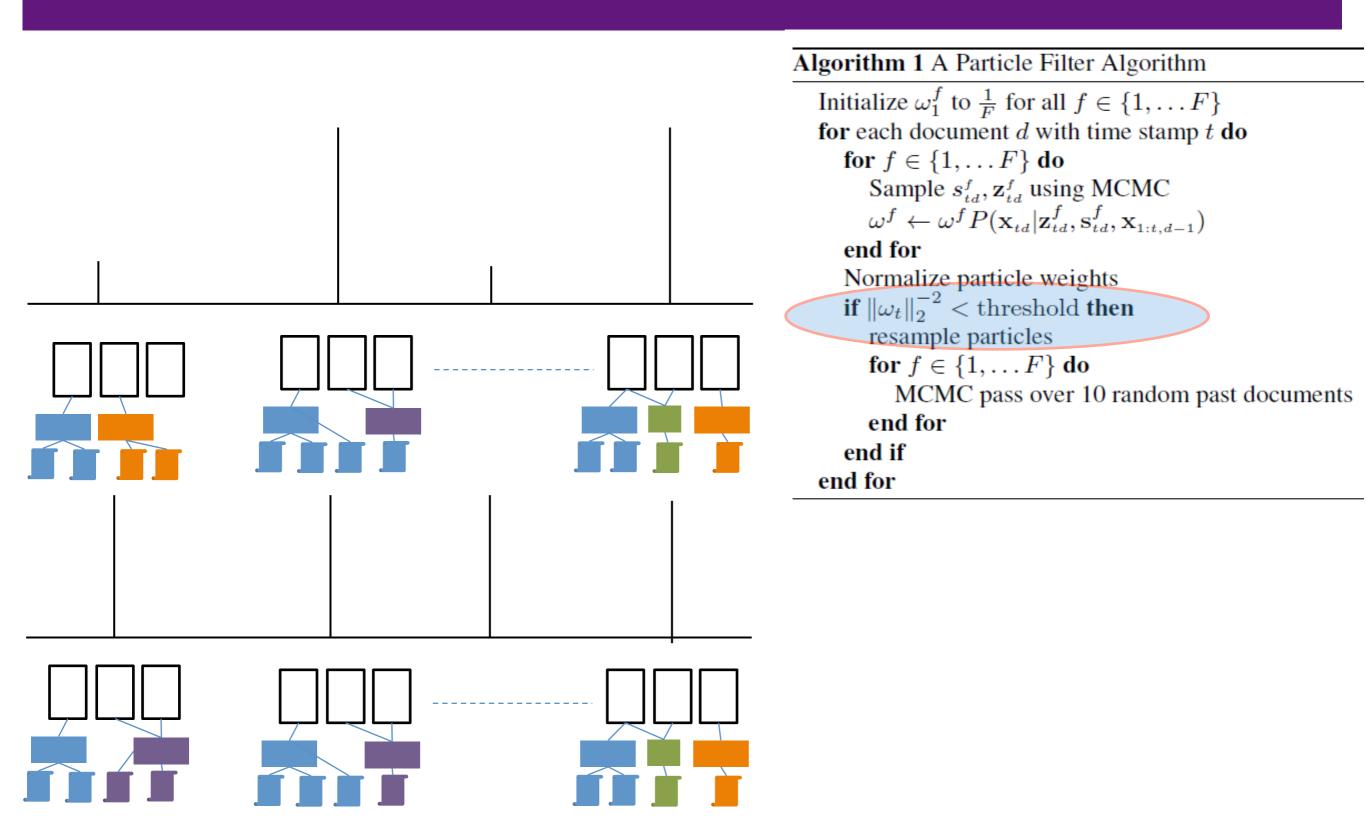
- Resample particles if l₂ norm too large (resample some assignments for diversity, too)
- Compare to multiplicative updates algorithm In our case predictive likelihood yields weights



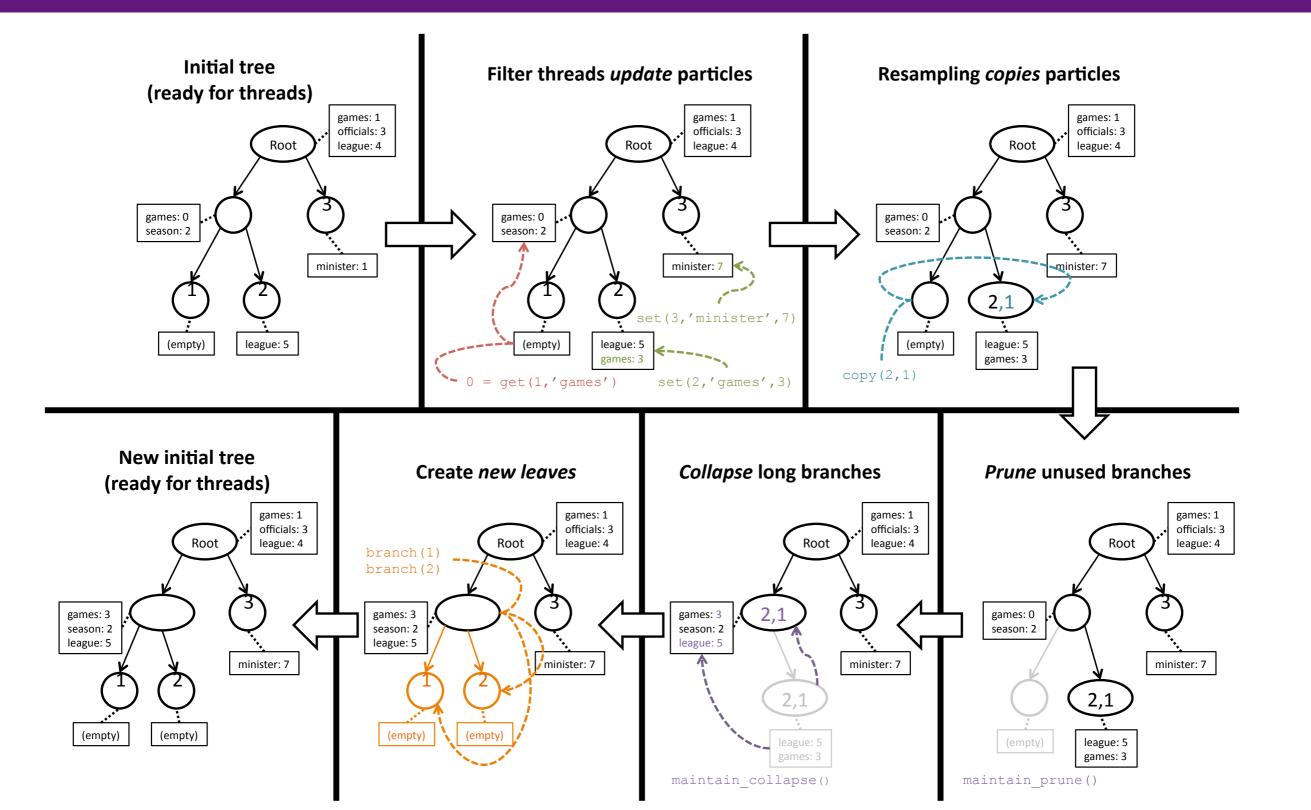
- •s and z are tightly coupled
- Alternative to MCMC
 - •Sample **s** then sample **z** (high variance)
 - •Sample z then sample s (doesn't make sense)
- •Idea (following a similar trick by Jain and Neal)
 - •Run a few iterations of MCMC over s and z
 - Take last sample as the proposed value



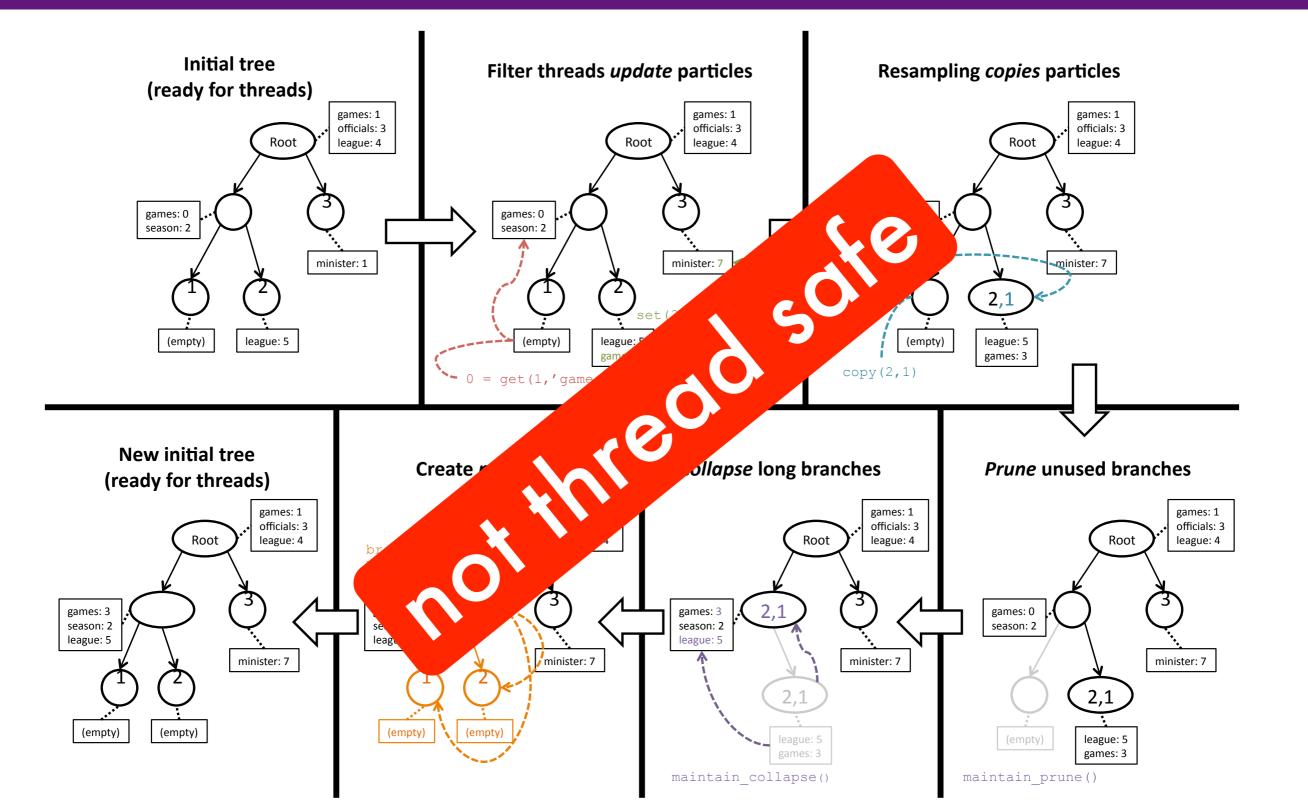
	Algorithm 1 A Particle Filter Algorithm
	Algorithm 1 A Particle Filter AlgorithmInitialize ω_1^f to $\frac{1}{F}$ for all $f \in \{1, \dots F\}$ for each document d with time stamp t dofor $f \in \{1, \dots F\}$ doSample s_{td}^f, z_{td}^f using MCMC $\omega^f \leftarrow \omega^f P(\mathbf{x}_{td} \mathbf{z}_{td}^f, \mathbf{s}_{td}^f, \mathbf{x}_{1:t,d-1})$ end forNormalize particle weightsif $ \omega_t _2^{-2} <$ threshold thenresample particlesfor $f \in \{1, \dots F\}$ doMCMC pass over 10 random past documentsend forend for



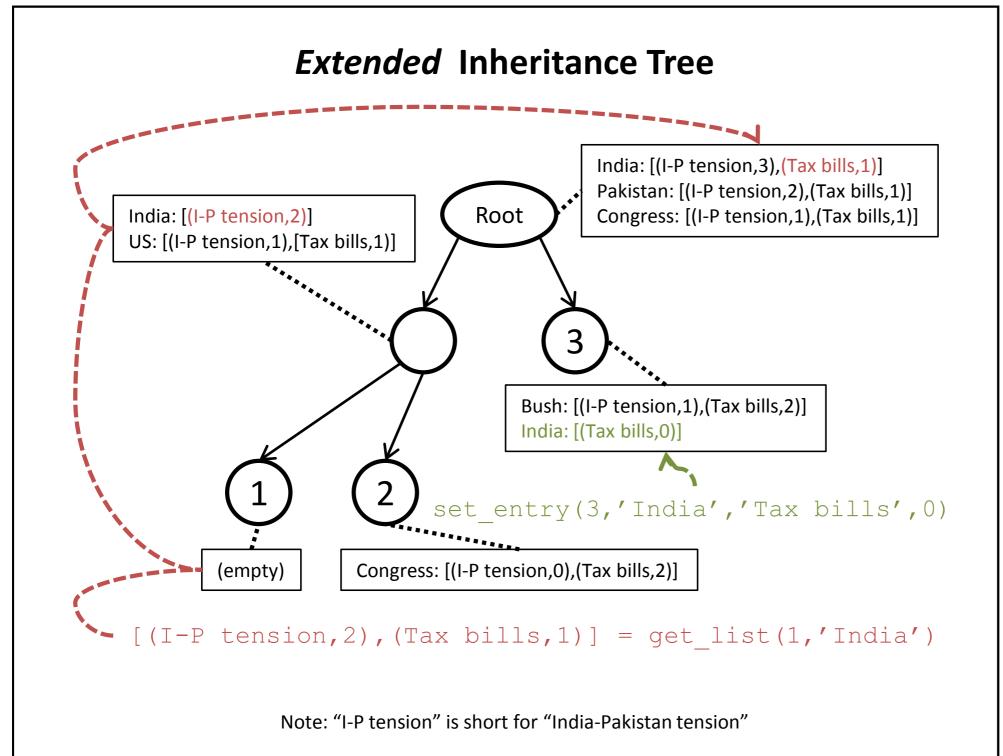
Inheritance Tree



Inheritance Tree



Extended Inheritance Tree



write only in the leaves (per thread)

Ablation studies

- TDT5 (Topic Detection and Tracking) macro-averaged minimum detection cost: 0.714
- Removing features

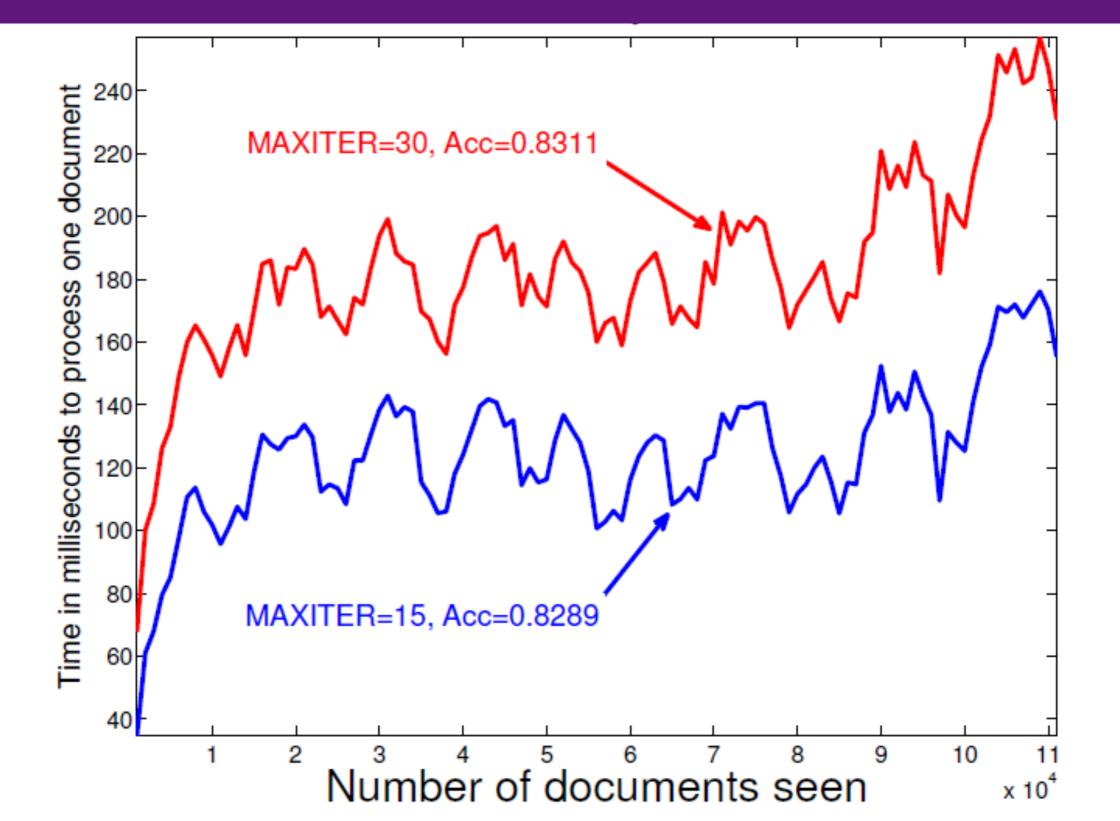
time	entities	topics	story words
0.84	0.90	0.86	0.75

Comparison

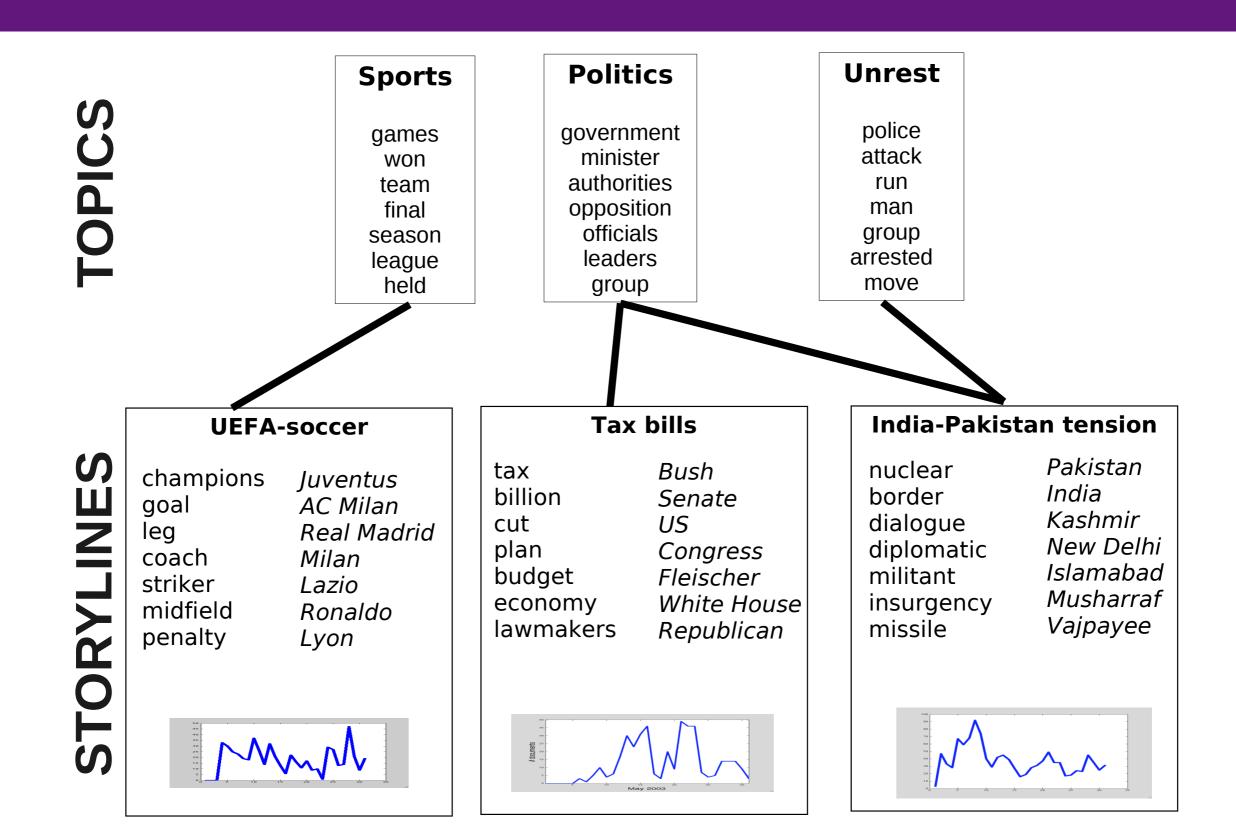
Sample	Sample	Num	Num	Story	LSHC
No.	size	Words	Entities	Acc.	Acc.
1	111,732	19,218	12,475	0.8289	0.738
2	274,969	29,604	21,797	0.8388	0.791
3	547,057	40,576	32,637	0.8395	0.800

Hashing & correlation clustering

Time-Accuracy trade off



Stories



Related Stories

"Show similar stories by topic"

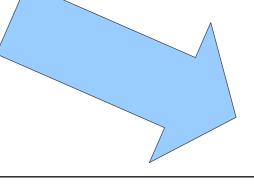
Middle-east conflict

Peace Roadmap Suicide Violence Settlements bombing Israel Palestinian West bank Sharon Hamas Arafat

India-Pakistan tension

nuclearPakistanborderIndiaborderIndiadialogueKashmirdiplomaticNew DelhimilitantIslamabadinsurgencyMusharrafmissileVajpayee

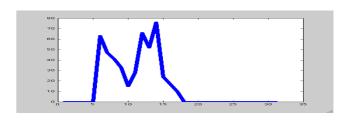
"Show similar stories, require the word nuclear"



North Korea nuclear

nuclear summit warning policy missile program

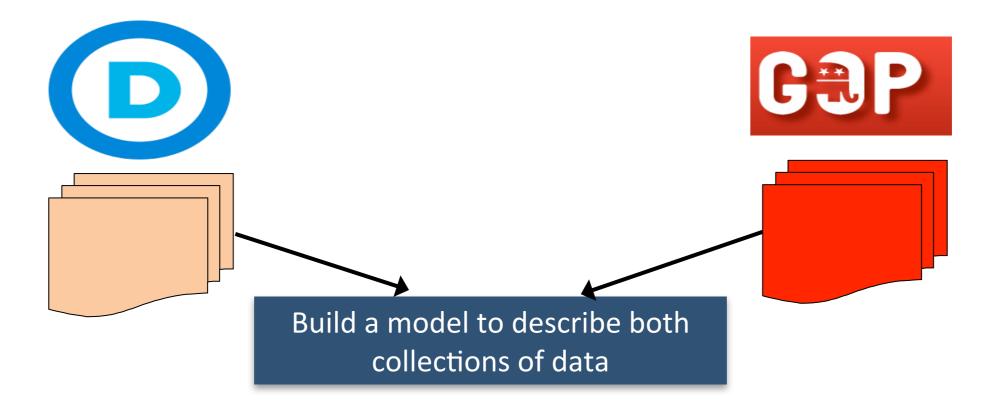
North Korea South Korea U.S Bush Pyongyang



Detecting Ideologies

Ahmed and Xing, 2010

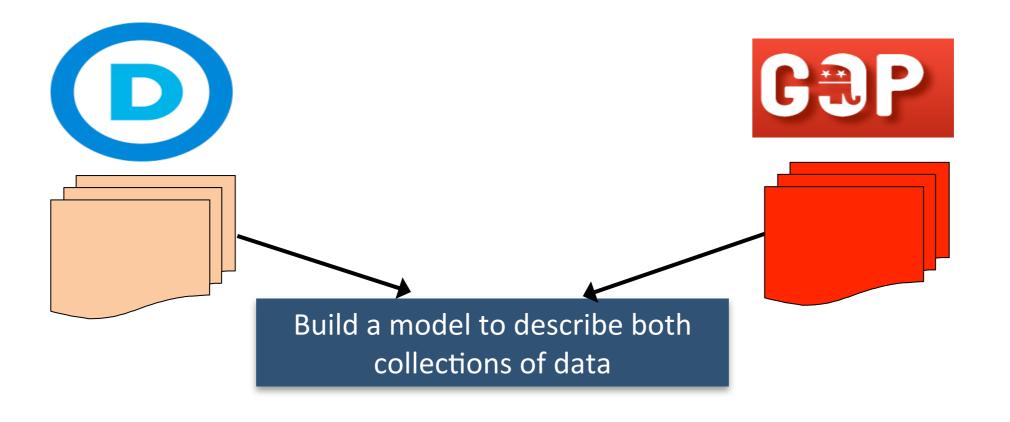
Ideologies



Visualization

- How does each ideology **view** mainstream events?
- On which topics do they differ?
- On which topics do they agree?

Ideologies



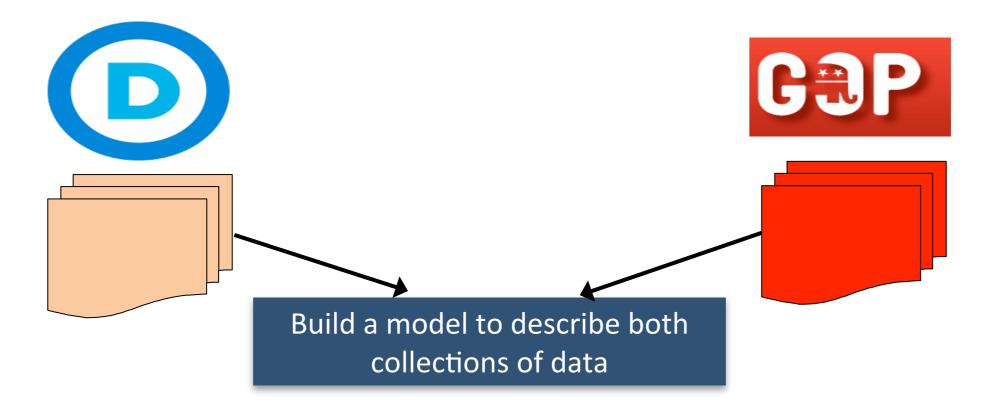
Visualization

Classification

•Given a new news article or a blog post, the system should infer

- From which side it was written
- Justify its answer on a topical level (view on abortion, taxes, health care)

Ideologies



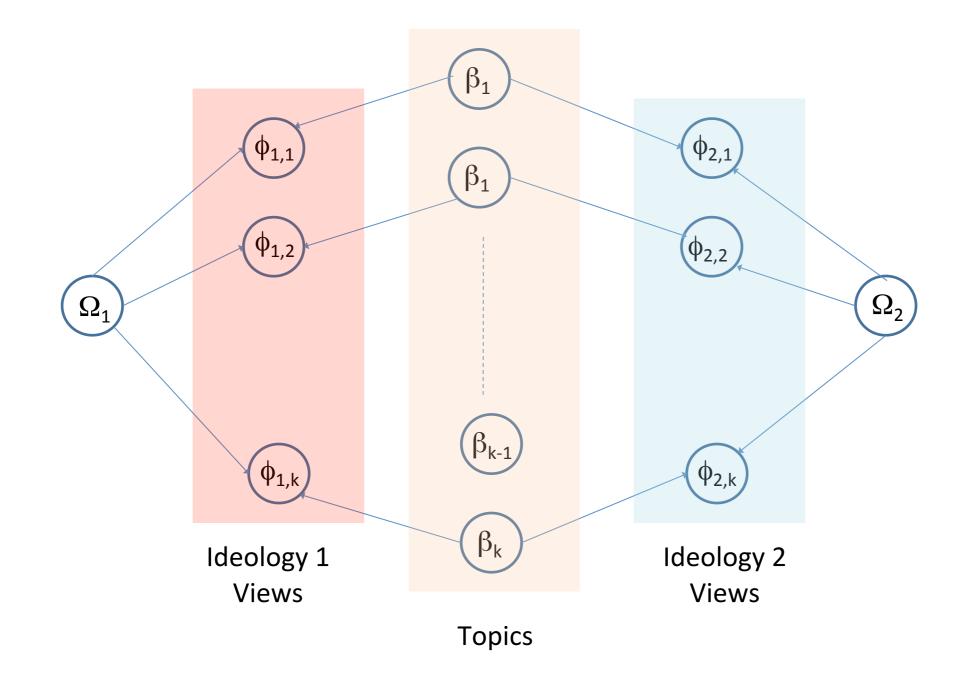
Visualization

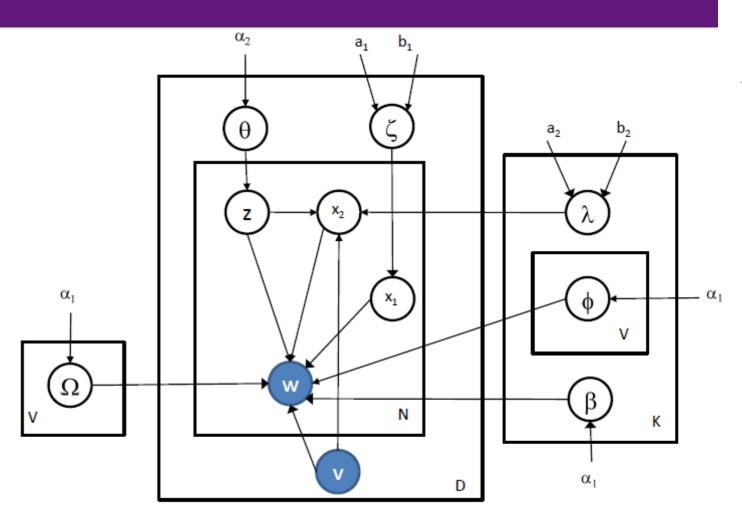
Classification

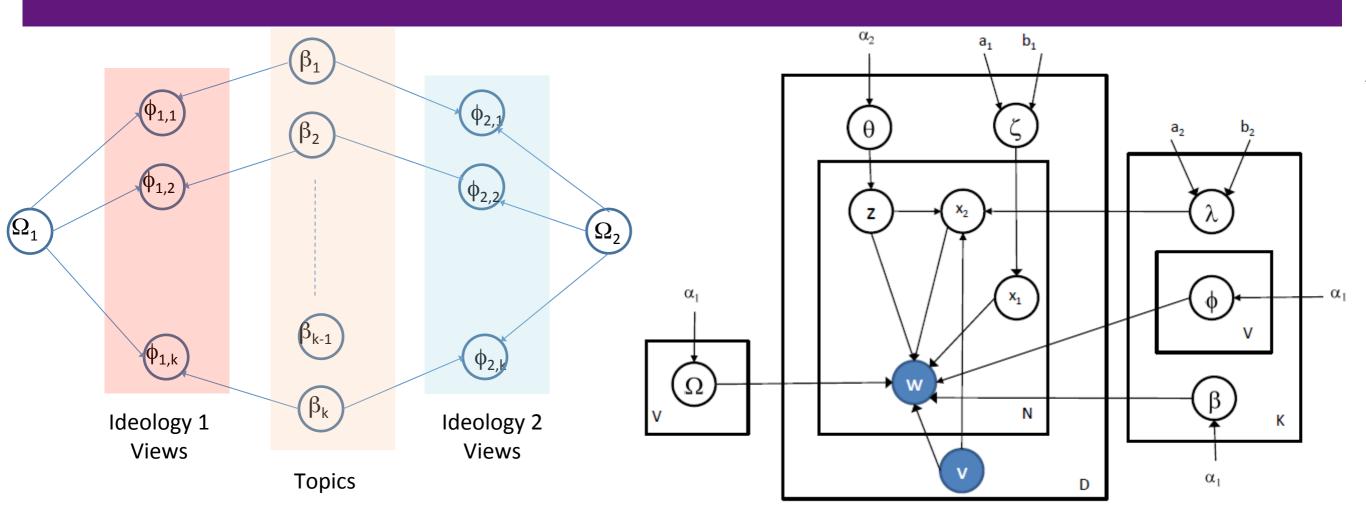
Structured browsing

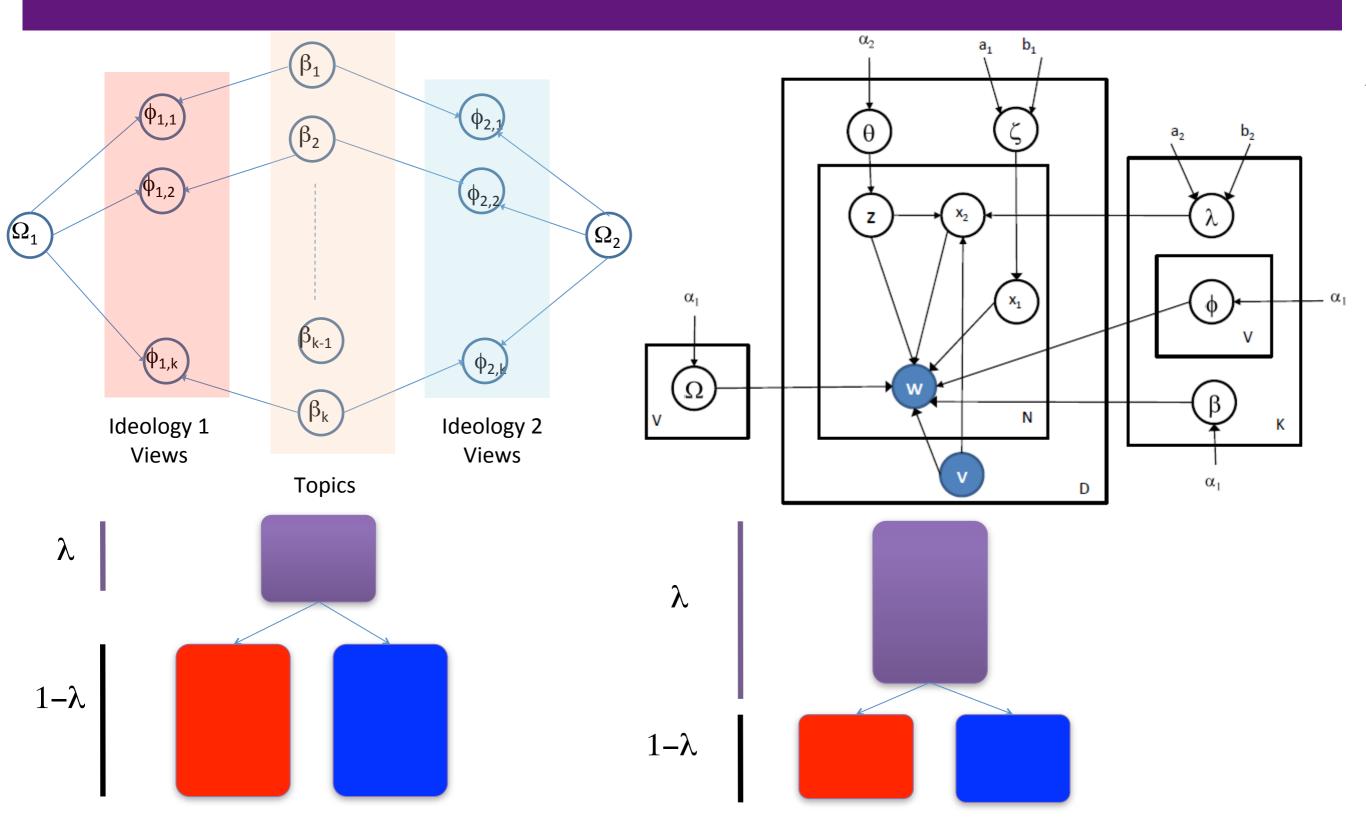
•Given a **new** news article or a blog post, the user can ask for :

- •Examples of other articles from the same ideology about the same topic
- •Documents that could exemplify alternative views from other ideologies





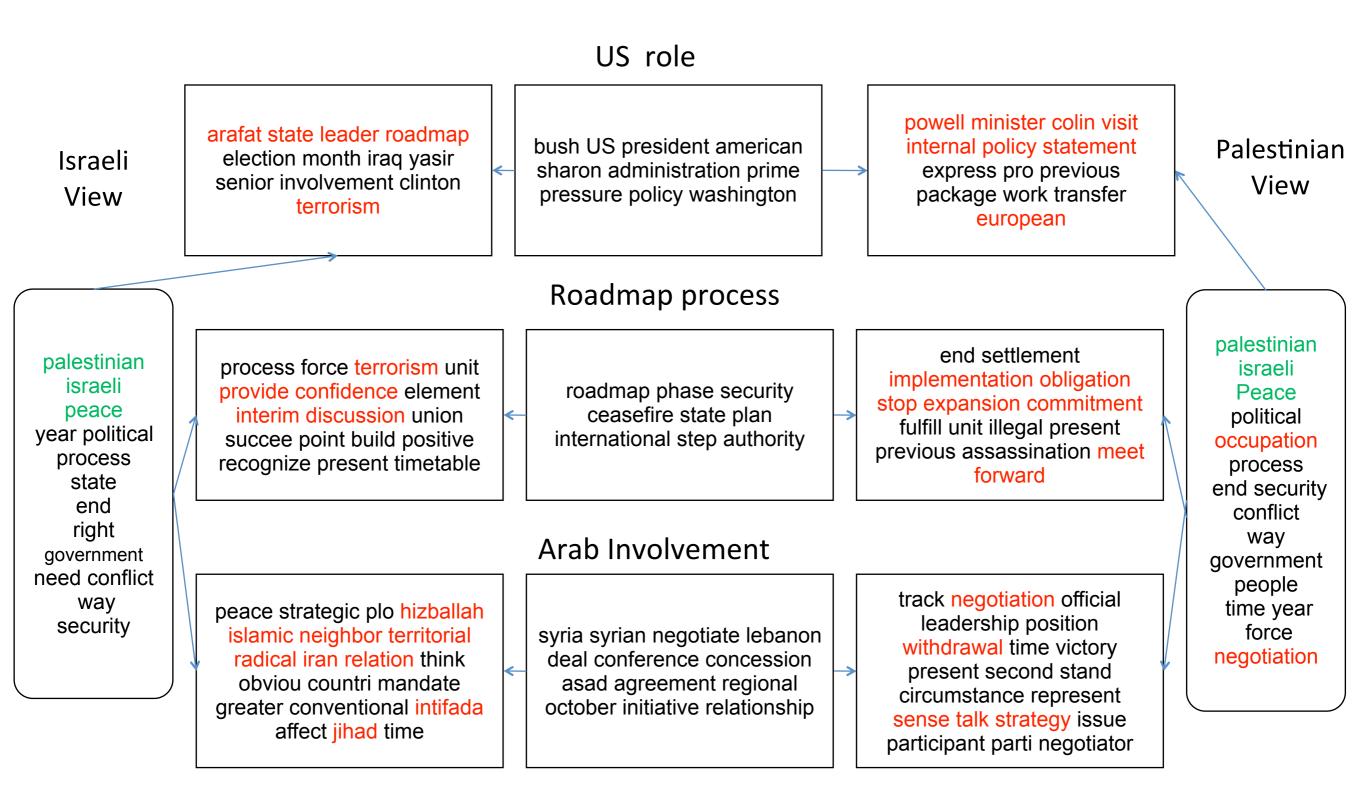




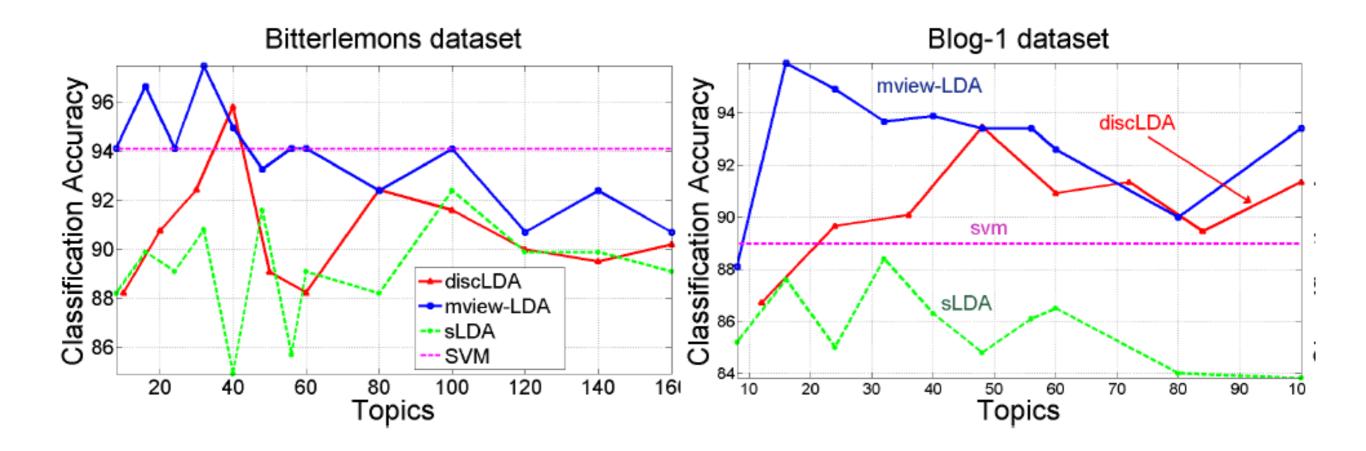
Data

- Bitterlemons:
 - Middle-east conflict, document written by Israeli and Palestinian authors.
 - ~300 documents form each view with average length 740
 - Multi author collection
 - 80-20 split for test and train
- Political Blog-1:
 - American political blogs (Democrat and Republican)
 - 2040 posts with average post length = 100 words
 - Follow test and train split as in (Yano et al., 2009)
- **Political Blog-2** (test generalization to a new writing style)
 - Same as 1 but 6 blogs, 3 from each side
 - ~14k posts with ~200 words per post
 - 4 blogs for training and 2 blogs for test

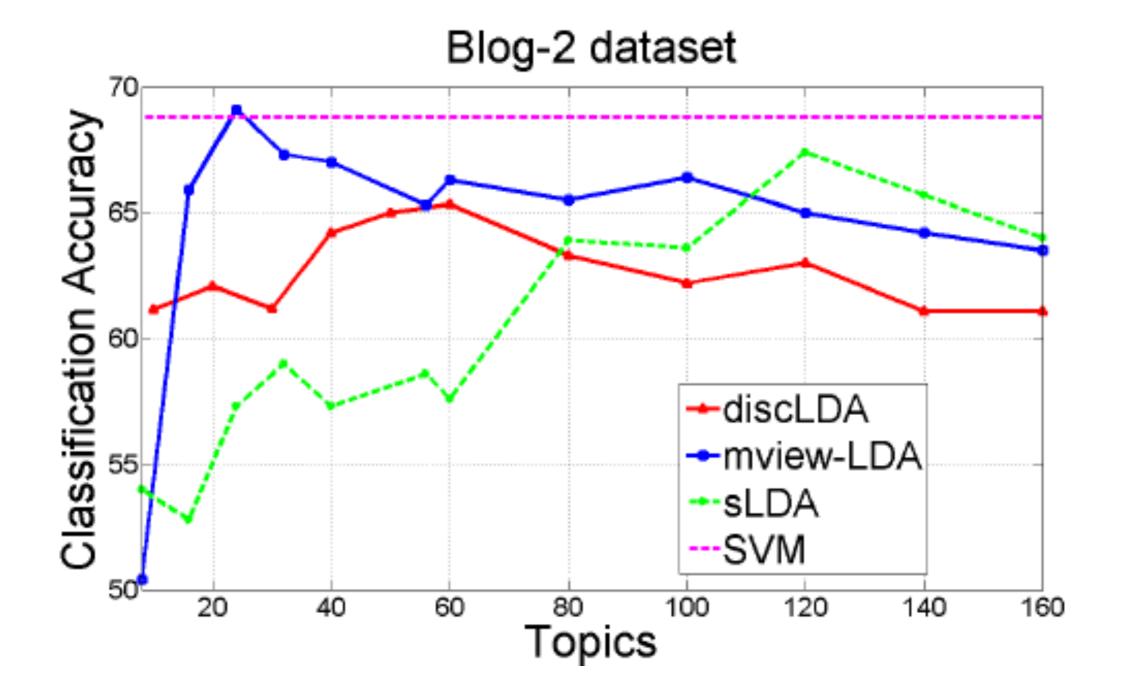
Bitterlemons dataset



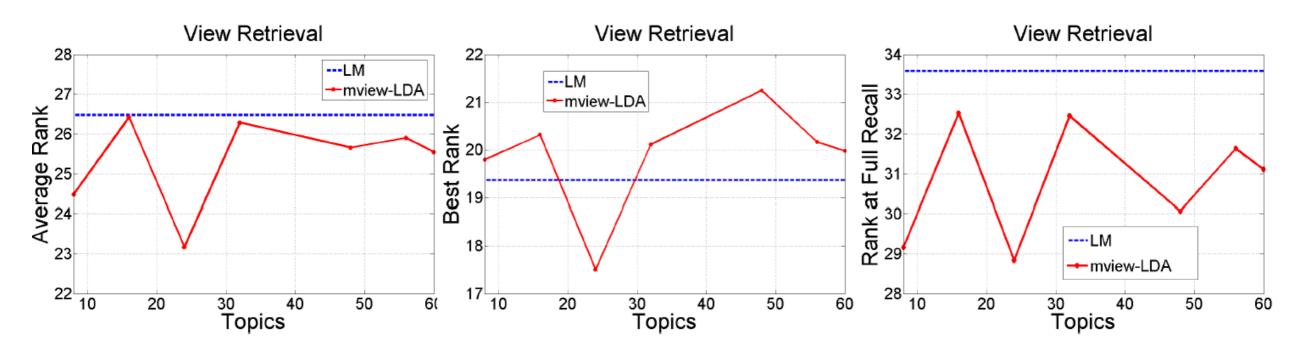
Classification accuracy



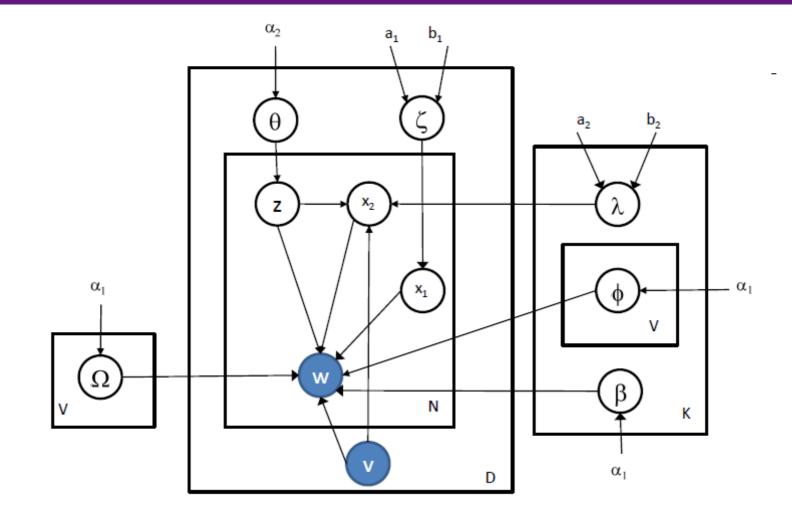
Generalization to new blogs

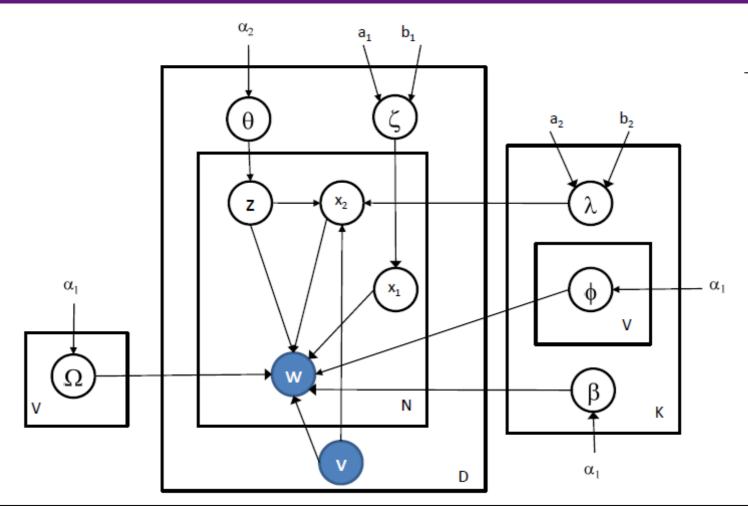


Finding alternate views



- Given a document written in one ideology, retrieve the equivalent
- Baseline: SVM + cosine similarity

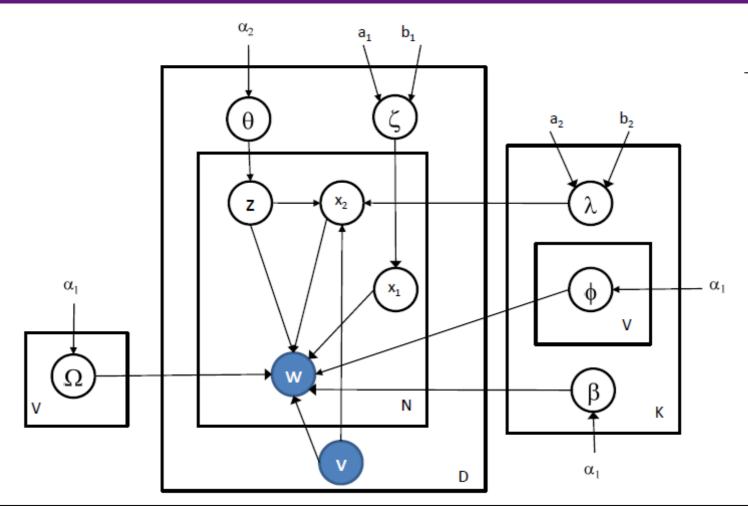




• In theory this is simple

•Add a step that samples the document view (v)

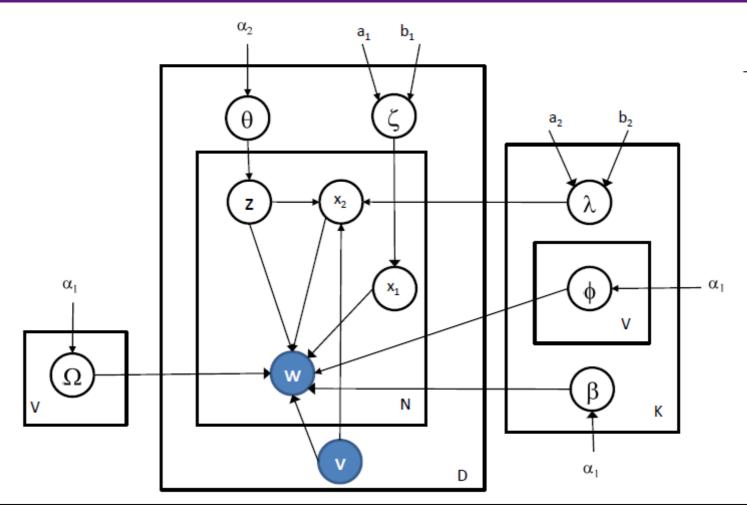
•Doesn't mix in practice because tight coupling between v and (x₁,x₂,z)



• In theory this is simple

•Add a step that samples the document view (v)

Doesn't mix in practice because tight coupling between v and (x₁,x₂,z)
 Solution



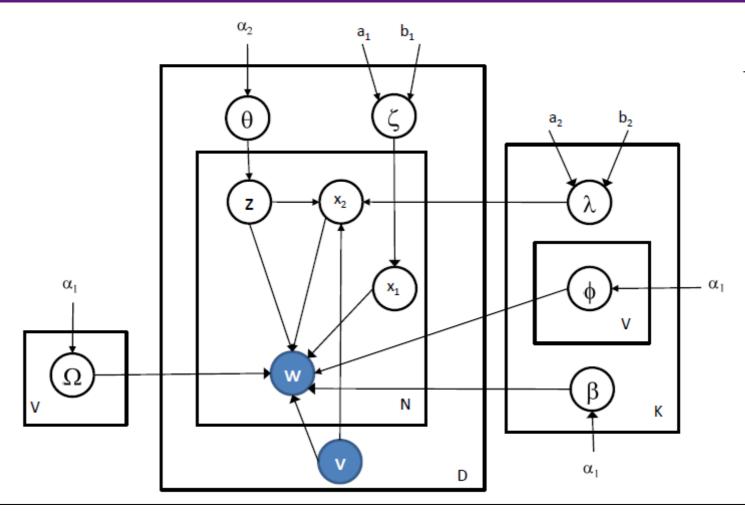
• In theory this is simple

•Add a step that samples the document view (v)

•Doesn't mix in practice because tight coupling between v and (x₁,x₂,z)

•Solution

•Sample v and $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{z})$ as a block using a Metropolis-Hasting step



• In theory this is simple

•Add a step that samples the document view (v)

•Doesn't mix in practice because tight coupling between v and (x₁,x₂,z)

•Solution

•Sample v and $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{z})$ as a block using a Metropolis-Hasting step

• This is a huge proposal!